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Abstract

Background: Mutational signatures are specific patterns of somatic mutations introduced into the genome by
oncogenic processes. Several mutational signatures have been identified and quantified from multiple cancer studies,
and some of them have been linked to known oncogenic processes. Identification of the processes contributing to
mutations observed in a sample is potentially informative to understand the cancer etiology.

Results: We present here SigsPack, a Bioconductor package to estimate a sample’s exposure to mutational
processes described by a set of mutational signatures. The package also provides functions to estimate stability of
these exposures, using bootstrapping. The performance of exposure and exposure stability estimations have been
validated using synthetic and real data. Finally, the package provides tools to normalize the mutation frequencies with
respect to the tri-nucleotide contents of the regions probed in the experiment. The importance of this effect is
illustrated in an example.

Conclusion: SigsPack provides a complete set of tools for individual sample exposure estimation, and for
mutation catalogue & mutational signatures normalization.
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Background
Throughout their lives, cells are exposed tomany different
influences that can compromise the integrity of their DNA
by introducing changes to the genome [1]. These somatic
mutations are randomly introduced into the genome by
various biochemical processes. These processes have dif-
ferent affinities for local genomic sequences, so that they
leave their mark in the form of a specific mutation pattern
on the genome of the cancer cell [2]. These patterns are
termed (somatic) mutational signatures. Alexandrov et al.
[3] have extracted and characterized a first set of muta-
tional signatures and more signatures are being reported
continuously.
The catalogue of somatic mutations in cancer, short

COSMIC [4], hosts various sets of consensus signatures
that have been found during analysis of the aggregation
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of multiple datasets from distinct types of human cancer
[4, 5]. Some of these mutational signatures have been
linked to environmental factors, like tobacco smoking or
UV-light and the constituting DNA repair-mechanisms
[3, 6], others have been associated with intrinsic pro-
cesses such as defective DNA mismatch repair [7, 8]. The
detection of these signatures in a tumor sample can thus
yield helpful insights about the cancer’s aetiology [3] for
diagnosis, prevention [9] and therapy [10].
Different frameworks have been proposed to mathe-

matically decipher whether provided reference signatures
are present in sequencing data from a single patient
and how much they each contributed to its muta-
tional load [11, 12]. Following Alexandrov et al. [3],
the mutations are defined as the 6 single nucleotide
variants (C>A:G>T, C>G:G>C, C>T:G>A, T>A:A>T,
T>C:A>G & T>G:A>C) flanked by one nucleotide on
each side. The tri-nucleotide formed by the mutated
nucleotide and its two neighbours is called the context
of the mutation. Mathematically, the mutational profile
derived from sample data (mutational catalogue), can be
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expressed as vector m of K = 96 somatic mutation fre-
quencies that have been observed in the cancer sample.
Mutational signatures are described by a matrix P which
elements Pkn reflect the frequency with which the muta-
tional process corresponding to the nth signature causes
the kth mutational feature [3]. As the exposure of a muta-
tional profile to a signature represents the signature’s
contribution to the mutational load of the former, expo-
sures to a set of processes can be inferred from a muta-
tional catalogue by minimizing the difference between the
observed & reconstructed catalogues:

e = argmin
en∈R≥0

‖m − Pe‖2

The reconstructed catalogue Pe is the product between
the mutational profiles matrix P and the exposure vector
e, when individual exposures en are restricted to non-
negative values. This formalism assumes that different
processes have additive contributions to the mutational
load.
We describe SigsPack, a Bioconductor package to

estimate exposures to processes described by a known
mutational signature matrix, for example from COSMIC.
SigsPack also provides estimates of exposure stabil-
ity, using bootstrapping. Its performance is benchmarked
against synthetic & real data, using multiple tumor sam-
ples collected from the same patient. The effect of muta-
tion context frequency is discussed, as well as the stability
of individual COSMIC signatures and the loss of accuracy
suffered by small mutational catalogues.

Implementation
Package description
Weprovide R package SigsPack for easy computation of
exposures from mutational catalogues. The package pro-
vides several features, allowing to read the primary muta-
tion data, normalize the mutational catalogues if neces-
sary & compute the exposures with their bootstrapped
variation estimates.

Exposure estimation
The basic functions requried to compute exposure esti-
mates are listed below. The COSMIC signatures have been
included in the package (version 2 & 3, Single Nucleotide
Variants (SNV) only), and are used by default. However,
it is possible for the user to import her own signature
matrix, or use a sub-set of COSMIC signatures, instead of
the whole matrix.

• Extract a sample’s mutational catalogue from a file in
VCF format
The function vcf2mut_cat allows to extract a
mutational catalogue from a vcf file in a format so
that can be used with the package (and most other
packages from this field)

• Signature exposure estimation (or ’signature fitting’)
The signature exposure is calculated using quadratic
programming, in the same way as [13]. This can be
done on one or several samples at once using
function signature_exposure.

• Bootstrapping & variability estimation
Following [13], SigsPack provides a function
(bootstrap_mut_catalogues) to bootstrap a
sample to gain a better variability estimation of the
sample’s signature exposure (referred as
bootstrapping estimates). The operation is achieved
by creating multiple catalogues, each obtained by
re-sampling the original catalogue with replacement.
The number of re-sampled catalogues is under user
control, and by default is set to 1000. That value has
been used throughout the validation runs shown here.

Tri-nucleotide contexts & normalization
SigsPack provides several functions which allow the
user to put any mutational catalogue on a scale compat-
ible for their choice of signature matrix. These functions
can also be used to perform the inverse operation, i.e. to
re-scale one or more signatures to match the frequencies
on which the data have been collected. Normalization is
required to correct differences in tri-nucleotide context
frequencies of the catalogues and the signature matrix,
typically from exome and whole genome respectively.

• Extracting trinucleotide context frequencies from
genomes or exomes
get_context_freq computes the trinucleotide
distribution of exomes and/or genomes, which is
needed to normalize the data or signatures.

• Normalization
normalize can be called to normalize the data to
fit the signatures or vice versa. This requires the user
to provide the trinucleotide frequencies of the data’s
reference genome or exome (SigsPack’s function
get_context_freq can extract these frequencies
from an exome bed file or a BSgenome entity). The
same has to be provided for the signatures in case the
user chooses to provide their own signatures.

Other tasks
The package also provides convenience functions to visu-
alise the results, and to generate synthetic data that can be
used to analyse signatures stability.

• Plots
Given a mutational catalogue, the function
summarize_exposures bootstraps it and
provides a table and a plot illustrating the results of
the signature estimation for this sample and the
bootstrapped re-samples. The plot shows the
distribution of estimated signature exposure for all
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the re-samples, highlighting the one of the original
mutational catalogue, thus providing insights on the
reliability of the estimates.• Data simulator
The create_mut_catalogues function allows
to create mutational catalogues with exposure to
specified signatures by sampling mutations from a
distribution of those signatures’ weighted profiles.
The signatures can either be known consensus
signatures from COSMIC (whose signature profiles
are included in the package for convenience) or
signatures provided by the user. These can be
specified on any kind of features so that the
application is not limited to the 96 mutational
contexts but can also be used, for example, to
simulate profiles with strand bias.

Synthetic datasets
We used our package to construct two datasets consist-
ing of simulated mutational catalogues using the function
create_mut_catalogues. Samples in set1 are drawn from a
distribution formedwith equal contributions of signatures
7, 13, 21, 24 and 28 (so with each a weight of 0.2), like-
wise, the mutational catalogues of set2 have been samples
from a distribution of signatures 3, 5, 8, 16 and 25 each
having a weight of 0.2. The number of mutations in the
catalogues were set to 1000, except when assessing the cat-
alogue’s size effect on reconstructed exposures accuracy
(see Fig. 3).

Exome datasets
To quantify stability of exposure estimation with respect
to biological variability, we have taken 13 different tumor

samples from 3 colorectal cancer patients (4 for patients
69 & 99, and 5 for patient 80. For each patient, one sin-
gle blood sample was used as normal. For all samples, the
Agilent SureSelect XT Human All Exon V4 exome enrich-
ment kit was used. BWA-mem v0.7.12 [14] was used to
align each whole-exome sample against genome reference
GRCh37, separate read groups were assigned for all reads
from one lane, and duplicates were masked using Sam-
blaster v0.1.24 [15]. Single nucleotide variants were called
with MuTect [16] in the default configuration. The num-
ber of somatic SNVs identified in the samples ranged
between 481 and 756. Mutational catalogues were nor-
malized to the genome sequence content before comput-
ing exposures. For the quantification of the tri-nucleotide
frequencies effect, exomesmutational catalogues were left
un-normalized, and instead the COSMIC mutational sig-
nature matrix was re-scaled. A detailed description of
normalization operations is found in Additional file 1.

Results
Similarity between signatures
By construction, COSMIC signatures are non-orthogonal,
in the sense that all the 96 mutation contexts are found
in more than one signature. This non-orthogonality can
affect the stability of the exposures. Figure 1 illustrates
different aspects of the non-orthogonality between COS-
MIC signatures. Figure 1a displays the distance between
signatures expressed as pairwise cosine similarity. Non-
orthogonality effects can be assessed by computing the
error between each signature profile and its reconstruc-
tion using all the 29 other signatures. Figure 1b shows that
four signatures (5, 6, 19 and 26) have a cosine similarity

Fig. 1 Similarity between COSMIC signatures. a Pairwise cosine similarity of the 30 COSMIC signatures. Co-linear signatures have a similarity of 1, and
orthogonal signatures a similarity of 0. Signatures 5 & 16 have a similarity higher than 0.9. b Computed cosine similarity of each signature with the
profile that was constructed by trying to reconstruct each signature with the 29 others. The signatures are ordered by decreasing similarity to their
reconstructed profile
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higher than 0.95 with their reconstructed profile. Those
signatures might be labelled as unstable, as the informa-
tion contained in their profile is mostly contained in the
remaining 29 others.

Accuracy of exposure estimation
To investigate the possible effects of the non-
orthogonality between COSMIC signatures, we have
measured the accuracy of exposure reconstruction using
synthetic datasets (see the “Implementation” section).
Based on Fig. 1, we have selected 5 fairly distant signa-
tures (set1, signatures 7, 13, 21, 24 & 27), and 5 relatively
similar signatures (set2, signatures 3, 5, 8, 16 & 25), and
generated mutational catalogues from each of them.
Figure 2a shows that in certain cases, exposures can be
faithfully recapitulated, and that exposures are relatively
robust to small changes in the mutational catalogue.
Inferred exposures for signatures absent from set1 are
very small (Additional file 2): the 3rd quartile of the boot-
strapped values for those signatures is above 1% only for
signatures 1 & 17, and the bootrapped maximum values
above 10% for signatures 4, 16, 17 & 29. As signature
estimations cannot be negative by construction, the over-
all effect of estimation errors is to contribute to a small
underestimation of the contribution of 4 out of 5 present
signatures (7, 13, 21 & 27).
The reconstruction of exposures in mutational cata-

logues drawn from set2 (Fig. 2b & Additional file 2)
shows that any small amount of noise in the data
leads to dramatic changes in the exposure predictions.
Exposure to signature 5 is underestimated in more
than 75% of the re-sampled catalogues, and half re-

sampled catalogues underestimate signature 25 contri-
bution by almost 50%. Signature 26 (which is absent
from the generation protocol) is assigned a contri-
bution higher than 3.6% in 25% of the re-sampled
catalogues.

Required number ofmutations
In order to quantify how the precision of the inferred
exposures depends on the mutational load of a sam-
ple, simulated mutational catalogues based on set1 and
set2 have been created with different amounts of muta-
tions. Figure 3 displays the mean prediction error, i.e. the
mean difference between the predicted signatures expo-
sure and the actual one. In general, we observe that the
mean prediction error is higher on samples with only a
small mutational load, consistent with Rosenthal et al.
[12]. We also notice that the prediction error is lower
on set1, constructed with stable signatures, than it is on
set2, constructed with unstable signatures, even for high
mutational loads.

Bootstrapping can faithfully recover the biological variance
Next, we have investigated the stability of exposures infer-
ence in the presence of biological variability, using the
13 samples described in the “Implementation” section.
As the experimental protocol was identical for all sam-
ples, the differences between inferred inferences within
the same patient could then be attributed mostly to the
heterogeneities in the clonal compositions of each sample.
Figure 4 shows two examples of the agreement between
exposure reconstruction from different samples. In that
figure, the bootstrapping estimates have been computed

Fig. 2 Signature prediction on a simulated mutational catalogue. The catalogue is sampled from set1 signatures (7, 13, 21, 24 and 27), each
occurring with a probability of 20% (a), and from set2 (3, 5, 8, 16 and 25), with the same 20% occurring probability (b). In both case, the mutation
catalogue consists of 1000 mutations and was bootstrapped 1000 times. The signature contribution was predicted with quadratic programming, for
each re-sample the distribution is shown. The stars mark the prediction for the original profile
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Fig. 3 Comparison of the mean prediction error with regard to the amount of mutations in the profile. Simulated samples have been created from
set1 & set2 with different number of mutations. All have been bootstrapped 1000 times. The plot shows the mean prediction error, i.e. the mean for
all SSE between the original exposure matrix and the predicted one, as a function of the mutational catalogue size (shown on logarithmic scale)

from a single sample (the complete set of plots can be
found in Additional file 7).
If we postulate that boostrapping can provide estimates

to exposure variability, then the bootstrapping intervals
computed from the different samples should largely over-
lap, and the overlap should contain the original expo-
sures’ estimation values. To test this hypothesis, we have
computed, for each patient and each signature, the inter-
section of the exposure range obtained by bootstrapping

from all samples. We have then asked whether any expo-
sure estimated for individual samples fell outside of this
range. This happens only for signature 27 (patients 69
& 80) and 5 (patient 99). In two out of three cases, the
exposure estimation is higher than 0 (0.2% & 6%) for one
sample, while the range is limited to 0 for another sam-
ple. In the third case, (signature 27 in patient 80), the
exposure is estimated to be 2.49% in sample 2, while the
bootstrapping range computed from sample 3 is between

Fig. 4 Exposures estimations for multiple samples from the same patient. a Patient 99, variability intervals obtained by bootstrapping sample 4. b
Patient 69, variability intervals obtained by bootstrapping sample 4. In both cases, 1000 re-sampling realisations of each catalogue have been used
by bootstrapping
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0 and 2.43%. We conclude from these examples that in
most cases, the boostrapping variability estimates can
provide a proxy for the exposures’ variability due to clonal
heterogeneity of mutational catalogues.
Across all patients, the contribution from unstable sig-

natures vary considerably from one sample to the next,
and there is more than 10% difference between estimates
from the 4 samples for signatures 5, 9 & 16 for patient 69,
and for signatures 3 & 16 for patient 99 (the corresponding
signatures for patient 80 are 3, 5, 8 & 16). As for synthetic
data, bootstrapping provides large variation estimate for
those signatures: for signatures 5 & 16, the extreme values
reached by bootstrapping differ by more than 30% for 10
out of the 13 samples. These difference appear to be com-
pensating: across the 13 samples, the correlation between
signatures 3 & 16 exposures is −0.75, the most negative
correlation between all signature pairs. This observation
supports the hypothesis that the unstable mutations can
be explained almost equally well by their contributions.
The complete set of exposures is found in Additional file 4.
Signatures 6 & 10, often observed in colorectal cancers,
are not present at high levels in any of the 13 samples anal-
ysed here. However, these signatures are associated with
microsatellite instability (MSI) and mutations in POLE
and the DNA repair mechanism [17]. Neither MSI nor
POLE mutations were present in any of the 3 patients.

An example of the sequence composition effect
COSMIC signatures have been normalized to the trin-
ucleotide frequencies of the human reference genome
version GRCh37 [18]. The regions on which the muta-
tions catalogues have been observed directly affect the
exposures estimation (see Additional file 1 for details).
In particular, in presence of mutational catalogues gen-
erated from exome data, the scaling of the mutational
catalogue to the genome tri-nucelotide frequencies in not
equivalent to the scaling of mutational signatures to the
exome tri-nucleotide frequencies. Figure 5 illustrates the
sequence composition effect for the first sample of patient
69 (the full set of exposure estimations after both nor-
malization are found in Additional file 6). Although the
frequencies of enriched regions and of the whole genome
are reasonably similar (correlation coefficient above 0.72,
Additional file 5), there is a difference greater than 10% in
the inferred exposures of signature 16. While this might
be attributed to the unstability of signature 16, signature
1 also shows a difference of 9.4% in exposure estimation,
due to normalization. Over all samples and all patients,
signature 1 appears to be most sensitive to the scaling
choice: the estimation differs by more than 10% in 11 of
the 13 samples, even more often than unstable signatures
(signature 16 estimation is affected in 4 samples). As sig-
nature 1 is associated with endogenous C to T mutations,
its contribution is mainly affected by the tri-nucleotides

containing a central C. These are more frequent (rela-
tively) in the exome regions than in the whole genome
(Wilcoxon test P value 4.7 · 10−4). This simple example
shows that taking sequence composition into considera-
tion by normalisation of mutational catalogues is required
to ensure accurate exposure values.

Exposures from random catalogues
To gain understanding on possible causes of the unsta-
bility of estimation of some signatures, we have cre-
ated 1000 mutational catalogues of 1000 events each,
drawn with probability proportional to the underlying
tri-nucleotide frequencies in the human genome. Expo-
sures were computed from these mutational catalogues,
and the sum of estimated exposures over the 1000 sam-
ples is shown in Fig. 6. These "null" catalogues represent
the absence of mutational process signal, as the occur-
rence frequencies reflect the corresponding frequencies in
the genome. Estimated exposures from signatures 3 & 9
are higher than 50% and 25% respectively for more than
half of the catalogues. However, 5 or 16 are consistently
absent of the exposure estimation from most "null" cat-
alogues, unlike the unstability displayed in presence of
signal. In this respect, the lack of stability in the expo-
sure estimation cannot be solely attributed to the truly
random component of the mutational catalogue, which
frequency approximates the tri-nucleotides frequencies in
the genome.

Discussion
Using both synthetic data & multiple samples from the
same donors, we have shown that stability of exposure
estimates can be accurately represented by bootstrapping
mutational catalogues. It should be noted that reliable
exposure estimation can only be achieved for a rela-
tively large mutational catalogue. When the number of
available mutations falls below a few hundreds, the num-
ber of observations in each of the 96 mutation classes
is not sufficient to ensure a stable exposure reconstruc-
tion. SigsPack will warn the user when the mutational
catalogue size is below 125.
Even for larger mutational catalogues, some exposures

displayed considerable variability upon re-sampling of the
mutational catalogue. Inspection of relationships between
signatures suggest that similarity between signatures, and
the fact that some signatures can be approximated by
others, may cause unwanted sensitivity to mutational cat-
alogue details for some signatures’ exposures.
To overcome the problem of unstable signatures, it

may be possible to follow for example Letouzé and co-
workers [19] and use only a subset of signatures known
to be involved in a specific cancer entity. Careful selec-
tion of signatures would presumably reduce considerably
the redundancy shown in the COSMIC set, and decrease
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Fig. 5 Exposures estimations for different normalization of the same sample. a Normalization on the genome, where the observed mutation
frequencies were re-scaled. To perform the scaling, tri-nucleotide ratios where first obtained by dividing the tri-nucleotide frequencies observed in
exome regions by their corresponding values in the whole genome. The mutational catalogue was then scaled by the tri-nucleotide ratio and
converted to frequencies. b Normalization on the exome, where the COSMIC signatures were re-scaled. In this case, the COSMIC signatures were
scaled by the inverse of the tri-nucleotide ratios, and converted to frequencies again. Together, a) & b) show that the scaling direction (mutational
catalogue or signatures) lead to different exposures estimations. In both cases, 1000 realisations have been used by bootstrapping

the exposures variability. The signature selection might
also be guided by the particulars of the cohort under con-
sideration. Also, for some mutational processes, the anal-
ysis of the presence of specific di-nucleotide mutations
and/or indel in the patient’s somatic mutations might be
more informative than the quantification of the associ-
ated signatures [10]. Such signatures might possibly be

omitted, again leading to a decrease of exposures variabil-
ity.
We have shown that accurate exposures estimation

requires matching tri-nucleotide frequencies between
regions on which mutational catalogues and signature
matrix have been collected. When using the COSMIC
signature matrix provided with SigsPack, exome data

Fig. 6 Estimated exposures from 1000 randommutational catalogues. These catalogues have been randomly drawn according to the human
genome tri-nucleotide frequencies. Each catalogue has 1000 mutations
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must be put on “genomic scale” prior to exposures estima-
tion. Choice of reference tri-nucleotide frequencies and
normalization should be carefully selected when creating
newmutational signaturematrix from a large cohort. Even
though SigsPack doesn’t provide algorithms to gener-
ate such matrix, it allows for easy normalization of each
of its component. We suggest that scaling observations to
the whole genome’s tri-nucleotide frequencies should be
encouraged, as it renders the results independent of the
experimental particulars.
The analysis above has been carried out on the full

set of COSMIC version 2 signatures. However, as the
recently released version 3 contains more signatures, the
signatures will remain non-orthogonal, and there might
be cluster of signatures very similar to each other. These
features could presumably lead to the same stability prob-
lems for exposure estimation as with COSMIC version 2
signatures.

Conclusions
Many computational methods aimed at mutational signa-
tures discovery already exist [20]. TheSigsPack package
is aimed at estimating exposure to known mutational
signatures, rather than the process of uncovering new
ones. It relies on the Alexandrov additive mutational fre-
quency model, rather than a position weight matrix [21]
or a probablistic framework, such as EMu [22] or sigfit
[23]. It builds on existing methods ([11–13]), and pro-
vides support for vcf input, exome regions normalization,
exposure estimation and stability estimates for individual
signatures. It also provides facilities to plot and exam-
ine estimated exposures, and a data generation module to
benchmark user’s defined signature matrices.

Availability and requirements
• Project name SigsPack
• Project home page

https://github.com/bihealth/SigsPack
• Operating system(s) any OS running R [24] &

Bioconductor [25]
• Programming language R
• Other requirements Bioconductor
• License GPL-3
• Any restriction to use by non-academics None

Additional files

Additional file 1: Derivation of the tri-nucelotide frequency effect on
exposures. The effect of tri-nucleotide frequencies on the exposure
reconstruction is detailed. (PDF 95 kb)

Additional file 2: Exposure estimation for synthetic data example.
Exposure estimation from synthetic data. 1000 mutations have been
generated at random, using frequencies from set1 (signatures 7, 13, 21, 24
& 28), and set2 (signatures 3, 5, 8, 16, & 25). A perfect reconstruction would

have original exposure values very close to 0.2 for these 5 signatures, and 0
for all the others. The mutational catalogues was resampled 1000 times,
and for each signature, the minimum, first quartile, median, third quartile
and maximum values of exposures computed from the re-sampled data
are shown. (TSV 5 kb)

Additional file 3: Mutational catalogues of the 13 samples used to
estimate exposure stability in presence of biological noise. There are 4
samples for patient 69, 5 for patient 80 and 4 for patient 99. All catalogues
have been collected using the Agilent SureSelect XT Human All Exon V4
exome enrichment kit. (TSV 3 kb)

Additional file 4: Exposure estimation for 13 samples from 3 colon cancer
patients. Exposure estimation for 13 samples from 3 colon cancer patients
(4, 5 & 4 samples from patients 69, 80 & 99 resp.). The mutational
catalogues was resampled 1000 times, and for each signature, the
minimum, first quartile, median, third quartile and maximum values of
exposures computed from the re-sampled data are shown. (TSV 34 kb)

Additional file 5: Tri-nucleotide frequencies in the human genome &
exome kit. Counts of tri-nucleotides in the human genome GRCh37
(Genome) and in the regions covered by the Agilent SureSelect XT Human
All Exon V4 kit (Exome). The counts aggregate the tri-nucleotide sequence
shown in the Cotext column and its reverse complement. (TSV 1 kb)

Additional file 6: Tri-nucleotide frequency effect in 13 samples from 3
colon cancer patients. Exposure estimation for 13 samples from 3 colon
cancer patients (4, 5 & 4 samples from patients 69, 80 & 99 resp.), after
normalization of the mutational catalogue to the genome tri-nucleotides
frequencies (Genome) and after normalization of the mutation signatures
to the regions enriched by the Agilent SureSelect XT Human All Exon V4 kit
(Exome). (TSV 14 kb)

Additional file 7: Plots of exposure estimation for 13 samples from 3
colon cancer patients. Plots of exposures presented in Additional file 4. For
each patient, the exposure variability estimation obtained from
bootstrapping are plotted for all samples. (PDF 43 kb)

Abbreviations
COSMIC: Catalogue of somatic mutations in cancer [4]; MSI: Micro-satellite
instability; SNV: Single Nucleotide Variant
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