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Abstract

Background: 5′-end sequencing assays, and Cap Analysis of Gene Expression (CAGE) in particular, have been
instrumental in studying transcriptional regulation. 5′-end methods provide genome-wide maps of transcription
start sites (TSSs) with base pair resolution. Because active enhancers often feature bidirectional TSSs, such data can
also be used to predict enhancer candidates. The current availability of mature and comprehensive computational
tools for the analysis of 5′-end data is limited, preventing efficient analysis of new and existing 5′-end data.

Results: We present CAGEfightR, a framework for analysis of CAGE and other 5′-end data implemented as an R/
Bioconductor-package. CAGEfightR can import data from BigWig files and allows for fast and memory efficient
prediction and analysis of TSSs and enhancers. Downstream analyses include quantification, normalization,
annotation with transcript and gene models, TSS shape statistics, linking TSSs to enhancers via co-expression,
identification of enhancer clusters, and genome-browser style visualization. While built to analyze CAGE data, we
demonstrate the utility of CAGEfightR in analyzing nascent RNA 5′-data (PRO-Cap). CAGEfightR is implemented
using standard Bioconductor classes, making it easy to learn, use and combine with other Bioconductor packages,
for example popular differential expression tools such as limma, DESeq2 and edgeR.

Conclusions: CAGEfightR provides a single, scalable and easy-to-use framework for comprehensive downstream
analysis of 5′-end data. CAGEfightR is designed to be interoperable with other Bioconductor packages, thereby
unlocking hundreds of mature transcriptomic analysis tools for 5′-end data. CAGEfightR is freely available via
Bioconductor: bioconductor.org/packages/CAGEfightR.
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Background
Transcription start sites (TSSs) are central entities of
transcriptional regulation, where a wide range of cues
from surrounding factors such as core promoter ele-
ments, transcription factor binding sites, chromatin
modifications, and distal elements such as enhancers
and silencers are integrated to decide whether transcrip-
tion initiation takes place, and with what rate [1–3].
Hence, accurate identification of TSSs and their activity
is a prerequisite for understanding gene regulation.
Several genome-wide, high-throughput sequencing as-

says have been developed for identifying TSS activity, all
based on the idea of capturing and sequencing only the

5′-end of RNAs (called tags), leading to the collective
name of 5′-end methods [4]. In terms of TSS identifica-
tion, such methods have distinct advantages over other
assays, e.g. RNA-sequencing (RNA-Seq) and Chromatin
Immunoprecipitation Sequencing (ChIP-Seq). While
RNA-Seq is widely used for studying gene expression
and splicing, it is ineffective for accurate detection of
TSSs. This is due to the random fragmentation of RNA
molecules, leading to a trail-off of sequencing reads near
the end of transcripts. In contrast, 5′-end methods ef-
fectively pile up reads at TSSs, providing high local
coverage for accurate prediction of TSSs. Similarly,
ChIP-Seq targeting RNA polymerase II or pre-initiation
complex proteins has low positional resolution due to
the length of ChIP-Seq fragments, and does not expli-
citly measure TSS usage.
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The majority of available 5′-end methods capture
steady-state capped RNAs (Table 1). This allows for
identification of messenger RNA (mRNA) TSSs, includ-
ing non-characterized alternative TSSs since the
methods are not contingent on annotated transcript
models. Alternative TSS usage is often tissue/cell-spe-
cific, and common in mammals [14, 15], plants [16], in-
sects [17] and fungi [18, 19]. TSSs of long non-coding
RNA (lncRNAs) can be detected and quantified in a
similar fashion, often with greater precision than RNA-
Seq alone [20]. Enhancer RNAs (eRNAs) is a class of
non-coding RNAs which has attracted considerable
interest, since they are transcribed from active enhancer
regions, making it possible to predict enhancers using
5′-end data [21]. A set of 5′-end methods (Table 1) have
been developed specifically for capturing nascent capped
RNA to measure transcription as opposed to steady-state
RNA levels, thereby enriching for unstable RNAs [12],
including eRNAs.
Cap Analysis of Gene Expression (CAGE [5]), based

on reverse transcription of total RNA followed by cap-
trapping, is arguably the most used 5′-end method and
has the widest range of developed protocols (Table 1).
CAGE has been applied in a multitude of different

settings, including consortiums (FANTOM [15] and EN-
CODE [22]), multiple species (mammals [14], insects
[17, 23, 24], fungi [18, 19], plants [6], etc.) and in clinical
settings (inflammatory bowel disease [25], diabetes [26],
cancer [27], Retts Syndrome [28]). Despite its wide
usage, the current toolbase available for analyzing 5′-
end data is not as developed as that for RNA-Seq or
ChIP-Seq (Table 2). Most tools are either stand-alone
pipelines (MOIRAI [29], RECLU [32], etc.) or focused
on a single analysis problem, e.g. tag clustering (paraclu
[30], CapFilter [6], etc., further discussed below), making
it hard to combine different tools. An alternative to
stand-alone tools is using R-packages from the Biocon-
ductor [39] project, which allows easier interoperability
between tools due to shared data representations. Bio-
conductor currently contains three packages (CAGEr
[34], icetea [37], TSRchitect [38]) for analyzing 5′-end
data in general and CAGE in particular. While these
packages offer functionality for TSS identification, quan-
tification and annotation, they lack any functions for
predicting, quantifying and analyzing enhancer candi-
dates, and are not efficiently scalable for large datasets.
To solve the above problems, we here introduce the

CAGEfightR R/Bioconductor package for analyzing 5′-

Table 1 Examples of popular 5′-end methods

Technology Acronym RNA state Ref.

Cap Analysis of Gene Expression CAGE Steady-tate [5]

Nano CAGE NanoCAGE Steady-state [6]

Super Low Input Carrier CAGE SLIC-CAGE Steady-state [7]

no-Amplification non-Tagging CAGE nAnT-iCAGE Steady-state [8]

Transcription Start Site Sequencing TSS-Seq Steady-state [9]

RNA Annotation and Mapping of Promoters for the Analysis of Gene Expression RAMPAGE Steady-state [10]

Single-cell Tagged Reverse transcription STRT Steady-state [11]

Precision Nuclear Run-on Sequencing for RNA Polymerase II Start Sites PRO-Cap Nascent [12]

5′ Global Run-on Sequencing GRO-Cap/5′ GRO-Seq Nascent [13]

Table 2 Examples of software packages for analyzing 5′-end data (including CAGE)

Tool Implementation Input
data

Tag Clustering TSS candidate
shape

Differential
Expression

Gene-level analysis Unique features

MOIRAI [29] Graphical User
Interface

FASTQ paraclu [30] None None inbuilt None rRNAdust, TagDust [31]

RECLU [32] Bash BED modified paraclu [30] None edgeR [33] None Hierarchical TSSs

CAGEr [34] R/Bioconductor BAM distance or paraclu [30] IQR DESeq2 [35] Gene expression G-bias correction [36],
power-law normalization,
TSS shifts

icetea [37] R/Bioconductor FASTQ Sliding window None edgeR [33] Gene expression Paired-end methods,
mapping via R

TSRchitect [38] R/Bioconductor BAM X-means Shape Index [17] None inbuilt None Paired-end methods

CAGEfightR R/Bioconductor BigWig Slice-reduce IQR, entropy, etc. None inbuilt Gene expression and
alternative TSS usage

Enhancer calling,
TSS-enhancer
co-expression,
super enhancers
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end data. CAGEfightR is the first single framework that
robustly detects, quantifies, annotates, links and visual-
izes TSSs and enhancer candidates in a manner that is
highly compatible with other Bioconductor packages.
The memory efficient and scalable implementation al-
lows CAGEfightR to be used on datasets ranging from
small-scale experiments to consortia-level projects. In
this way, CAGEfightR unlocks hundreds of packages de-
veloped for RNA-Seq and ChIP-Seq for CAGE and simi-
lar types of 5′-end data.

Implementation
CAGEfightR is implemented purely in R making use of
several R-packages from the Bioconductor project. It is
based on standard Bioconductor S4-classes, primarily
GRanges (GenomicRanges), RangedSummarizedExperi-
ment (SummarizedExperiment) [40] and GInteractions
(InteractionSet) [41] and visualization via Gviz [42] and
GenomicInteractions [43]. This makes it easy to use
CAGEfightR in conjunction with other Bioconductor
packages.
5′-end data is conventionally stored, shared and ana-

lyzed by first mapping tags to the genome, followed by
counting the number of 5′-ends of tags mapping to each
individual base pair (bp), on each strand. In CAGE ter-
minology, such data are referred to as CAGE-defined
TSSs (CTSSs) [36], but we use the term generally for all
5′-end methods here. The processing of tags differs be-
tween 5′-methods due to distinctive protocols (5′-end
isolation technique, single-end vs. paired-end sequen-
cing, etc.), and for CAGE in particular specialized tools
have been developed, e.g. rRNAdust for removing con-
taminant ribosomal RNA (http://fantom.gsc.riken.jp/5/
suppl/rRNAdust/) and/or removing G’s added by reverse
transcriptase at cDNA 5′-ends [36]. While filtering,
mapping, and counting of tags can be done efficiently by
dedicated tools a single library at a time, CAGEfightR is
focused on analysis from the point when multiple librar-
ies are jointly analyzed. To be as general as possible,
CAGEfightR was designed to import and analyze 5′-end
data after mapping and processing by starting from
CTSSs from each library stored as BigWig files.
Most genome bps are not CTSSs (have no tags

mapped to them), and only a small fraction of CTSSs
have a high number of tags. CAGEfightR takes advan-
tage of this sparsity by using sparse representations to
efficiently store and analyze large CTSS datasets using
little memory. This allows tens of samples to be analyzed
on a typical laptop computer and hundreds of samples
on a typical server. Most computationally heavy tasks
can be parallelized, providing further speed increases
when multiple cores or clusters are available.
As described below, CAGEfightR can analyze 5′-end

data on three different levels: bp-accurate CTSSs (Fig. 1a,

top), clusters of nearby CTSSs (Fig. 1a, middle) or expres-
sion summed over known gene models (Fig. 1a, bottom),
where each analysis level is associated with a specific ex-
pression matrix (Fig. 1a, right). These expression matrices
and other data structures used in CAGEfightR are de-
signed to be readily usable by other Bioconductor pack-
ages, in particular popular differential expression packages
such as limma [44], edgeR [33], DESeq2 [35], DEXSeq
[45], DRIMSeq [46], etc.

Results and discussion
Below, we overview the core functionality of CAGE-
fightR with examples using previously published 5′-end
data. Names of the main CAGEfightR functions for each
analysis are indicated in Fig. 1, 2, 3, 4, 5. Genome-
browser figures (Figs. 1b-c, 2d, 3b-c, 4c, 5d) are other-
wise unedited output from R/CAGEfightR.

Analysis of 5′-end tags
CAGEfightR can import CTSSs from BigWig files and
quantify their expression levels across all samples.
The CTSSs can then be normalized to Tags-Per-Mil-
lion (TPM) and summed across samples to yield a
global or pooled CTSS signal (Fig. 1a, top). In case of
a large number and/or low quality samples, CAGE-
fightR offers various strategies for calculating more
robust pooled CTSSs signals, chiefly by filtering CTSSs
only observed in a single or few samples. The pooled
CTSS signal can be visualized in genome-browser style
along the genome (Fig. 1b-c, 2d, 3c, 4c, 5d).

Analysis of tag clusters
Pooled CTSSs can be used to identify clusters of closely
spaced CTSSs on the same strand, referred to as unidir-
ectional clusters, or conventionally Tag Clusters (TCs)
in most CAGE papers. CAGEfightR identifies TCs using
a slice-reduce approach: First, CTSSs with pooled CTSS
signal below a chosen threshold are discarded (slice) and
surviving CTSSs on the same strand are then merged
into clusters (reduce) (Fig. 1a-b). CAGEfightR includes a
host of functions for analyzing such TCs, including fil-
tering on expression, hierarchical annotation of TCs
with transcript models and analysis of TC shapes (see
below).
TCs reflect the fact that when RNA-polymerase associ-

ates with the DNA, it rarely initiates from a single bp,
but rather from an array of nearby bps. Such arrays are
expected to produce nearly identical RNAs that are sub-
ject to the same regulatory cues, as they will share the
same promoter sequence and genomic neighborhood.
While genes are transcribed from multiple different
CTSSs, these CTSSs are grouped in a single or multiple
TCs corresponding to the major RNAs (or transcripts/iso-
forms in RNA-Seq terminology) produced from the gene.
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Because of this, many studies use a simplification in which
such TCs are referred to as TSSs for genes, even though
technically TCs group several nearby bp-accurate TSS /
CTSSs. To avoid confusion on terminology, and remain

consistent with previous CAGE literature, we will primar-
ily use the term `TC` to describe unidirectional clusters.
As an applied example, we analyzed three HeLa CAGE

libraries from Andersson et al [47]. Using CAGEfightR,

A

B C

Fig. 1 Introduction to CAGEfightR. a: Overview of CAGEfightR analysis steps: CAGEfightR can import CTSSs (the number of tag 5′-ends
mapping to each bp position) and calculate a pooled CTSSs signal across all samples (top). The pooled CTSSs signal on the same strand
can be used to identify unidirectional or Tag Clusters (TCs) which corresponds to groups of nearby TSSs or bidirectional clusters (BCs)
which are candidate enhancers (middle). TCs can furthermore be assigned to genes using annotated gene models and summed to
provide an estimate of gene expression (bottom). Each of these levels of analysis is associated with an expression matrix (right). The
names of used CAGEfightR functions for respective analyses are highlighted. b: Example of unidirectional clustering. The bottom track
shows the pooled CTSS signal (pooled TPM) at each bp along the genome. Middle track shows a Tag Cluster (TC) based on the CTSS
data below as a block, where the position with the highest pooled CTSS signal is indicated (TC peak). The top track shows UCSC
transcripts models (lines/thin blocks/thick blocks are intronic/UTR/CDS regions, respectively). c: Example of bidirectional clustering to
predict enhancers. Bottom track shows pooled CTSS signal as in panel B, but with signal on both strands (red, negative bars indicate
minus strand and blue, positive values indicate plus strand). The middle track shows the balance score (Bhattacharyya coefficient,
Additional file 1 :Figure S1A) calculated along the genomic region. Top track shows the resulting Bidirectional Cluster (BC) as a block in
pink indicating lack of strand information, where the single bp with the highest balance score is indicated
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we calculated the pooled CTSS signal across libraries,
and from that defined 22,760 TCs with > 1 TPM in at
least two samples. As these TCs are defined de novo, it
is useful to see how they relate to known transcript
models. We therefore annotated the TCs according to
University of California Santa Cruz (UCSC) transcripts
using CAGEfightR’s hierarchical scheme (Fig. 2a). The
hierarchical scheme accounts for the existence of mul-
tiple transcripts or isoform of genes, i.e. an annotated
promoter of one transcript can be in the 5′-UTR of an-
other transcript from the same gene. CAGEfightR can

assign 9 different annotation categories (custom categor-
ies can be supplied by the user), based on the most likely
association with known transcripts, e.g. a TC is more
likely to correspond to an annotated promoter rather
than a novel intragenic promoter.
Using this method, we plotted the number of TCs fall-

ing into the different annotation categories and their ex-
pression distributions (Fig. 2b). Most TCs candidates
were found at annotated promoters and were generally
highly expressed. However, a substantial number of
novel (not overlapping annotated promoters) TCs were

A

C D

E

B

Fig. 2 Analysis of tag clusters. a: Schematic of the hierarchical annotation scheme used by CAGEfightR (bp distances are modifiable by the user).
Categories towards the top have higher priority when assigning clusters to their transcript-model context. b: Annotation of TCs from the Hela set.
Y-axis shows the 9 annotation categories defined in panel A. Left bar plot shows the number of TCs falling into each category. Violin plot to the
right shows the average pooled expression (log10-scaled TPM). Color indicates the overall context within gene models. c: Distribution of the 5–
95% IQR for TCs from the Hela set. Color indicates the threshold (IQR = 10) to define sharp and broad classes. d: Examples of sharp and broad
class TCs from panel C. Genome-browser style visualization as in Fig. 1b-c. Left panel shows a sharp CTSS distribution, right panel shows a broad
CTSS distribution. e: Core promoter sequence patterns of sharp and broad classes of TCs from panel C. Y-axis shows information content as bits.
X-axis shows genomic position relative to TC peak
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identified, in particular in the promoter-proximal region
and 5′-UTR, which on average had lower expression
than those overlapping annotated promoters.
In vertebrates, the distribution of CTSSs within TCs

is related to cell specificity and DNA sequence prop-
erties: sharp CTSS distributions have an overrepresen-
tation of TATA-boxes and are more cell- or tissue-
specific, while broad CTSS distributions are GC-rich
and more ubiquitously expressed [36]. Classification is
often based on the width of the CTSS distribution,
expressed as the interquartile/interquantile range
(IQR), as this measures the width of the bulk of
CTSSs within a TC without being affected by a few
straggler CTSSs potentially greatly extending the
width of the TC. We used CAGEfightR to calculate
the genomic region covering the 5–95% IQR of total
CTSS expression for each TC in the HeLa set (Simi-
lar results were obtained with tighter IQR intervals).
This showed a clear bimodal distribution correspond-
ing to sharp and broad CTSS distributions (Fig. 2c-d).
Investigation of promoter regions using sequence logos
also confirmed that sharp, but not broad distributions had
a stronger TATA box (Fig. 2e).

Analysis of enhancer candidates
Active enhancers are characterized by bidirectional
transcription initiation of eRNAs [48]. In 5′-end data,
this manifests as bidirectional clusters (BCs) of
CTSSs, which can be used to systematically identify
enhancer candidates [21]. Similarly to above, CAGE-
fightR uses a slice-reduce approach to identify bidir-
ectional clusters (BCs, as opposed to the previously
discussed unidirectional TCs) to predict enhancers
(Fig. 1a, c). First, the upstream and downstream
pooled CTSSs are quantified for every genomic pos-
ition. Second, the Bhattacharyya coefficient [49] is
used to quantify the departure of the observed pooled
CTSS signal from perfect bidirectionality, producing a
bidirectionality or balance score for each bp (Add-
itional file 1: Figure S1A). Third, locations with a bal-
ance score above a given threshold are identified, and
nearby sites are merged into discrete BCs. This slice-
reduce approach is conceptually similar to the original
enhancer prediction method by Andersson et al. [21],
but does not need an input seed of TCs used to find
bidirectional pairs, and gives similar results while be-
ing more scalable (Additional file 1: Figure S1B-C).
As BCs can be found at other genomic regions than
active enhancers (e.g. bidirectional gene promoters),
BCs in or near known exons can be filtered away to
obtain a final set of enhancer candidates [21].
As an applied example, we used the same CAGE HeLa

data set as above and identified BCs outside of exonic
regions and more than 1 kbp upstream of annotated

promoters (based on UCSC transcript models) as enhan-
cer candidates. This resulted in a total of 6384 enhancer
candidates (3780 intronic and 2604 intergenic).
As an initial validation step, we investigated whether en-

hancer candidates had the expected chromatin patterns
compared to TCs, by overlapping with DNase I hypersensi-
tive sites sequencing (DNase-Seq), H3K27ac, H3K4me3 and
H3K4me1 ChIP-Seq signals from the same cell type. As ex-
pected, we observed high DNase sensitivity at enhancer mid-
points and TC peaks, and higher levels of H3K27ac at TCs,
compared to enhancer candidates. The ratio of H3K4me3 to
H3K4me1 is often used to predict enhancers from ChIP-Seq
signals, and consistent with this we observed low average
H3K4me3 and high H3K4me1 signals around predicted en-
hancer candidates, and the opposite patterns around TCs
(Fig. 3a) [50, 51].

Spatial prediction of enhancer-TSS links and enhancer
clusters
An outstanding challenge in enhancer analysis is to link
enhancers with target gene(s). Chromatin conformation
capture data [52] is only available for a small set of cells,
motivating computational prediction methods. A simple
but popular linkage method is based on co-expression
(correlation of expression) between enhancer candidates
and genes across samples, assuming that true enhancer-
gene pairs are co-expressed. This has been used for e.g.
DNase and CAGE data, and serves as a reasonable hy-
pothesis generator for physical interactions when the
distance between enhancer and promoter is limited [21,
25, 53, 54]. CAGEfightR implements this approach by
calculating the correlation of expression between enhan-
cer candidates and TCs, with the option of supplying
custom functions for calculating correlations in addition
to the ones included in base R (Pearson, Spearman,
Kendall).
As an example, we applied CAGEfightR to 50 CAGE

samples obtained from colonic biopsies from ulcerative col-
itis and control subjects from Boyd et al. [25]. The reason
for not using the HeLa set above was that correlations are
more reliable if calculated across many samples. Specific-
ally, we calculated a robust pooled CTSS signal (discarded
CTSSs observed only in a single library), then selected TCs
having > 1 TPM (and > 10% of total gene expression if they
were assigned to genes, see below) in > 6 samples, and pre-
dicted enhancer candidates > = 1 CAGE tag in > 6 samples.
This resulted in 31,480 TCs and 10,000 enhancer candi-
dates. Using CAGEfightR, we computed the correlation
(Kendall’s tau) between pairs of TCs and enhancer candi-
dates within 10 kbp of each other, resulting in 19,271 posi-
tively correlated links between TCs and enhancers, where
978 were significant at FDR < 0.05. CAGEfightR supports
the visualization of multiple enhancer candidate-TC links
across a genomic region. As an example, Fig. 3b shows
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Fig. 3 (See legend on next page.)
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predicted enhancer-TC links around the TNFRSF1A gene,
whose most dominant TC is most highly correlated with an
intronic enhancer candidate in the neighboring gene.
Previously, large regions having enhancer-associated

chromatin features were identified as drivers of cen-
tral biological processes. Such regions are often re-
ferred to as “super”—or “stretch” enhancers [55].
Using CAGE data to predict enhancers, we have
shown that many such chromatin-defined regions can
be characterized as a group of bidirectionally tran-
scribed loci, or a cluster of enhancer candidates [21,
25]. It follows that such larger regions can be pre-
dicted based on CAGE data, as genomic stretches
with many enhancer candidates, and CAGEfightR im-
plements methods for doing this. As an applied ex-
ample, we used the enhancer candidates predicted
based on the ulcerative colitis set above to identify
enhancer clusters, defined as enhancers situated less
than 12.5 kbp [25] from each other, resulting in 624
stretches with 4–24 enhancers per stretch. CAGE-
fightR can additionally calculate the average pairwise
correlation between enhancer candidates in the
stretch to reveal if they show concordant direction of
change, indicative of joint activity, and provides
methods to visualize these correlations (Fig. 3c).

Analysis in terms of known gene models
Although TCs can be identified de novo, it is useful to
be able to analyze their expression across known gene
models. Examples include the ability to compare 5′-end
expression with RNA-Seq expression on gene level [56],
or to link 5′-end expression estimates with gene-centric
databases, such as Gene Ontology (GO) terms [57] or
pathway/interaction annotation (Kyoto Encyclopedia of
Genes and Genomes (KEGG) [58], STRING [51], etc.).
CAGEfightR includes functions for annotating TCs to
known genes and summarizing their expression within
genes to obtain a gene-level expression matrix (Fig. 1a,
bottom). This gene-level expression matrix can readily
be used with other Bioconductor packages for gene-level
analysis (e.g. limma [44], edgeR [33], DESeq2 [35]).
Another key use of gene models in relation to 5′-

end methods is the analysis of alternative TSS or al-
ternative promoter usage, which is a key contributor

in generating transcript diversity (multiple different
transcripts/isoforms from genes). This can be done by
identifying genes harbouring several TCs on the same
strand, with each TC giving rise to distinct RNAs. In
this way, TCs can be seen as TSS candidates for the
different transcripts/isoforms produced by a gene,
phrasing the analysis in a similar way to alternative
splicing or transcript usage for RNA-Seq. To be clear,
this is different from analyzing changes in the distri-
bution of CTSSs within a TC (see above), as different
TCs in a gene will be widely spaced, have different
promoter sequences and genomic neighbourhoods
and produce different truncations of RNA, with po-
tentially different regulation and function.
In addition to identifying such alternative TCs within

gene models, CAGEfightR offers the option of filtering
TCs within genes based on their contribution to overall
gene expression: As 5′-end methods can detect very
lowly expressed TCs, CAGEfightR can remove alterna-
tive TCs making up less than e.g. 10% of total gene ex-
pression in a given number of samples to focus only on
the most highly expressed RNAs from a gene. This filter-
ing approach is also useful when combining CAGEfightR
with popular tools for differential transcript usage such
as limma [44], edgeR [33], DEXSeq [45] and DRIMSeq
[46], to investigate whether a given TC within a gene is
preferentially used under certain conditions.
To illustrate these features in CAGEfightR, we used the

ulcerative colitis set, and assigned TCs to genes using
UCSC gene models and determined how much each such
TCs contributed to overall gene expression. Without any
composition filtering, 40% of all genes used more than
one TC, falling to 23% when only considering TCs con-
tributing more than 10% of total gene expression in more
than 6 samples (Fig. 4a). The majority of discarded TCs
were found in protein-coding, intronic and 3′-UTR re-
gions (Fig. 4b), but several interesting cases remained, for
example in the SLC16A5 gene, where we identified a
highly expressed novel intronic TC (Fig. 4c).

Example of PRO-cap data analysis using CAGEfightR
While conceived as a tool for analyzing CAGE data,
CAGEfightR can analyze any 5′-end data similar to
CAGE, including nascent RNA 5′-end methods (Table 1).

(See figure on previous page.)
Fig. 3 Analysis of enhancer candidates. a: Chromatin modifications at TCs and enhancer candidates from the Hela set. X-axis shows distance to
TC peak or enhancer candidate midpoint. Y-axis are average signal of respective DNase-Seq or ChIP-Seq data in the given panel. Color indicates
whether signals are centered on TC peaks or enhancer candidate midpoints. b: Example of predicted enhancer candidate-TC links in the
ulcerative colitis set. Plot shows a genome-browser style visualization of correlations between TCs and enhancer candidates around the TNFRSF1A
gene (central group of transcripts, highlighted). Bottom track shows UCSC transcript models and middle track shows clusters, as in Fig. 1b-c. Top
track shows predicted TC-enhancer candidate links, where higher arches correspond to more significant correlations. Light grey links indicate that
only one part of the pair is within the visualized region. c: Example of predicted enhancer stretch in the ulcerative colitis set. Bottom track shows
UCSC transcript models and lower-middle track shows clusters, as in Fig. 1b-c. Upper-middle track shows the identified stretch of enhancer
candidates. Top track shows correlations between enhancer candidates as in B
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This is highly relevant since nascent 5′-end methods may
be more sensitive in terms of enhancer detection, and
hence are often used specifically for this purpose. To illus-
trate the usefulness of CAGEfightR for analyzing such
data, we applied CAGEfightR to 59 lymphoblastoid cell
line Precision Nuclear Run-on Sequencing for RNA Poly-
merase II Start Sites (PRO-Cap) libraries from Katla et al
[59]. Similarly to the analysis of ulcerative colitis CAGE
data above, robust pooled CTSSs (CTSSs observed in > 2
samples) were used to identify TCs (> 1 TPM in > 5 sam-
ples) and enhancer candidates (> 0 tags in > 5 samples),

and annotated these using UCSC transcript models. Com-
pared to the CAGE libraries above, a larger number of
antisense TCs, intergenic TCs and enhancer candidates
were detected (Fig. 5a). This is expected as these RNAs
are subject to nuclear degradation and thus are more diffi-
cult to detect with steady-state RNA methods. PRO-Cap
TCs showed the expected pyrimidine-purine di-nucleotide
at positions − 1 + 1 (Fig. 5b), and enhancer candidates ex-
hibited the characteristic H3K4me3 to H3K4me1 ratio
(Fig. 5c). Figure 5d shows an example of an enhancer can-
didate detected by PRO-Cap.

A

C

B

Fig. 4 Analysis of alternative TSSs. a: Number of alternative TSS candidates per gene, as identified by TCs. X-axis shows number of TCs per gene.
Y-axis shows the number of genes. Color indicates genes showing alternative TSS usage, having either a single or multiple TCs. Transparency
indicates numbers before/after filtering away TCs making up less than 10% of total gene expression. b: Transcript context of TCs within genes. X-
axis shows annotation categories from Fig. 1b. Y-Axis shows the number of TCs within each category. Transparency indicates whether the TC
contributes > 10% of total gene expression. c: Genome-browser style example of an unannotated TC in the SLC16A5 gene. Organized as Fig. 1b-
c. The novel alternative intronic TC is highlighted, found next to an intronic enhancer candidate
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Conclusions
CAGEfightR is a user-friendly R-Bioconductor package for
analyzing CAGE and 5′-end data. It includes a wide range of
functions for analyzing TSSs and enhancers and generating
publication-ready visualizations. CAGEfightR was designed
from the ground up to adhere closely to Bioconductor stan-
dards, making it easy to learn, use and combine CAGEfightR
with other Bioconductor packages for transcriptomic ana-
lyses. CAGEfightR is extensively documented, including both
a vignette describing the core functionality (http://biocon-
ductor.org/packages/CAGEfightR/) and a case-study based
workflow discussing common analysis tasks on a full dataset
[60] (http://bioconductor.org/packages/CAGEWorkflow/).

Materials and methods
Datasets
Analysis of all 5′-end data was based on supplied CTSSs
from the GEO repositories of the respective papers. The

Hela set [47] was obtained from GSE62047, using only
EGFP samples. The ulcerative colitis set [25] was ob-
tained from GSE95437, using only active ulcerative col-
itis (UCa) samples from the largest batch. The PRO-Cap
set [59] was obtained from GSE110638, using only non-
replicated samples.
Transcript and gene models were obtained from UCSC via

the R/Bioconductor packages TxDb.Hsapiens.UCSC.hg19.
knownGene and TxDb.Mmusculus.UCSC.mm9.knownGene.
Chromatin data was obtained from the Roadmap Epige-
nomics project [61] via the AnnotationHub R/Bioconductor
package, for Hela cells AH32877, AH32879, AH32881 and
AH32884 and for Lymphoblastoid cell lines AH32865,
AH33899, AH33901 and AH33904.

Analysis
All analyses of 5′-end data were done using CAGEfightR
as indicated in the main text. Average meta profiles were

A

C D

B

Fig. 5 Analysis of PRO-Cap data. a: Annotation of TCs and enhancer candidates from the PRO-Cap set. Organized as Fig. 2b, but with
enhancer candidates added, as indicated by transparency. b: Sequence logo of the core promoter sequence around TCs aligned on TC
peaks. c: Chromatin modifications at TCs and enhancer candidates from the PRO-Cap set. Average signal of ChIP-Seq or DNase-Seq of
10,000 randomly sampled enhancer (left) and TCs (right). X-axis indicates distance to TC peak or enhancer candidate midpoint. Y-axes
shows average ChIP-Seq or DNase-Seq signal as indicated by color. d: Example of intergenic enhancer candidate from the PRO-Cap set.
Figure organised as Fig. 1b-c
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made using the TeMPO R-package (https://github.com/
MalteThodberg/TeMPO), removing the top 1% highest
scoring features to dampen the effect of outliers. Sequence
logos were done using the ggseqlogo R-package [62], gen-
ome-browser figures using Gviz [42] and remaining fig-
ures using ggplot2 (https://www.tidyverse.org/).
Andersson enhancers were predicted using scripts from

the original publication [21] (https://github.com/anders-
sonrobin/enhancers). TCs used as input were defined by
CAGEfightR with default settings. A balance cutoff of 0.6
was used, as this corresponds to the 0.95 balance cutoff
used in CAGEfightR in the case of a BC with only divergent
signal (PD and MD in Additional file 1: Figure S1A).

Availability and requirements
Project name: CAGEfightR.
Project home page: https://bioconductor.org/pack-

ages/release/bioc/html/CAGEfightR.html
Operating system(s): Platform independent (BigWig

I/O only available on Windows).
Programming language: R.
Other requirements: Bioconductor.
License: GPL-3.
Any restrictions to use by non-academics: GPL-3.

Additional file

Additional file 1: Figure S1. Details on finding Bidirectional Clusters
(BCs). A: Calculating balance score using the Bhattacharyya coefficient.
For a potential BC midpoint, pooled CTSS signal is summed within a
certain distance (200 bp by default) on both strands, yielding four values
(left). The “ideal” bidirectional cluster would have only perfect divergent
signal (50% PD and 50% MD). The Bhattacharyya Coefficient quantifies
the difference between the observed signal to this ideal enhancer (right),
with a balance score of 1 indicating perfect agreement. The balance
score is calculated for every bp in the genome (Fig. 1c). B: Overlap
between CAGEfightR and Andersson enhancer predictions. The original
enhancer prediction method from Andersson et al were applied to the
Hela set. The venn diagram shows overlap in predictions between
CAGEfightR, Andersson et al and DNase hypersensitive sites. CAGEfightR
predicts all enhancers candidates form Andersson et al that are also supported
by DNase hypersensitive sites. C: Chromatin modifications at CAGEfightR and
Andersson predicted enhancer from the Hela set. X-axis shows distance to
enhancer midpoint. Y-axis are average signal of respective DNase-Seq or ChIP-
Seq data in the given panel row. Color indicates the enhancer candidate sets
(Andersson in gold and CAGEfightR in grey), with panel columns indicating
whether enhancer are shared between sets (left) or uniquely predicted (right).
All sets exhibits the characteristic DNase hypersensitivity and H3K4me1/
H3K4me3 ratio, despite the CAGEfightR enhancer candidate set is much larger.
(PDF 840 kb)

Abbreviations
5′−/3′-UTR: 5 prime / 3 prime untranslated region; BC: Bidirectional Cluster;
bp / kbp: Base pair / kilo base pairs.; CAGE: Cap Analysis of Gene Expression;
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