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Abstract

Background: Hodgkin Lymphoma (HL) is a type of aggressive malignancy in lymphoma that has high incidence in
young adults and elderly patients. Identification of reliable diagnostic markers and efficient therapeutic targets are
especially important for the diagnosis and treatment of HL. Although many HL-related molecules have been
identified, our understanding on the molecular mechanisms underlying the disease is still far from complete due to
its complex and heterogeneous characteristics. In such situation, exploring the molecular mechanisms underlying
HL via systems biology approaches provides a promising option. In this study, we try to elucidate the molecular
mechanisms related to the disease and identify potential pharmaceutical targets from a network-based perspective.

Results: We constructed a series of network models. Based on the analysis of these networks, we attempted to
identify the biomarkers and elucidate the molecular mechanisms underlying HL. Initially, we built three different but
related protein networks, i.e., background network, HL-basic network and HL-specific network. By analyzing these
three networks, we investigated the connection characteristic of the HL-related proteins. Subsequently, we explored
the miRNA regulation on HL-specific network and analyzed three kinds of simple regulation patterns, i.e., co-
regulation of protein pairs, as well as the direct and indirect regulation of triple proteins. Finally, we constructed a
simplified protein network combined with the regulation of miRNAs on proteins to better understand the relation
between HL-related proteins and miRNAs.

Conclusions: We find that the HL-related proteins are more likely to connect with each other compared to other
proteins. Moreover, the HL-specific network can be further divided into five sub-networks and 49 proteins as the
backbone of HL-specific network make up and connect these 5 sub-networks. Thus, they may be closely associated
with HL. In addition, we find that the co-regulation of protein pairs is the main regulatory pattern of miRNAs on the
protein network in the HL-specific network. According to the regulation of miRNA on protein network, we have
identified 5 core miRNAs as the potential biomarkers for diagnostic of HL. Finally, several protein pathways have
been identified to closely associated with HL, which provides deep insights into underlying mechanism of HL.
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Background

Cancer is thought to be a kind of complex and highly
heterogeneous disease that involves multiple causes and
factors. Moreover, cancer is also associated with the
alteration of molecular interactions rather than the
abnormality of a single gene [1]. In particular, dysregula-
tion of multiple pathways governing fundamental cell
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processes contributes to cancer development and pro-
gression. Therefore, these characteristics determine that
we should apply systems biology approaches specifically
network-based approaches to study underlying mechan-
ism of cancer [2]. As protein-protein interactions (PPIs)
form the basis of cellular processes, the dysfunction of
some interactions causes many diseases including cancer
[3]. Thus the construction and analysis of PPIs network
can not only provide a global view of biological events, but
also decipher the molecular basis of cancer from the per-
spective of network dynamics [4]. In addition, systematic
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analysis of the PPIs network also provide a wealth of valu-
able information that may be useful for identifying thera-
peutic targets [5, 6] and potential biomarkers for diagnosis
and prognosis of cancer [7, 8].

As an important class of post-transcriptional regulator,
microRNAs (miRNAs) can regulate many crucial cellular
processes, such as differentiation, growth, proliferation,
and apoptosis. The abnormality of miRNAs expression
also leads to various diseases, especially cancer. It is well
known that miRNAs play a crucial role in the formation
and development of cancer by functioning as tumor
suppressors or oncogene [9]. Moreover, miRNAs have
also been considered as important molecules for cancer
diagnosis [10] and therapeutic targets [11, 12].

miRNAs can negatively modulate target genes and
consequently perform fine-scale adjustment of protein
output by influencing the stability of encoding mRNAs
[13]. In addition, miRNAs can also regulate functionally
related proteins and exert specific effects on the formation
of protein complexes [14, 15] and biological pathways
[16]. Therefore, in order to more clearly understand the
function of miRNAs and their role in diseases, the investi-
gation of miRNA biology should be conducted in the
context of protein interaction network rather than isolated
target genes [17].

Although how miRNAs regulate protein interaction
network is still not fully understood, some characteris-
tics of miRNA-mediated protein interaction network
have been investigated by integrating information about
miRNA targets and protein interaction data [18, 19]. For
instance, a statistical analysis was conducted to compare
topological characteristics between miRNA-mediated
proteins and randomly selected proteins from protein
interactions network. The results demonstrated that the
miRNA-mediated proteins tend to more frequently interact
with other proteins. Moreover, the proteins mediated by
the same miRNA have high tendency to interact with each
other. These specific characteristics imply that miRNAs
might exert their regulatory effects on protein complex and
pathways through protein interactions network. Therefore,
based on the analysis of miRNA-mediated protein interac-
tions network, we can not more comprehensively under-
stand the function of miRNAs [20], but more accurately
identify the miRNAs associated with diseases [21, 22].

Hodgkin Lymphoma (HL) is a tumor arising from the
lymphatic system and its hallmark is the emergence of
Hodgkin and Reed-Sternberg cells [23]. Although the
exact cause for HL is not clearly clarified yet, some risk
factors have been considered to be related with the oc-
currence of HL. Because HL is an aggressive malignancy
that can quickly spread through the body, identification
of reliable diagnostic markers and efficient therapeutic
targets are especially important for diagnosis and treat-
ment of HL. Using the high-throughput techniques,
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many HL-related molecules have been identified, such as
the proteins uniquely expressed in HL-derived cell lines
[24] and miRNAs differently expressed between normal
and patients with HL [25], which make it feasible to con-
struct a specific network for HL. The analysis of such
network can provide valuable insight into the underlying
mechanism of HL and identification of key proteins and
miRNAs for HL. For example, a regulatory network
consisting of genes, miRNAs and transcription factors is
constructed using the available data and several import-
ant pathways in HL are identified based on the resulting
regulatory network [26]. However, this study just fo-
cused on the regulatory of miRNAs on isolated target
genes and transcription factors. It is still unclear about
the protein interactions network specific to HL and
miRNA regulation on protein interactions network.

In this study, we firstly manually collected the HL-
associated proteins and miRNAs. Subsequently, we ex-
tracted the experimentally verified protein-protein
interactions from five protein interaction databases.
Based on the collected data, we constructed a protein
interactions network specific to HL using a three-step
strategy. By analyzing this network, we identified the
core proteins that are crucial for maintaining network
structure. These proteins can be considered as candi-
dates of diagnostic and therapeutic markers for HL.
Finally, we obtained experimentally validated miRNA-
target interactions from miRWalk and miRTarBase. By
integrating HL-specific protein network with miRNA-
target interactions, we investigate miRNA regulation
on the HL-specific protein network. On the basis of
the analysis at the network level, we obtain a compre-
hensive insight into the role of HL-associated proteins
and miRNAs playing in pathogenesis of HL. These
results provide more valuable information for studying
mechanism and treatment of HL.

Results
Analysis of three related PPl networks
PPI background network
In order to provide a network-level view for the HL-specific
proteins, we constructed a background network that in-
cludes as many proteins as possible. The constructed back-
ground network has 17,076 proteins as nodes and 146,295
protein interactions as edges. Subsequently, we calculated
the degree distribution of the background network (shown
in Additional file 1: Figure S1). As displayed in the figure,
the degree distribution clearly follows a power law. It indi-
cates that the background network is a typical scale-free
network and has scale-free properties [27]. This result is
also in agreement with the previous study [28].

The power-law decay of degree distribution implies
that there are hub proteins that are heavily interacted
with other proteins in the background network. In this
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study, we identified the hub proteins by calculating the
relative connectivity of subgraph [29]. According to the
previously study [30], the links between hub proteins in
a network are systematically suppressed. Therefore, for
the subgraphs consisting of only hub proteins, the
relative connectivity will be smaller than that of other
subgraphs containing non-hub proteins. Due to consid-
ering the unique topological property of hub proteins in
the network, this identification method should be more
precise compared with just using a degree threshold.
The relative connectivity of subgraphs was computed
as a function of node number and shown in Fig. 1. From
this figure, we find that the relative connectivity is
continual decrease when the number of nodes is less
than 20. Subsequently, the relative connectivity shows
some fluctuations with increase of nodes. When the
number of nodes is greater than 132, the variation of rela-
tive connectivity becomes stable and reaches the relative
connectivity of entire network. Therefore, we define the
top 132 proteins in the degree ranking as the hub proteins
in the background network. The Uniprot ID and name of
each hub proteins is listed in Additional file 1: Table S1.
The degree distribution of HL-specific proteins in the
background network is shown in Fig. 2. From this distri-
bution we can find that 85% of HL-specific proteins have
the degree with less than 100. According to the defin-
ition of hub proteins in the background network, only
10 HL-specific proteins belong to the hub proteins in
the background network. Based on the guilt-by-associ-
ation principle, we assume that the HL-specific proteins
may be closely connected together in the background
network. Whereas the 10 hub proteins might play an
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important role in connecting other HL-specific proteins.
Therefore, we obtained a small network only consisting
of HL-specific proteins from the background network.
This small network is referred as HL-basic network.

HL-basic PPI network

In the HL-basic network, these are only 144 nodes and
180 edges. The nodes represent the HL-specific proteins
and the edge is the interaction between two HL-specific
proteins. The HL-basic network is displayed in Fig. 3.
Based on the connection between nodes, 144 nodes can
be distinctly classified into two groups. In one group, 84
out of 144 nodes are connected to form a sub-network
and 9 hub proteins in the background network are in-
cluded into this sub-network. The nodes in another
group have not any interacting partners in HL-basic
network. Moreover, according to the calculated max-
imum modularity score, the sub-network can be further
divided into eight modules and 9 hub proteins are
located respectively into different modules that are dis-
played in different colors in Fig. 3.

Clustering coefficient is a measure of node aggregation
in a network. We calculate the global clustering coefficient
of the sub-network to evaluate the connection extent of
the HL-specific proteins. The global clustering coefficient
is calculated to be 0.17. To confirm whether that the HL-
associate proteins are more closely connected together, we
generated 10,000 random networks consisted of the same
number of nodes as the sub-network. Subsequently, we
also calculated the global clustering coefficients of random
networks and compared them with that of the HL-basic
network. The comparison results are shown in Fig. 4. It
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can be seen that the global clustering coefficient of HL-
basic network lies within the same range as those of 10,
000 random networks. The result indicates that the HL-
associate proteins are not so densely connected together
compared with the randomly selected proteins. According
to Local hypothesis that proteins involved in the same
disease tend to interact with each other [1], it implies that
in this study the list of collected HL-specific proteins is
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Fig. 3 The sub-network consisted of 84 HL-specific proteins. The
sub-network can be divided into eight modules in which the nodes
are colored into different colors. 9 hub proteins are located into the
different modules and shown in the bigger circle. Their Uniprot ID
are also shown with the corresponding colors

not entirely comprehensive. Moreover, 60 isolated nodes
in the HL-basic network also confirm this observation.

HL-expanded network
On the basis of the above results, we think the HL-basic
network is yet incomplete. In order to construct a more
comprehensive HL-related network, we regarded the 144
HL-specific proteins as seed proteins and then selected
their neighbors that directly connected with them in the
background network. The newly selected proteins and
the involving interactions were integrated to build a
network called as HL-expanded network. This resulting
network comprises 541 nodes and 5057 connections.
Compared with the HL-basic network, the HL-expanded
network contains more hub proteins. There are a total of
61 hub proteins identified from the background network.
These hub proteins make the nodes in the HL-expanded
network densely connect to each other. Similarly, we also
generated 10,000 random networks where nodes have
the same degree distribution as those of the HL-ex-
panded network and compared the global clustering
coefficient between HL-expanded network and ran-
dom networks. The global clustering coefficient of
HL-expanded network is computed to be 0.135, which
is higher the average value of 10,000 random net-
works (0.124) as shown in Fig. 4. The statistics ana-
lysis using Kolmogorov-Smirnov test (p-value =2.2 x
10 ') also validates the observation that the global
clustering coefficient of HL-expanded network signifi-
cantly differs from those derived from the random
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Fig. 4 Comparison of global clustering coefficients of HL-basic network and HL-expand network with their corresponding random networks. The
box plot displays the distribution of global clustering coefficients of 10,000 random networks that have the same numbers of nodes with equal
degree as the HL-basic network and HL-expanded network, respectively. The black rectangle represents the global cluster coefficient of the HL-
basic network or the HL-expanded network

networks. It indicates that, as expected, the HL-spe-
cific proteins are densely connected together.

In addition, as components of the background network,
the nodes in the HL-expanded network simultaneously
connect with other nodes out of the HL-expanded net-
work. To evaluate the extent of connection between the
nodes inside and outside the HL-expanded network, we
calculate Z-score value that is based on the degree values
in the HL-expanded network and the background net-
work. If the Z-score of a node is larger than 0, it means
this node has more interaction with the nodes within the
HL-expanded network. On the contrary, the node is more
connected with the nodes in the background network.

Figure 5 displays the Z-score distribution of all nodes
in the HL-expanded network with their degree values.
From this figure, we can clearly find that Z-scores of all
nodes are basically correlated with their degree. More-
over, the Z-scores of all nodes in the HL-expanded
network are larger than 0, meaning that all nodes in HL-
expanded network tend to connect with the intra-net-
work nodes and form a relatively isolated network from
the background network.

In summary, the HL-expanded network is a relatively
compact network, in which 144 HL-associate proteins
are tightly linked together. Based on Local hypothesis

that proteins involved in the same disease tend to inter-
act with each other, the HL-expanded network can be
considered as HL-specific network and all proteins in
this network are regarded to be related to HL.

The above results display that the HL-expanded network
possesses higher cluster coefficient compared with the ran-
dom network. It suggests that the HL-expanded network
may be a small-world network. Hence we adopted a meas-
urement of S” index proposed by Humphries and Gurney
[31] to quantify the small-worldness of this network. The
calculated S value is 4.55, greater than 1. It means that
HL-expanded network is a small world network. Because
the small-world network tends to contain cliques, we fur-
ther perform clustering analysis for the HL-expanded
network.

The results of cluster analysis show that the HL-ex-
panded network can be divided into five sub-networks, in
which the nodes have a high tendency to connect with each
other. The HL-expanded network and its sub-networks are
shown in Fig. 6. Subsequently, we conducted functional
enrichment analysis and KEGG pathway analysis on five
sub-networks respectively.

The enrichment results are listed in Additional file 1:
Table S2. From this table, we can observe that five sub-net-
works are separately involved in the different functions and



Lei et al. BMC Bioinformatics (2019) 20:449 Page 6 of 13
p
100 5
4 o o o o
o o o
80 - °o
- o o °
o o°
2 60 A %o ° 5
° o o
8 i ° o . °Q° ° oo oo oO o
o ) o
8 a0 : °
N T ° %
&
B o ° o
20 °:°: o %o © w
o° o o u:o °°
PR o %
O L -
0 20 80 100 120

Fig. 5 Z-score distribution of 541 nodes in HL-expanded network along with their degree values

pathway. For example, the proteins in sub-network 2
mainly participate in the process of cell-cell adhesion,
which may be related to the migration of lymphoma cells.
Meanwhile, the proteins in this sub-network are also in-
volved in pathway of Epstein-Barr virus infection, which
has been confirmed to be an important cause for HL [32].
In addition, the proteins contained in sub-network 3 are
associated with kinase activity and signaling pathway,

particularly NF-kappa B signaling pathway. The aberrant
NEF-kappa B activity has been recognized as a critical patho-
genic factor in lymphoma [33]. Moreover, the pathway
enrichment results also shown that the proteins in Sub-net-
work 4 are participated in the process of human T-lympho-
tropic virus I (HTLV-I) infection and colorectal cancer.
This is consistent with the fact that HILV-I infection is the
cause of adult T-cell lymphoma [34] and colorectal cancer

P54259
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Q15717e .
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Fig. 6 The HL-expanded network and its constitued sub-networks. Based on dense connections of nodes, the HL-expanded network is divided
into 5 sub-networks. The nodes within each sub-network are colored in different colors. The nodes with bigger size are the hub proteins in each
sub-network and are labeled with Uniprot ID
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is a common secondary cancer in HL survivors [35]. These
results directly validate the rationality of the constructed
HL-expanded network.

Because in the network the clusters is generally
formed by the high-connectivity hubs proteins [36], we
can further simplify the network to the connection of
hub proteins. By extracting the hub proteins in five sub-
networks and their mutual connections, we build a
simplest form of HL-expanded network. This simplified
network consists of 49 nodes shown in the Fig. 6, which
can directly connect 470 out of remaining 492 nodes in
HL-expanded network and play an important role in
maintaining the HL-expanded network structure. There-
fore, these nodes can be considered to make up the
backbone of HL-expanded network and the correspond-
ing proteins represented by these nodes are considered
as the key proteins for HL. The Uniprot ID numbers of
49 proteins together with their name and possible func-
tions in HL are listed in Additional file 1: Table S3.

Among 49 key proteins, 18 proteins are the manually
collected HL-related proteins and 4 proteins, P54529,
P04637, Q13287 and P12931 have also been proven to
be related with the development of HL. The result dir-
ectly confirmed the correctness of the identification of key
proteins based on the context of network. Remaining 27
proteins as the candidates can be further studied using the
experimental methods. Meanwhile all 49 key proteins can
also be regarded as the potential targets for treatment of
HL.

Prediction of miRNA targets
In addition to the related proteins, many studies have
confirmed that miRNAs are closely associated with the
HL. Some specific miRNAs can be used to differentiate
HL lymph nodes from reactive lymph nodes and HRS cells
from germinal center B cells [37]. They are also utilized to
track treatment response for HL [38]. However, regarding
how miRNAs participate in the development of HL and
regulate the interaction between HL-specific proteins, it is
not completely clear. Hence, we further obtained the regu-
latory relationships between miRNAs and HL-specific
proteins from two miRNAs target databases and analyzed
the regulations of miRNAs on protein interaction net-
work. In this study, we extracted a total of 14,614 and 14,
693 experimentally validated miRNA-target interactions
from miRWalk and miRTarbase, respectively. The inter-
section of two datasets is retained for further analysis.
Based on the obtained experimentally validated miRNA-
target data, we construct a HL-specific miRNA-protein
network (shown in Fig. 7), in which there are 497 HL-spe-
cific proteins and 1628 miRNAs as well as 14,299 miRNA-
protein interactions. Although, in this network, 40 HL-
specific proteins are regulated only by one miRNA and
152 miRNAs modulate one protein, most of miRNAs and
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proteins have many-to-many regulatory relations. Among
the 1628 miRNAs, 20 miRNAs can directly regulate ap-
proximately 80% of proteins in this network. So these 20
miRNAs can be considered as key miRNAs for HL and 3
out of 20 miRNAs are included in the previously identified
HL-related miRNAs.

Analysis of miRNAs regulation from the network
perspective

It has been demonstrated that the targets of miRNAs are
generally more connected in the protein-protein interaction
network than expected by chance [18, 39]. The protein-pro-
tein interaction may enhance regulatory effect of miRNAs
on targets. Therefore, we integrate protein-protein
interactions with miRNA-protein regulation to explore the
miRNAs-mediated regulation on the protein network. In
this study, we will consider three simplest types of regula-
tory patterns. The first pattern is that a miRNA can simul-
taneously regulate two interacting proteins shown in
Fig. 8a. By means of the interaction between two proteins,
miRNA may strengthen the regulatory effect on them. In
the HL-expanded network, out of total 5057 interacting
protein pairs, 2336 pairs are regulated in this way. This
result demonstrates this kind of regulation is a common
pattern in the HL-expanded network and it is agreement
with the previous study [39]. If taking account into this type
of regulation, 20 key miRNAs can not only target 80% of
HL-specific proteins, but also regulate approximately 60%
of interacting protein pairs in the HL-expanded network.
Hence 20 key miRNAs are playing an important role in
regulating HL-specific proteins and network.

Besides regulation of the interacting protein pairs, we fur-
ther analyze the regulatory pattern that three sequentially
interacting proteins are mediated by a miRNA (shown in
Fig. 8b). Compared with the first type of pattern, this
pattern can more efficiently strengthen the regulatory effect
of miRNA through combination of double protein-protein
interactions. In the case of HL-specific proteins, total 341
proteins are found to be mediated in this way by 550 miR-
NAs, and 20 key miRNAs are found to regulate up to 54%
of all HL-specific proteins.

The third type of regulation pattern is similar with the
second one and is also involved in mediating three
sequentially interacting proteins (shown in Fig. 8c). But
differing from the second pattern, the protein that inter-
acts with other two proteins is not a target of the miRNA,
but it may be indirectly regulated by this miRNA through
mediating two interacting proteins. It means that by
means of protein interactions, miRNA not only enhance
the regulatory effect, but also expand the regulatory scope.

Thus, when we only consider the directly regulation of
miRNAs, 45 miRNAs can regulate approximately 90% of
proteins in the HL-expand network. On the contrary,
when all three types of regulations are taken into
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account, only 5 miRNAs are able to regulate the same
number of proteins. Therefore, the 5 miRNAs are
thought to be the core miRNAs that they can regulate
almost all HL-related proteins in the HL-expanded net-
work. Moreover, the 5 core miRNAs also rank in the top
5 among 20 key miRNAs identified above.

Construct a simplified network consisting of core miRNAs

and key proteins

Based on the miRNA regulation on the protein network,
we identified 5 core miRNAs from 1628 miRNAs. To bet-
ter understand relation between miRNAs and HL-specific
proteins, we construct a simplified network only consist-
ing of 5 core miRNAs and 49 key proteins. Fig. 9 displays
this network where the edges represent two types of

information, miRNA-protein regulation and protein-pro-
tein interaction.

As the main backbone of the HL-expanded network,
the 49 key proteins are highly important for maintaining
structural integrity of network. Therefore, by targeting
the 49 key proteins, the 5 core miRNAs are nearly able
to regulate the entire HL-expanded network. In terms of
influence on the network, the 5 core miRNAs are thought
to be closely related with HL. Three out of five miRNAs,
miR-92a, miR-26b and let-7b, are specifically expressed in
Hodgkin lymphoma cell line [40] [41] and the remaining
two miRNAs, miR-335 and miR-16, have identified to be
breast cancer [42] and acute myelogenous leukemia
(AML) [43]. However, it is not entirely clear how these 5
core miRNAs are involved in HL pathology. Because the
function of miRNAs may be determined by regulating the
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function of their targeting proteins [44, 45], we explore
the role of 5 core miRNAs in HL based on the function of
key proteins. Additional file 1: Table S4 lists the proteins
regulated directly and indirectly by 5 core miRNAs and
their possible functions in HL derived from their the func-
tions of their targets. Among 49 key proteins, 24 proteins
are directly regulated by all 5 core miRNAs. The pathway
enrichment was performed using these 24 key proteins
and several pathways were found to be associated with
these proteins, including ErbB signaling pathway, Focal
adhesion, Viral carcinogenesis, Sphingolipid signaling
pathway, VEGF signaling pathway and Epstein-Barr virus
infection. It implies that the 5 core miRNAs may be asso-
ciatd with HL by regulating these pathways. According to
the enrichment results, virus infection especially Epstein-
Bar virus infection may contribute to the development of
HL, which has been discussed in details elsewhere [46]. In
addition, most of key proteins are enriched in four signal-
ing pathways associated with cancer development and
progression, suggesting that HL may not be related with a
single or unique pathway and the abnormalities of several
pathways may cause the occurrence and development of
HL.

Discussion

Currently, the application of high-throughput techniques
in HL generated a larger amount of data. Based on these
data, many HL-related proteins and miRNAs have also
been identified. But it remains thoroughly unclear how

these HL-related molecules participate in the pathology
of HL and how the HL-related miRNAs regulate the
HL-related proteins and their constituted PPI network.
These information may help to search for key proteins
and miRNAs that can be considered as biomarkers and
drug targets for HL. The purpose of this study is to
obtain important proteins and miRNAs and to reveal
their regulatory relationship under the scale of network.

In this study, we constructed a series of network
models. Initially, we built three different but related PPI
networks. By analyzing those three networks, we investi-
gate the connection characteristic of the HL-related pro-
teins and find that these proteins are prone to connect
with each other compared with other proteins. Subse-
quently, we obtained a PPI network closely associated
with HL and 49 key proteins. These key proteins play
imperative role in maintaining the integrity of the HL-
related PPI network. Hence these key proteins have a
higher probability to involve into initial and develop-
ment of HL. They can be further studied for being the
reliable biomarkers and drug targets for HL using the
experimental methods.

In addition, we also investigated the miRNA regulation
on HL-related PPI network and analyzed three kinds of
simple regulation patterns. Based on these regulations
on HL-related PPI network, we identified 5 core miR-
NAs that can mediate approximately 90% of proteins in
the HL-related PPI network. When the expression of
these 5 miRNAs is altered, the proteins in this network
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can be to some extent influenced by the regulation of
these miRNA, which may cause the occurrence of HL.
Therefore, these 5 miRNAs can be considered as the
potential biomarkers for the diagnosis of HL.

To better understand the relation between 49 key pro-
teins and 5 core miRNAs, we finally constructed a PPI
network combined with the regulation of miRNAs. This
network indicates that it is necessary for comprehensive
understanding the regulation of miRNAs on targets to
fully take into account of the related protein interac-
tions. Based on the analysis of this combined network,
we identified several protein pathways closely associated
with HL, including ErbB signaling pathway, Focal adhe-
sion, Viral carcinogenesis, Sphingolipid signaling path-
way, VEGF signaling pathway and Epstein-Barr virus
infection. These information will be helpful to elucidate
HL mechanisms and identify pharmaceutical targets.

Conclusion

In this study, we use a three-step strategy to construct a
HL-specific network that is as complete as possible. Firstly
we constructed a background protein-protein interaction
network based on the current PPI information. According
to the background network, we then build a HL-basic net-
work only consisting of the HL-associated proteins. Finally,
we obtained a complete HL-specific protein-protein net-
work. The HL-specific network consists of 541 proteins
and 5057 protein interactions. Moreover, the HL-specific
network is further divided into five sub-networks and 49
proteins are identified as the important nodes that make up
and connect these 5 sub-networks. Therefore, we consider
the 49 proteins as the key proteins of HL.

In addition, based on the experimentally validated infor-
mation about miRNA-target, we get the regulatory relation
between miRNAs and HL-specific network. Furthermore,
we investigate three simple regulatory patterns of miRNA
in the HL-specific network, The co-regulation of protein
pairs is the main regulatory pattern of miRNAs on the pro-
tein network in the HL-specific network.

Finally, we identified 5 core miRNAs and 49 key pro-
teins from the point of view of network. These mole-
cules can be thought as the potential biomarker in the
diagnosis of HL. Their mutual regulatory interactions
provide a foundation for further studying the mechanism
of HL and identifying the potential drug targets for
treatment of HL.

Methods

Collection of HL-related proteins and miRNAs

The proteins associated with HL were obtained by collect-
ing experimental data from published studies and searching
public databases. The experimental data mainly came from
two high-throughput proteomics-based studies that aimed
to identify proteins specifically expressed in HL-derived
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cells [24, 47]. A total of 120 proteins were identified to be
highly associated with HL. In order to obtain more HL-as-
sociated proteins, we further conducted a general database
search on two databases, ie., NCBI and Uniprot, using
“Hodgkin lymphoma and Homo sapiens” as query key-
words. Altogether, 92 proteins were retained after filtering
out duplicate entries. After gathering all proteins and
removing duplicate ones, we finally obtained 178 HL-asso-
ciated proteins for subsequent network analysis.

HL-associated miRNAs were also obtained from the
specific experimental data and related database. Based
on a miRNA microarray analysis, 77 miRNAs exclusively
expressed in Hdgkin and Reed Sternberg cells were ex-
tracted and considered to be relevant to HL. In addition,
a group of HL-associated miRNAs was obtained from
dbDEMC [48], a database of differentially expressed miRNA
in human cancers. Finally, a total of 121 miRNAs were in-
cluded for subsequent analysis.

Construction of PPl networks

In this study, we used a three-step strategy to construct a
comprehensive and reliable protein interactions network
related to HL from the collected HL-associated proteins.
Firstly, we built a background protein interactions net-
work that includes as many proteins as possible. The pro-
tein-protein interaction (PPI) data for the network was
mainly extracted from five primary PPI databases, DIP
[49], MINT [50], IntAct [51], BioGrid [52] and HPRD
[53]. Only the experimentally validated PPI, such as phys-
ical interactions (MI:0218), direct interactions (MI:0407)
and physical associations (MI:0915), are selected from
these databases. Additional file 1: Table S5 lists the re-
spective number of PPI data from five databases. All ex-
tracted PPI data were merged together and duplicate data
were deleted. A total of 146,295 PPI data involving 17,076
proteins were retained to construct the PPI background
network.

Next, we chose the PPI data involving HL-associated
proteins from the background network and built a small
network only consisting of the HL-associated proteins.
This small network can be considered as a HL-basic net-
work. Finally, based on the “guilt by association” principle
that two interacting proteins in a PPI network might also
share a function or involve the same disease [54, 55], we
took the HL-associated protein in the HL-basic network
as seed protein and select their all connected nodes in the
background network to construct a expanded PPI net-
work. This resulting network could be considered as a
comprehensive and reliable network specific to HL for
further analysis.

Identification of hub proteins
In this study, we applied the method proposed by Raval
et al. [29] to identify the hub proteins in PPI network.
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This method is just based on the topology of network.
Firstly, all nodes in the PPI network were ranked in de-
creasing order of degree. Subsequently, a succession of
subgraphs was generated by successively adding nodes
in descending order of degree. The relative connectivity
of each subgraph was calculated as the number of nodes
in the largest component of a subgraph divided by the
total number of nodes in this subgraph. Because the
interactions between hubs are suppressed in the network
[30], the connectivity of subgraphs consisting of hub
proteins is relatively small. With the addition of no-hub
proteins into the subgraph, its relative connectivity be-
comes gradually larger. Therefore, when the connectivity
of subgraphs begins to rise and eventually reaches the
connectivity of the entire network, the nodes included in
this subgraph could be considered as the hub proteins.

Generation of random networks

From the protein background network, we randomly
selected the nodes that had the same degree distribution
as the network of interest. Moreover, we also extracted
the interaction between the selected nodes. Ultimately,
based on these nodes and their interaction, the random
network was generated. Compared with the network of
interest, the random network does not have any bio-
logical meaning.

Calculation of Z-score

In order to quantitatively evaluate the connection extent
of the nodes with the nodes in two respective networks,
we calculate Z-score of node using the binomial propor-
tion test as follows:

where a is the links of node in a network, c represents
the total links in this network. Similarly, b equals the
links of this node in another network and d is the total
links in this network. If the Z-score of node is larger
than 0, it indicates this node is more highly connected
with the nodes in one network than another network
and vice versa.

Analysis of PPl network

The igraph package is used to calculate clustering coeffi-
cient of network, evaluate the small-worldness and per-
form modular analysis. GO and pathway enrichment
analysis are conducted using the package clusterProfiler.
All packages used in this study are run in R environment
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3.3.2. The visualization of network is performed using
Cytoscape Version 3.2.1.

Identification of miRNAs regulating HL-specific proteins
Two major databases, miRTarBase [56] and miRWalk
[57], are used to obtain miRNA-target interactions. Firstly,
we extracted all experimentally validated miRNA-target
interactions of Homo sapiens from two databases, respect-
ively. Subsequently, we only selected the interactions in-
volving the HL-specific proteins based on the gene name.
Finally, the intersection between two data sets is retained
for further analysis.

Additional file

Additional file 1: Table S1. Uniprot ID and protein name for 132 hub
proteins in Background network. Table S2:The enrichment results of five
sub-networks in the HL-expanded network. Table S3. Uniprot ID of 49
key proteins and their related information in the HL-extended

network Table S4. Proteins mediated directly and indirectly by five core
miRNAs and the possible functions of miRNA in HL. Table S5. Number of
PPI data extracted from five databases and the database version. Figure
S1. Degree distribution of PPl background network. (DOC 336 kb)
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