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Abstract

Background: Uncovering the evolutionary principles of gene coexpression network is important for our
understanding of the network topological property of new genes. However, most existing evolutionary models only
considered the evolution of duplication genes and only based on the degree of genes, ignoring the other key
topological properties. The evolutionary mechanism by which how are new genes integrated into the ancestral
networks are not yet to be comprehensively characterized. Herein, based on the human ribonucleic acid-sequencing
(RNA-seq) data, we develop a new evolutionary model of gene coexpression network which considers the
evolutionary process of both duplication genes and de novo genes.

Results: Based on the human RNA-seq data, we construct a gene coexpression network consisting of 8061 genes
and 638624 links. We find that there are 1394 duplication genes and 126 de novo genes in the network. Then based
on human gene age data, we reproduce the evolutionary process of this gene coexpression network and develop a
new evolutionary model. We find that the generation rates of duplication genes and de novo genes are
approximately 3.58/Myr (Myr=Million year) and 0.31/Myr, respectively. Based on the average degree and coreness of
parent genes, we find that the gene duplication is a random process. Eventually duplication genes only inherit 12.89%
connections from their parent genes and the retained connections have a smaller edge betweenness. Moreover, we
find that both duplication genes and de novo genes prefer to develop new interactions with genes which have a
large degree and a large coreness. Our proposed model can generate an evolutionary network when the number of

network with comprehensive biological characteristics.

newly added genes or the length of evolutionary time is known.

Conclusions: Gene duplication and de novo genes are two dominant evolutionary forces in shaping the
coexpression network. Both duplication genes and de novo genes develop new interactions through a
“rich-gets-richer" mechanism in terms of degree and coreness. This mechanism leads to the scale-free property and
hierarchical architecture of biomolecular network. The proposed model is able to construct a gene coexpression
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Background

Gene coexpression networks are of biological interest
because coexpressed genes are controlled by the same
transcriptional regulatory program, functionally related,
or members of the same pathway. The development of an
evolutionary model which can construct a gene coexpres-
sion network with comprehensive features is helpful for us
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to further understand the real gene regulation network [1].
It is also important for us to understand the network topo-
logical property of new genes and reveal the molecular
mechanism underlying the connection between genotype
and phenotype.

Gene coexpression network, as a basic biological net-
work, exhibits the inherent characteristics and commonly
evolutionary mechanism of biological networks. From the
perspective of natural selection and biological evolution,
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duplication and mutation are the basic causes of evo-
lution of biological molecular networks. The adding of
duplication genes and de novo genes is the main rea-
son why biomolecular networks are different from general
social networks [2, 3]. Recent studies have proposed some
general properties of biomolecular networks. These prop-
erties can be summarized as follows: (1) The degree dis-
tribution of genes in the network obeys to the power law
distribution [4] and the power exponent is between 1 and
2 [5-7]. (2) These networks have a hierarchical structure.
The average clustering coefficient of genes with degree
k obeys that c(k) ~ k! [8]. (3) These networks have
a small world characteristic [9]. The mean pathlength of
the network is small and the average clustering coefficient
is relatively large [10—12]. (4) These networks are sparse,
which means the average number of edges connected to
the gene is small [13].

Based on the topological properties of gene networks,
researchers speculated the original mechanisms of the
network and proposed some evolutionary models of the
network. Most of these evolutionary models only con-
sidered duplication genes, thus many gene duplication
models were proposed. According to these models, some
properties of biomolecular networks can be reproduced.
In order to generate a scale-free network, a randomly evo-
lutionary model was developed [14]. In this model, new
nodes were added into the network and they connected
to nodes with large degree in the network. However, this
model cannot generate the network with power exponent
smaller than 2 [10]. This may be due to the growth of
biomolecular network only caused by gene duplication
[15-19]. Hence, other evolutionary models with dupli-
cation genes were proposed. Owing to pure duplication
model cannot support scale-free distribution, models con-
tained duplication process and a second event were devel-
oped [20]. One new evolutionary model was based on
gene duplication and re-wiring [21]. In the model, a parent
gene was chosen randomly from the network. Next, edges
from its parent genes would be deleted with fixed prob-
ability and then new connections would be created. Dif-
ferent from other models, the degree of duplication gene
depended on the degree of its parent gene in this model.
Networks simulated from this model showed small-world
property and obeyed to scale-free distribution. More-
over, a mixed model which considered gene duplication
and rewiring process was presented [22]. In the pro-
cess of gene duplication, nodes were duplicated randomly
from the network, and the connections were reserved.
In rewiring process, new genes which the duplication
genes connected to were chosen randomly. In this model,
both gene duplication and rewiring process were ran-
domly and would occur with the probability of one half.
Other duplication-divergence models for evolution of bio-
logical network had also been proposed [23-25], such
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as duplication-divergence model with only one param-
eter [26] and duplication-divergence-heterodimerization
model [27]. These models can fit to the scale-free,
small-world and sparse properties of biomolecular
network.

Particularly, some studies have considered the evo-
lution of human gene coexpression network [28, 29].
These studies find that new genes (deoxyribonucleic acid-
based (DNA-based) duplication genes, ribonucleic acid-
based (RNA-based) duplication genes and de novo genes)
showed preferential attachment in developing new links
with other genes [28]. They tended to connect to genes
with high topological centralities [28]. Interestingly, it is
also found that the genes with large degree evolved more
slowly and were more conserved than genes with small
degree [29]. Hence, when choosing new partners for new
genes, both the degree and other topological properties of
the node should be taken into consideration.

For most of the previous evolutionary models, the
parameter selections were not closely related to the bio-
logical experiment results. In addition, the existing evo-
lutionary models were generally focused on the average
degree, degree distribution and small-world properties
of networks, rather than on the comprehensive topo-
logical properties of the biological network. They only
considered the evolutionary process of duplication genes
and only based on the degree of genes, ignoring the
other important topological properties, such as the edge
betweenness and coreness of genes. However, the core-
ness of gene can measure the depth of this gene in the
network. Genes with large coreness means they are close
to the center of this network. This property may constrain
the growth of genes with large degree but less impor-
tant. Both the edge betweenness and coreness of genes
play an important role in determining how are new genes
integrated into the ancestral network. Therefore, in this
paper, based on the comprehensive topological proper-
ties of genes, we propose a novel evolutionary model for
constructing the human gene coexpression network. The
model we developed is different from previous models
which only considered the duplication genes during evo-
lutionary process, our model also considers the effect of
de novo genes. For duplication genes, our model consid-
ers the duplication process and rewiring process. For de
novo genes, we consider the process of new interactions.
We analyze the specific mechanism of these evolutionary
processes. According to this model, we can construct a
gene coexpression network with comprehensive biological
characteristics.

Results

Through analyzing the network 0-6 (see Methods), we
reproduce the evolutionary process of human gene coex-
pression network. The generation rates of duplication
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genes and de novo genes can be estimated and the mech-
anism of these genes integrated into the network will be
inferred. Finally, we propose a novel evolutionary model
of human gene coexpression network and predict the
growth of new network which is evolved from this original
network after a period of time.

Rate of gene generation

Based on the gene origination mechanism data (see
Additional file 1) [30], we obtain Table 1. From Table 1, we
can see that gene duplication and de novo are two domi-
nant evolutionary forces in shaping the gene coexpression
network. By counting the number of duplication genes
and de novo genes that added to each of the network,
we can estimate the average rate of producing duplication
genes and de novo genes. Assuming that the network 0
which is consisted of parent genes is the initial network.
The network evolved from the original network by adding
new genes is the new network.

If the generation rates of duplication genes, de novo
genes and newly added genes (new genes consist of dupli-
cation genes and de novo genes) are assumed to be a
constant, then the average generation rates of these kinds
of genes during the network evolution are calculated as
the mean value of generation rates from network 0 to
network 6. By direct calculation, we obtain that the gen-
eration rates of duplication genes, de novo genes and
newly added genes are 3.58/Myr, 0.31/Myr and 3.89/Myr,
respectively (Fig. 1, Table 1).

Random gene duplication

Assuming that the newly added duplication genes in new
network is v¢. The corresponding parent in the origi-
nal network is . The degree vector and coreness vec-
tor of parent gene v’ in the original network is d¥ =
(&, d, ... d5,] and ks” = [ks‘f, ksb, ...,ksﬁp], respectively.
Then the mean value of all elements in the degree vector
dP is the average degree of parent genes in the initial net-

work. Similarly, the average coreness of parent genes in
the initial network is calculated in the same way.

Table 1 Number of newly added genes in each branch

New branch ~ Number of ~ Number of Number of de
new genes  duplication genes novo genes

1 780 708 72

2 168 150 18

3 210 185 25

4 271 260 1

5 22 22 0

6 69 69 0

This table shows number of genes (new genes, duplication genes and de novo
genes) that added into each network
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Fig. 1 The generation rates of genes with different mechanisms. By
calculating the average generation rates of duplication genes, de
novo genes and all newly added genes, we obtain that the
generation rates of duplication genes, de novo genes and newly
added genes are 3.58/Myr, 0.31/Myr and 3.89/Myr, respectively

In our model, we propose that parent genes are ran-
domly chosen from the original network. From Fig. 2, we
can see that the degree and coreness of parent genes are
always fluctuating around the corresponding mean value
of the network. Furthermore, we obtain that from network
0 to network 5 the proportions of parent genes whose
degree are larger than the median of network are 52.52%,
58.11%, 50.85%, 59.42%, 20% and 45%, respectively. Sim-
ilarly, the proportions of parent genes whose degree are
larger than the median of network are 53.05%, 59.46%,
47.46%, 59.42%, 20% and 45% from network O to net-
work 5. Therefore, we discover that gene duplication is a
random process.

In addition, we also take the KEGG enrichment
analysis for duplication genes at pathway level. How-
ever, there are no significant enrichment for dupli-
cation genes at pathway. For duplication genes of
branch 3, there are sixteen genes enriched in 5 path-
ways. And for duplication genes of branch 1, branch
2 and branch 6, there are no enrichment gene sets.
For duplication genes in branch 4 and branch 5, they
both have only one enrichment set, which consisted
of four and three genes, respectively. Hence, gene
duplication is also a random process at the pathway
level.

In summary, we conclude that gene duplication is a ran-
dom process in which a parent gene is randomly selected
from the original network to duplicate. Shortly after a
gene duplication, the parent gene and duplication gene
will interact with the same genes.
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Fig. 2 Random selection of parent genes. a The average degree of network genes and parent genes. b The average coreness of network genes and
parent genes. From network 0 to network 6, the degree and coreness of parent genes are fluctuating near the average value of corresponding

network
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Reservation rate of interaction

Shortly after gene duplication, duplication genes will
inherit all connections of parent genes. From Fig. 3, we
can see that the duplication genes will eventually lose
common connections with larger edge betweenness and
reserve the connections with smaller edge betweenness.
The edge with larger edge betweenness in the network
plays an important role in the information propagation of
the network. The deletion of these edges can reduce the
redundancy of the network and the remaining edges and
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Fig. 3 Edge betweenness of deleted edges and reserved edges for
duplication genes. This figure shows that duplication genes will lose
common edges with larger edge betweenness and reserve the
connections with smaller edge betweenness

rewiring edges will establish new important pathways of
the network.

To simulate the evolution of network, we have to cal-
culate the average reservation rate of edges of duplication
genes. Assuming that the degree of parent gene is @, the
number of reserved edges of duplication gene is @”*, then
the reservation rate « of edges of this duplication gene is
defined as:

dpuh

x 100%. (1)

o =

We find that the average reservation rates from network 1
to network 6 are 4.83%, 6.56%, 10.45%, 7.85%, 5.90% and
41.75%, so the average reservation rate of edges of dupli-
cation genes during the evolution of network is 12.89%.

Rewiring rate of duplication genes

Duplication genes will build new interactions with the
remaining nodes in the network after loss of common
interactions. From Fig. 4, we can see that the duplication
genes prefer to connect to nodes with large degree and
large coreness. Assuming that the duplication genes newly

added in the network are denoted as v¢ = [Vi, VS, vf,p],

then the total number of reconnected nodes for vector v©
in the initial network is 7,,, then the reconnected vector
corresponding to the vector v is V¢ = [V{%, V¥, .., V}¢ |.
The degree vector of reconnected vector v¢ is "¢ =
[d{e, dy, ..., df,";e]. The average degree of reconnected vec-
tor is calculated as the mean value of all elements in vector
d’®, and the average coreness of reconnected vector is
calculated in the same way. Form network O to network
5, the proportions of reconnected genes whose degree
larger than the mean value of network are 93.45%, 87.75%,
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Fig. 4 Rewiring mechanism of duplication genes. a The average degree of whole network genes and the genes that establish new connections to
duplication genes. b The average coreness of whole network genes and reconnected genes. The genes that the duplication genes establish newly
connections are defined as rewiring genes. This figure indicates that average degree and average coreness of rewiring genes are much larger than

96.31%, 90.02%, 83.16% and 92.20%, respectively. Simi-
larly, the proportions of reconnected genes whose core-
ness larger than the mean value of network are 93.41%,
87.22%, 96.37%, 89.06%, 82.28% and 92.92%, respectively.
Hence, we conclude that duplication genes will connect to
nodes in the network with large degree and large coreness
(Fig. 4).

In other words, during the rewiring process, duplica-
tion genes develop new interactions through a “rich-gets-
richer" mechanism [11]. However, this mechanism here
means they prefer to connect with nodes whose degree
and coreness are both large at the same time. Degree
shows the number of its neighbours and coreness indi-
cates importance of this node. Therefore, the more impor-
tant and more connected a node is, the more possible
this node will be connected by duplication genes. As a
result, genes with larger degree and larger coreness will
acquire new neighbours faster than other genes. Finally,
the scale-free distribution of degree will be formed.

In order to simulate the evolution of network, we need
to estimate the average rewiring rate of duplication genes.
The rewiring rate B of duplication gene i is defined as:

" 100% 2

B= ( d) X 0, (2)

where 7}° is the number of rewiring nodes for duplication

gene i. The average rewiring rates for network 1 to net-

work 6 are 102.60%, 58.72%, 148.37%, 80.61%, 43.65% and

44.66%. Therefore, the average rewiring rate for duplica-
tion gene during network’s evolution is 79.77%.

In summary, gene duplication is a random process and
shortly after gene duplication, duplication genes inherit all

common interactions of their parent genes. Then they will
delete edges with large edge betweenness and reconnect
to the remaining nodes in the network with large degree
and large coreness.

Connection rate of de novo genes

The addition of de novo genes is another important factor
that promotes the evolution of network. Firstly, we esti-
mate the average connection rate of de novo genes. This
rate ¢ is calculated as:

d}"lOVO
=, ®3)
(d)
where d}"° is the degree of de novo gene i and (d) is the

mean degree of the original network. Owing to there are
no de novo genes added in the network 5 and network 6,
we only calculate the average connection rate for network
1 to network 4. From network 1 to network 4, the aver-
age connection rates are 126.02%, 78.03%, 100.97% and
92.12%, respectively. Thus, the average connection rate for
de novo genes under the evolution of network is 99.29%.

For de novo genes, we find that they also prefer to con-
nect with nodes whose degree and coreness are both large
in the initial network. Next, we will show that de novo
genes will connect to nodes with large degree and large
coreness.

The de novo genes that added in the initial network are
noted as a vector v = [V}, V40", ., vﬁi:&] Assum-
ing that the total number of de novo genes’ neighbours is
Mo, and they constitute the vector v/°"°. The degree vector

nn

4 J110V0 3 1novo __ 1novo novo novo
corresponding to V2" is d;"° = [dnn'l s Ay s veor d,m,nw],
novo

and the corresponding coreness vector is ks;o° =
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[kspor?, ksiev, ..., kspor . In Fig. 5, the average degree and
coreness of de novo genes’ neighbours are much larger
than that mean value of the original network. From net-
work O to network 3, the proportions for neighbours
whose degree are larger than the median of the origi-
nal are 94.66%, 89.70%, 94.31% and 91.95%, respectively.
Similarly, the proportions for neighbours whose coreness
are larger than the median of initial network are 94.61%,
90.83%, 95.90% and 91.22%, respectively.

Therefore, de novo genes will establish connections with
genes whose degree and coreness are both large in the ini-
tial network. This mechanism also cause genes with many
neighbours and more importance in the network connect
to new neighbours faster than other genes. So the genes
in the center of network will grow rapidly. Genes will con-
nect to the de novo genes until the degree of de novo gene
is around the average degree of the original network.

Two novel evolutionary models for constructing gene
coexpression networks

This section, we will introduce our evolutionary mod-
els for constructing gene expression networks. The flow
charts of the traditional model and our novel model are
shown in Fig. 6. Supposing that the number of genes
in the initial network is N. The degree of node i is d;
and its coreness is ks;. Based on the above network evo-
lution parameters and evolutionary principles of genes,
we obtain the schematic diagram of evolutionary model
for constructing a gene coexpression network, which is
shown in Fig. 7. The new network is being formed step
by step. Here we assume that it will take six steps to form
a new network. In each step, the reservation rate and
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rewiring rate of duplication gene is « and 8, respectively.
The connection rate of de novo genes is y. In this paper,
we have estimated that « = 12.89%,8 = 79.77% and
y = 99.29%. Moreover, the model we proposed is suitable
for two situations. In situation 1, we assume that for each
step, the number of newly added duplication genes and
de novo gene is known. In situation 2, we assume that the
number of newly added genes is unknown, but the length
of evolutionary time in each step is known. The detailed
simulation processes of these two models are described as
follows.

Evolutionary model 1: when the number of new genes in each
step is known

In this situation, we assume that it will take six steps to
form a final network. For each step, the number of newly
added genes n = n; + ny is known, where n; and n; are
respectively the number of newly added duplication genes
and de novo genes. We start from the network 0 which
has N = 6541 genes, and in each step we perform the
following operations (The R code for running this model
is appended in Additional file 2, , and the support data are
in Additional files 3, 4 and 5):

(a) Evolutionary process of duplication genes

(a-1) Gene dupication
The probability that the gene i(i = 1,2,..,N) is
chosen as a parent gene * is

Pl = @

(b)
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Fig. 5 Connection mechanism of de novo genes. a The average degree of network genes and genes that connect to de novo genes. b The average
coreness of network genes and genes that connect to de novo genes. From network 0 to network 3, the average degree and coreness of
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neighbours of de novo genes are much larger than the mean value of corresponding networks
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Fig. 6 Flow chart of the traditional evolutionary model and our novel evolutionary model. a The flow chart of the traditional evolutionary model.
Moreover, the probability § of edges to be removed sets to 0.8711 in our simulation. b The flow chart of our novel evolutionary models for
constructing gene coexpression networks. The novel model considers the adding of duplication genes and de novo genes at the same time while
the traditional model only contains duplication genes
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Fig. 7 Schematic diagram of the evolutionary model for constructing a gene coexpression network. Process (a) is the evolutionary process of
duplication genes. Gene 7 is a duplication gene of gene 3. Besides, the probability that gene 3 chosen as a parent gene is % Process (b) is the
evolutionary process of adding de novo genes into the network. Gene 8 is a de novo gene. Process (c) integrates the results of process (a) and
process (b), and produces the final evolutionary network
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The duplication gene of gene i is denoted as v*
and it reserves all interactions of 1*.

(a-2) Edge deletion process
The degree of parent gene ¥ is d” and the edge
betweenness of parent gene’s connections are
Bij(j = 1,2,...,d?). The edge i — k (gene k is a
neighbour gene of the parent gene) is reserved

with the probability
Bik
j=1Bij

Finally, the number of reserved edge is [wd”]
and the other edges will be deleted.

(a-3) Rewiring process
The probability that the remaining gene i(i =
1,2,..,N — dparent) in the initial network is
chosen to connect with duplication gene v¢ is

kSi di
X
N_dparent N—dparent
Z]’:l ksj Z,':1 dj

N—d,
frent kSk dk
X
N*dparent N*dparent ?
=1 i1 ksj 2 dj
(6)

where ks; is the coreness of gene i and d; is the
degree of gene i. The number of reconnected
nodes is [(d"ld) X ,3], where <d"ld> is the average
degree of the initial network.

p) =

(b) Evolutionary process of de novo genes
Process (a) and process (b) are parallel process, they
can be produced at the same time from the original
network.

(b-1) De novo gene
The de novo gene generates and added to the
original network.

(b-2) New connection
For de novo gene v""°, the probability that
node i(i = 1,2,..,N) in the initial network
connected to this de novo gene is

N
. ks; d; ks dy
p(z):(x)/ E — X s
Zj]\il ksj Zjlil dj k=1 Zjlil ksj Zj]\il dj
7)

where ks; is the coreness of gene i and d; is the
degree of gene i. De novo genes will establish
connections with genes in the initial network
until the degree of de novo genes is [(d"ld) X y].
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(c) Combination of process (a) and (b)
Assuming that there are n; duplication genes and
ny de novo genes added into the original network.
Then the original network will evolve until all these
n = n1 + ny new genes are added into the network.
Combining the results of the process (a) and process
(b), we obtain a new network.

Evolutionary model 2: when the length of evolutionary time
in each step is known

In this situation, we assume that the number of newly
added genes in each step is unknown, but the length
of evolutionary time ¢(Myr) is known. Different from
the evolutionary model 1, the number of new genes are
unknown in model 2. Therefore, model 2 will be more
effective in the prediction problem where only the evo-
lutionary time is known. We will take six steps to form
a final network. According to the above analysis (Fig. 1),
we obtain that the average generation rates of duplication
genes and de novo genes are respectively 3.58/Myr and
0.31/Myr. Hence, in each step, the number of newly added
duplication genes and de novo genes are 3.58¢; and 0.31%;
(i = 0,1,..,5), respectively. Here, ¢; is the evolutionary
time from branch i to the next branch (i + 1). The ini-
tial network and evolutionary process (a) to process (c) is
the same as that in situation 1. However, the terminating
condition of this model is different from that in situation
1. In this situation, the new network evolves by adding
3.58¢; duplication genes and 0.31¢; de novo genes into the
original network. (The R code for running this model is
appended in Additional file 6, and the support data are in
Additional files 3, 4, 5, and 7).

Simulation results
Given initial network 0, based on the above evolution-
ary model, we simulate the evolutionary process of gene
coexpression network under two situations. In situation
1, the number of genes that newly added into the net-
work is known. In situation 2, the length of evolutionary
time in each step is known. The relative errors of topo-
logical properties of gene coexpression network (such as
average degree, clustering coefficient, pathlength, node
betweenness, edge betweenness) are defined as:

|A —al

o =
A

where a is the simulated value and A is the real value
of gene coexpression network. Comparing o based on
our improved model with that corresponding traditional
model, we can test the accuracy of our model. For tra-
ditional model, all newly added genes are considered as
duplication genes, so the generation rate of genes are set
as 3.89/Myr, which is the average generation rate of all
newly added genes. Moreover, in the traditional model the
probability § that how many edges of duplication gene will

x 100%, (8)
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be removed is unknown. Here we set the probability §
equals to 1 — o, where « is the reservation rate and can be
estimated from the real network.

By comparing the simulation result of traditional model
with our improved model in situation 1 (Fig. 8) and sit-
uation 2 (Fig. 9), we find that the topological properties
of simulation network obtained by our improved model
are more similar to that of the real gene coexpression
network. Specifically, when the number of newly added
genes is known, by using our improved model 1, we obtain
evolutionary networks 1-6. We find that the average rel-
ative errors of networks 1-6 in average degree, transitiv-
ity, pathlength, node betweenness and edge betweenness
are 0.63%, 3.96%, 6.81%, 4.78% and 4.83%, respectively.
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However, under traditional model, the average relative
errors of these five topological properties are 0.63%,7.43%,
13.20%, 9.36% and 9.43%, respectively, which are much
bigger than that of our improved model 1. Moreover, when
the length of evolutionary time in each step is given, by
using our improved model 2 we obtain the evolutionary
networks 1-6. We find that the average relative errors of
these five properties are 2.23%, 4.01%, 7.75%, 5.51% and
5.41%, respectively. Yet for traditional model, the corre-
sponding relative errors are 2.18%, 7.50%, 15.62%, 11.16%
and 11.08%, respectively, which are much bigger than that
of our improved model 2. Comparing with the evolution-
ary models which only consider the degree property of
genes, we can see that the simulation networks obtained
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by our improved model are more similar to the real gene
coexpression network in the five basic topological prop-
erties. Hence, the comprehensive characteristics (such as
average degree, transitivity, pathlength, node between-
ness and edge betweenness) of the evolutionary network
obtained by our improved model are more closer to that
of the real network.

Evolution of network topological properties of new genes

Based on the gene coexpression network and gene age,
we analyze how the network topological properties of
new genes in branch 1 evolve. We assume that the net-
work 0 is the initial network. This coexpression network
will gradually grow with the continual addition of new

genes. In branch 1 there are 780 new genes which are
generated from 361.2 to 324.5 million years ago. In par-
ticular, we analyze how the average degree, transitivity,
pathlength, node betweenness and edge betweenness of
these new genes in branch 1 change over the evolution-
ary time (Fig. 10). We find that by continually adding of
new genes into the coexpression network, the new genes
in branch 1 will gain more and more neighbors, their
average degree will become larger and larger. The new
connections between the new genes in branch 1 and their
new neighbours facilitate the formulation of the shortest
paths through these new genes in branch 1. Therefore, the
average node betweenness and edge betweenness contain
these new genes in branch 1 will be gradually increased.
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During the evolutionary process, the newly added genes
which connect to the new genes in branch 1 will establish
new connections with their neighbours, then the average
transitivity of these new genes in branch 1 will substan-
tially retain. The pathlength of new genes in branch 1 will
also be stable because these new genes may own the same
topological location as their neighbours. In other words,
during the evolution of genetic networks, the hierarchi-
cal architecture and overall navigability of new genes will
remain the same.

Results of sensitivity analysis

In our analysis, due to the evolutionary processes of each
branch are the same in two situations, we only con-
sider the network evolved from branch 0 when the num-
ber of added genes is known by our novel model. The
parameter variables we considered are the generation rate,
the retention rate, and the rewiring rate of duplication
genes and the generation rate, the connection rate of de
novo genes. The topological properties we have consid-
ered are the average degree, transitivity, pathlength, node
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betweenness, and edge betweenness of the network. The
standard value of index A is the corresponds values of
topological features in simulation network 1 (the number
of new genes is known, Fig. 8). To calculate the sensitiv-
ity coefficients of the evolutionary network, we take the
|AF/F| = 20%. That is to say, the change in the value of
the parameter variable eauqals to 0.2F, where F is the cor-
responding value in our evolutionary model 1. Based on
Fig. 11, we discovered that the rewiring rate of duplication
genes is the most sensitive parameter variable to the topo-
logical features of evolutionary network. The sensitivity
coefficient of the rewiring rate of duplication genes to the
edge betweenness is 0.182. The change of the rewiring rate
of duplication genes has a significant effect on the five
properties of the network, especially on the edge between-
ness and the average degree of this network. In additions,
edge betweenness and average degree will be affected
easier by all five parameters than other topological
properties in general.

Discussion

Understanding the evolutionary mechanism and topolog-
ical properties of human gene coexpression network is
important for identifying the function and evolution of
new genes [3, 21]. In this paper, based on the human
RNA-seq data, we construct a human gene coexpression
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network. Then according to the human gene age data,
we reproduce the evolutionary process of this network
and develop a new evolutionary model of gene coexpres-
sion network, which help us discover the evolutionary
mechanism of biomolecular networks.

Moreover, the previous evolutionary models [22, 31]
only focus on the duplication genes and ignore the role of
de novo genes. However, based on the human gene origi-
nation mechanism data, we find that gene duplication and
de novo are two dominant evolutionary forces in shaping
this gene coexpression network. Therefore, except for the
duplication genes, we need to consider how many de novo
genes are produced at a given time and how are de novo
genes integrated into the initial network and change the
topological properties of gene-gene interaction network.

Our improved evolutionary model contains the evolu-
tionary processes of both duplication genes and de novo
genes. For the duplication model, we analyze how do the
duplication genes choose the neighbour genes to connect.
Traditional models find that duplication genes choose
neighbours according to the degree of genes [32, 33]. In
our study, we find that both the coreness of genes and
the edge betweenness of connections will affect how the
duplication genes choose their neighbours. In particu-
lar, shortly after gene duplication, duplication genes will
reserve all connections of parent genes and eventually
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edges with larger edge betweenness will be deleted. Edge
betweenness measures the ability of this edge in delivering
information. Deleting edges with large edge betweenness
and building new interactions with other genes can reduce
network redundancy and enable this network to have new
biological pathways. This can improve the efficiency of
information transmission in the network and make this
network have a small world property. After the duplica-
tion genes lose the common interactions, we find that they
will connect to genes with large degree and large coreness.
The larger the degree and coreness of genes, the more
neighbours they will have in the network. The coreness
of gene measures the depth of this gene in the network.
Genes with large coreness mean that they are close to the
center of this network. This evolutionary mechanism not
only satisfies the traditional “rich-gets-richer" mechanism
for degree, but also constrains the growth of genes with
large degree but less important. This mechanism makes
the evolutionary networks generating from our model are
more similar to the real gene coexpression network. For
de novo genes, we also find that they prefer to connect
genes with large degree and large coreness. This prefer-
ence attachment mechanism fundamentally explains why
the biomolecular network shows the property of scale-
free and hierarchical architecture. In addition, we analyze
how the network topological properties of new genes in
branch 1 evolve. Through the evolutionary analysis step
by step, we find that the hierarchical structure and over-
all navigability of new genes will remain the same with the
increase of time. The sensitivity analysis of the evolution-
ary network also has been done in this paper. The change
of the rewiring rate of duplication genes has a tremen-
dous effect on the five properties of the network, and edge
betweenness and degree will be affected easier than other
topological properties.

In general, the main novelty of this study is reflected in
the following three aspects. First, when we develop the
evolutionary model we consider the evolutionary process
of both duplication genes and de novo genes. Second, in
order to determine how are new genes integrated into
the network, we not only consider the average degree
of genes, but also take coreness and edge betweenness
into consideration. In other words, in order to develop an
evolutionary model with comprehensive biological char-
acteristics, we should consider the different topological
properties of genes and the underlying universal principle
of gene-gene interactions. Third, the network evolution
parameters and evolutionary principles of genes are
inferred from the real network constructed with actual
gene expression data. However, the observations made
here stimulate a multitude of questions regarding their
evolutionary significance. Is the change in network struc-
ture driven by neutral evolution or by natural selection
for advantageous interaction patterns? Does the change
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in network configurations over time reflect different
environments or different adaptations that the organism
evolves at different times? These problems require further
study from the theoretical and experimental perspectives.

This study has several limitations. Firstly, in this gene
coexpression network the strength of connections is
ignored, that is, the network is unweighted. But for a
real gene coexpression network, the strength of connec-
tions is different and the correlation between genes may
be positive or negative. Secondly, when we consider the
evolutionary process of gene coexpression network, we
assume that the parental genes and other existing genes
in the network do not lose their interactions during evo-
lution. Furthermore, we only considered the generation of
new genes in our evolutionary model rather than the dele-
tion of the original genes. More realistically, it is also likely
that a certain amount of “rewiring" takes place during the
network growth for the parental genes and other existing
genes. Thirdly, if we can collect more human RNA-seq
data and update the dataset of gene age and gene orig-
ination mechanism, we will be able to more accurately
reveal the evolutionary mechanism of gene coexpression
network. Finally, in this study we only consider the evo-
lutionary model of human gene coexpression network.
It is interesting to further investigate the evolutionary
model of gene coexpression network in other species and
compare the difference with this model.

Conclusions

In conclusion, based on the human RNA-seq data and
human gene origination mechanism data, this study
develops a new evolutionary model of gene-gene inter-
action network which considers the evolutionary process
of both duplication genes and de novo genes. For the
evolutionary process of duplication genes, based on the
average degree and coreness of parent genes, we find
that gene replication is a random process in which a par-
ent gene is randomly selected from the original network
to duplicate. Shortly after gene duplication, duplication
genes will inherit all connections from their parent genes,
but they eventually lose the common connections with
larger edge betweenness and only reserve the connec-
tions with smaller edge betweenness. Moreover, we find
that duplication genes prefer to develop new interactions
with genes which have a large degree and a large core-
ness. In other words, the duplication genes develop new
interactions through a “rich-gets-richer" mechanism. For
de novo genes, we also find that they prefer to connect
genes with large degree and large coreness. The mecha-
nism of preferential gene attachment fundamentally leads
to the scale-free property and hierarchical architecture
of biomolecular network. In particular, we find that the
topological properties of evolutionary network obtained
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by our improved model are more similar to that of the
real gene coexpression network. During the evolutionary
process, the hierarchical structure and overall navigability
of new genes will remain the same. Our newly devel-
oped evolutionary model reveals the potential evolution-
ary mechanism of biomolecular networks and can gener-
ate evolutionary networks with comprehensive biological
characteristics.

Methods

RNA-seq data of human

RNA-seq technology [34, 35] is a recently developed
approach to transcriptome profiling that uses deep-
sequencing technologies. RNA-seq technology provides a
far more precise measurement of levels of transcripts and
their isoforms than other methods [36]. In this study, we
use the gene expression data from RNA-seq experiments
which measured 14341 different genes in 71 tissues of
human, which is downloaded from reference [28] (http://
longlab.uchicago.edu/?q=SD_GB) (see Additional file 8).
Since the expression data of some genes are missing in
most organs, this data needs to be preprocessed. In order
to construct a gene coexpression network, we need to
choose the organs with the most abundant gene expres-
sion data and the genes with relatively strong expression
level. Finally we select 26 different tissues in which all of
8237 genes have expression data (see Additional file 9).

Construction of a human gene-coexpression network

The gene coexpression network we construct is an undi-
rected and unweighted network. For each differently
expressed human gene, the expression data in each of the
26 organs are used to construct a vector as the expression
data of this gene [29]. Different genes represent different
nodes in the network and they are connected when their
Pearson correlation coefficient is larger than a specific
threshold. Because a biological network generally obeys
to a power law distribution and has a hierarchical struc-
ture [22], based on the two criterions we calculate Pearson
correlation coefficient between all pairs of selected genes
to determine the threshold of our network. Network with
scale-free property means that the degree distribution of
the network exhibits a power tail with an exponent y.
And for the biological network, the exponent y is often
between 1 and 2 [7, 12]. For biological networks, it also
reports that the clustering coefficient c(k) ~ k=1, here k
is the degree of the node [37].

When the threshold of Pearson correlation coefficient
is set to 0.6, the exponent of degree distribution y equals
to 0.93, the network does not approximate to a power law
distribution completely. When the threshold is set to 0.7
and 0.8, both of the networks approximate to a power law
distribution and have the hierarchical structure. However,
the network with threshold 0.7 includes more genes and
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links (Fig. 12). Hence, we set the threshold of Pearson cor-
relation coefficient to 0.7. In this case, the network has
8061 genes and 638624 links (see Additional file 10).

Topological properties of gene networks

The basic topological properties of biological networks
are average degree, node betweenness, edge between-
ness, clustering coefficient of node, coreness of node and
the shortest pathlength. We use these topological prop-
erties to derive the evolutionary model and compare our
simulated networks with real networks.

(i) Average degree
Assuming that the undirected and unweighted net-
work has N nodes and M edges, the degree d; of the
node i is defined as the number of nodes directly
connecting to node i. The average degree (d) of net-
work is defined as the average degree of all nodes in
the network, which is given by

N
1 2M
<d>=ﬁ;d,.=w. )

(ii) Clustering coefficient
The clustering coefficient c; of a node measures how
closely its neighbours are connected. The clustering
coefficient is between 0 and 1 and is calculated as
follows

2E;

= dd-1 (10)

Ci
where E; is the number of edges among the neigh-
bours of node i, d; is the degree of node i. ¢; equals
to 0 when node i has at most one neighbour or its
neighbours have no connections between each other.
The average clustering coefficient (c) of network is
defined as

LN
(¢) = N Z Ci. (11)
i=1

Moreover, c(k) is defined as the average of clustering
coefficients of all nodes with k links. If c(k) ~ k1,
then the network may have a hierarchical architec-
ture.

(iii) Shortest pathlength
The shortest pathlength of the network, also called
geodesic path is defined as a path with the least num-
ber of edges connected to two nodes. The length
of the shortest path is the number of the edges in
this path. The average shortest pathlength (/) of the
network is defined as

2
() = mz Ljs

i>j

(12)
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Fig. 12 Degree distribution and clustering coefficient of gene coexpression networks with different thresholds of Pearson correlation coefficient.

a ~ ¢ The degree distribution of networks when the threshold of Pearson correlation coefficient is 0.6, 0.7 and 0.8, respectively. The value of y in the
figure is the slope of fitted line. d ~ f The clustering coefficient distribution of networks when the threshold of Pearson correlation coefficient is 0.6,
0.7 and 0.8, respectively. Similarly, we calculate the slope y of the fitted line

where /;; is the shortest pathlength between node
i and node j. In particular, the average pathlength
of an undirected network is defined as the average
distance between nodes with connected paths.

(iv) Node betweenness

Node betweenness measures the node’s ability in
controlling information flow of the network. Node
betweenness is defined as the ratio of the number
of shortest paths passing through this node to the
total number of shortest paths [38]. Assuming that
the number of the shortest paths between node j
and node k is nj and the number of edges passing
through node i is (i), then the node betweenness
b; of this node is defined as

(13)

and the average node betweenness () of the network
is defined as

1
@=ﬁ¥m (14)

(v) Edge betweenness

Edge betweenness is defined as the ratio of the num-
ber of shortest paths passing through this edge E to
the total number of shortest paths [39, 40]. The edge
betweenness Br of edge E is calculated as follows

Z 1k (E)

kK

B (15)

where nj;(E) is the number of shortest paths which
connect node j and node k and pass through edge E
at the same time. The average edge betweenness of a
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network, (B), is defined as the average of Br over all
edges E.

From the perspective of information spreading,
both node betweenness and edge betweenness can
characterize the importance of this node or edge
in the network. The higher the betweenness is, the
greater the impact it has on the transmission of
network information.

(vi) Node coreness

The average degree indicates the number of neigh-
bours of each gene, but it cannot measure the signif-
icance of nodes in the network. Node betweenness
can estimate the essentiality of nodes in message
passing. However, it could not judge the location
of nodes. We use k-shell decomposition [41, 42] to
weigh the location and importance of nodes [43].
Nodes near the center of the network will have more
importance than nodes at the border of the net-
work. The k-shell decomposition can be actualized
as follows: firstly, all isolated nodes in the network
will be identified. These isolated nodes constitute O-
shell of the network with coreness of 0, and then
they will be removed from the network. Secondly,
removing the nodes with degree of 1 and simulta-
neously deleting their edges. In this way we obtain
a new network. Continue to remove the nodes with
degree of 1 and their connections from the new net-
work until the degree of all nodes in the network is
greater than 1. All nodes removed in this step consti-
tute network’s 1-shell and their coreness is 1. Thirdly,
continue to conduct shell decomposition until the
degree of nodes in the remaining network is at least
equal to 3. Thus, the network’s 2-shell is obtained
and the coreness of them is 2. The decomposition
will be continue until no node is remained in the
network. Ultimately, each node in the network corre-
sponds to a unique k- shell [44]. The coreness of node
i is ks(i) and the average coreness (ks) of a network
with N nodes is

_ kst

tks) = —

(16)
Obviously, the greater the coreness of a node, the
more important this node is.

Gene age and origination mechanism data

In order to study the evolutionary process of this gene
coexpression network, we need to reproduce the evolu-
tion of network based on human gene age data. Evolu-
tionary time tree of life is essentially needed in explor-
ing the evolution of gene coexpression network. Data
from http://gentree.ioz.ac.cn/index.php [30] shows us the
gene age and origination mechanism from the perspective
of human (see Additional files 1 and 11). All human genes
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are divided into 14 branches (branch 0 to branch 13). The
younger the gene is, the greater number it is assigned
to. New genes are mainly produced by two mechanisms
which are gene duplication and de novo origination, and
these new genes will lead to the evolution of the network.
Each branch has its own splitting time, and age of genes
in each branch is defined as the midpoint of the splitting
time of this branch and the next branch [30]. Concretely,
genes are divided into 14 branches by their age as listed in
Table 2.

To analyze the evolution of network, we have to study
changes of network properties in similar time interval.
However, from the right-hand side of the Table 2, we can
see that the time interval of gene generation is nonuni-
form. Moreover, when the age is divided in a precise way,
the number of newly added genes in every network is
very small, so the law of evolution will be not obvious.
Hence, accurate partitions of gene age are not suitable for
us to study the network evolution. Therefore it is neces-
sary to regroup the 0-13 branches. In the new division,
we retain branch 0 to branch 3 of accurate division, and
then combine branch 4 and branch 5 into the branch 4 of
the new division. Branch 6 and branch 7 are merged into
the branch 5 in the new division. Meanwhile, branch 8 to
branch 13 are merged into the new branch 6. Hence, in
this way, genes are redivided into seven branches (branch
0 to branch 6) under new division method. As a result, the
time intervals of gene generation become more uniform
as exhibited in Table 3.

Table 2 Gene age and numbers of each branch

Branch ~ Number of genes  Splitting Gene age  Time interval
in the network time (Myr) (Myr)
(Myn)
0 6541 -454.6 -407.9 0
1 780 -361.2 -342.85 65.05
2 168 -324. -272.35 70.5
3 210 -220.2 -198.15 74.2
4 142 -176.1 -1404 57.75
5 129 -104.7 -101.05 39.35
6 16 974 -94.2 6.85
7 6 -91 -67.6 266
8 20 -44.2 -36.9 30.7
9 10 -29.6 -24.2 12.7
10 9 -188 -16.95 725
I Il -15.1 -10.6 6.35
12 1 -6.1 -3.05 7.55
13 8 0 0 3.05

This table exhibits the branch spitting time, gene generation time and the
generation interval of genes between adjacent branches from branch 0 to branch 13
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New branch ~ Number of genes in the network  Splitting time (Myr) ~ Gene age (Myr) ~ Time interval (Myr) ~ Components of the new branch
0 6541 -454.6 -407.9 0 Original branch 0

1 780 -361.2 -342.85 65.05 Original branch 1

2 168 -324.5 -272.35 70.5 Original branch 2

3 210 -220.2 -198.15 74.2 Original branch 3

4 271 -176.1 -136.75 614 Original branch 4-5

5 22 -974 -70.8 65.95 Original branch 6-7

6 69 -44.2 -22.1 48.7 Original branch 8-13

For branch 0 to branch 6, this table exhibits the branch spitting time, gene generation time and the generation interval of genes between adjacent branches

The mean value of time intervals of gene age under new
dividing method is 64.3 million years, and time intervals
in the right of Table 3 are fluctuating around this mean
value. Thus this new spitting method is more suitable for
us to study the evolutionary mechanisms of network.

Traditional evolutionary model

Supposing the number of nodes in the original network
is N. The degree of node i is d;. In traditional model,
all newly added genes are described as duplication genes.
Concretely, the flow chart of traditional model is shown
in Fig. 6a. The detailed simulation process is described as
follows [21, 22].

Stepl: Gene duplication
Parent gene is selected at random and duplicated.
Duplication gene will reserve all connections of
parent gene. The probability that the gene i(i =
1,2,..,N) is chosen as a parent gene v* is p(i) = %

Step2: Edge deletion process
Edges of duplication gene will be removed randomly
with probability § (§ is relatively large).

Step3: Rewiring process
Duplication gene will connect to the remaining
genes with large degree, that is, the larger the degree
of the remaining gene, the more likely it will be
connected by a duplication gene. In other words,
the duplication gene develops new links through a
“rich-gets-richer" mechanism.

Assuming that there are n duplication genes added into
the original network. The original network will evolve by
adding these # duplication genes at the same time. The
chosen of parent genes and reconnect genes will only base
on the original network. Moreover, the § in step2 is set as
0.8711 in our simulation (see “Results” section).

Our improved evolutionary model
According to the gene age divided by the above uni-
form repartition method, we obtain a family of gene

coexpression networks. Firstly, we assume that the net-
work 0 is consisted of genes which belong to branch 0.
Then the genes belong to branch 1 are added into the net-
work 0 to form the network 1. This process will continue
until all genes are integrated into the network (Fig. 13).
Finally, we obtain a family of evolutionary networks which
is composed of network O to network 6. The seven net-
works (Table 4) reveal the evolutionary principle of gene
coexpression network. By studying the seven networks
step by step, we will derive the evolutionary process of
human gene coexpression network. Furthermore, we will
infer the evolutionary mechanism of duplication genes
and de novo genes added into the network.

In our proposed evolutionary model, the evolution of
network is caused by new genes which contain duplica-
tion genes and de novo genes (Fig. 6b). For duplication
genes, parent genes are chosen in the original network
and then they will be duplicated to generate duplication
genes. Duplication genes will reserve all connections of
parent genes at the beginning. Later, a part of previous
edges will be deleted and new connections will be added.
Owing to the evolution of network is caused by the adding
of duplication genes and de novo genes, we assume that
the deletion and rewiring of edges are only related to
newly added genes. For de novo genes, they will join in
the network and establish connections with nodes in the
original network. By analyzing the network 0-6, we can
infer the evolutionary mechanisms that how are duplica-
tion genes and de novo genes added into the network.
Finally, we can obtain an evolutionary model of human
gene coexpression network.

Sensitivity analysis of evolutionary network

To analyze the sensitivity of the evolutionary network, we
consider five parameter variables and calculate their sen-
sitivity coefficients to the topological properties of the
network. The five parameter variables are respectively the
generation rate, the retention rate and the rewiring rate
of duplication genes, the generation rate and the connec-
tion rate of de novo genes. The topological properties we
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is larger than 0.7

Fig. 13 A part of the gene age-specific coexpression network 6. Genes with different age are labeled by different colors. The node in the network
corresponds to a gene in human. Two genes are connected by an edge if they are co-expressed. In other words, their Pearson correlation coefficient

have considered are respectively the average degree, tran-
sitivity, shortest pathlength, node betweenness and edge
betweenness of the network. The sensitivity coefficient
reflects the sensitivity of topological properties to param-
eter variables. Assuming that the topological feature of the
network is A, and the parameter variable of this network
is F. Then the formula for calculating the sensitivity coef-
ficient is S = %, where AA and AF are the changes

Table 4 The origin time and termination time of networks

in the values of the topological feature and the parame-
ter variable, respectively. The larger the |S| is, the more
sensitivity the topological feature A is to the uncertain
parameter F. In our analysis of the sensitivity of evolution-
ary network, we take the evaluation index 4;(i = 1,2, ..., 5)
to be five topological properties, and the uncertain fac-
tor F;(i = 1,2,..,5) to be five parameter variables of our
network.

Network Components of the network Number of genes Original time (Myr) Termination time (Myr)
0 New branch 0 6541 -454.6 -361.2

1 New branch 0-1 7321 -454.6 -324.5

2 New branch 0-2 7489 -454.6 -220.2

3 New branch 0-3 7699 -454.6 -176.1

4 New branch 0-4 7970 -454.6 -97.4

5 New branch 0-5 7992 -454.6 -44.2

6 New branch 0-6 8061 -454.6 0

According to gene age, we infer a set of evolutionary networks which consist of network i(i = 0, 1, ., 6). This table exhibits the origin time and corresponding terminate time

for each network
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Additional file 1: Table S1. This table contains gene origination
mechanism for 8061 different genes. In this table, ‘DI, ‘D', ‘RI"and 'R"all
mean genes generated by duplication mechanism. ‘A" and ‘Al mean genes
generated by de novo mechanisms. There is only one gene we cannot find
its origination and we regard it as a de novo gene. The reference data of
gene origination mechanism is downloaded from reference [30] (http://
gentree.ioz.ac.cn/index.php). (XLSX 239 kb)

Additional file 2: R code for running evolutionary model 1. This R code is
for running evolutionary model 1 when the number of new genes in each
step is known. (R 11 kb)

Additional file 3: The network 0 formed by genes from branch 0. This file
is support for running evolutionary models 1 and 2. (CSV 15,567 kb)

Additional file 4: The coreness of genes in the network 0. This file is
support for running evolutionary models 1 and 2. (CSV 127 kb)

Additional file 5: The network 1 formed by genes from branch 0 and
branch 1. This file is support for running evolutionary models 1 and 2.
(CSV 17,312 kb)

Additional file 6: R code for running evolutionary model 2. This R code is
for running evolutionary model 2 when the length of evolutionary time in
each step is known. (R 12 kb)

Additional file 7: The time intervals between each branch. This file is
support for running evolutionary model 2. (CSV 1 kb)

Additional file 8: Table S2. This table contains the original human
RNA-seq data for 14341 different genes in 71 tissues. Element NA in this
table means there is no expression value for this gene in the
corresponding tissue. This table is downloaded from reference [28] (http://
longlab.uchicago.edu/?q=SD_GB). (XLSX 5582 kb)

Additional file 9: Table S3. This table contains the selected human
RNA-seq data for 8237 different genes in 26 different tissues. (CSV 1085 kb)

Additional file 10: Table S3. This table contains 8061 genes and 638624
links, and the Pearson correlation coefficients. (CSV 27,996 kb)

Additional file 11: Table S4. This table contains gene age for 8061
different genes in original partitions. (XLSX 138 kb)
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