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Abstract

Background: Protein-protein interaction plays a key role in a multitude of biological processes, such as signal
transduction, de novo drug design, immune responses, and enzymatic activities. Gaining insights of various binding
abilities can deepen our understanding of the interaction. It is of great interest to understand how proteins in a
complex interact with each other. Many efficient methods have been developed for identifying protein-protein
interface.

Results: In this paper, we obtain the local information on protein-protein interface, through multi-scale local average
block and hexagon structure construction. Given a pair of proteins, we use a trained support vector regression (SVR)
model to select best configurations. On Benchmark v4.0, our method achieves average Irmsd value of 3.28Å and overall
Fnat value of 63%, which improves upon Irmsd of 3.89Å and Fnat of 49% for ZRANK, and Irmsd of 3.99Å and Fnat of 46%
for ClusPro. On CAPRI targets, our method achieves average Irmsd value of 3.45Å and overall Fnat value of 46%, which
improves upon Irmsd of 4.18Å and Fnat of 40% for ZRANK, and Irmsd of 5.12Å and Fnat of 32% for ClusPro. The success
rates by our method, FRODOCK 2.0, InterEvDock and SnapDock on Benchmark v4.0 are 41.5%, 29.0%, 29.4% and
37.0%, respectively.

Conclusion: Experiments show that our method performs better than some state-of-the-art methods, based on the
prediction quality improved in terms of CAPRI evaluation criteria. All these results demonstrate that our method is a
valuable technological tool for identifying protein-protein interface.
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Background
In biological processes, many proteins carry out the
special biological functions through protein-protein inter-
actions, such as drug design and functional analysis.
Gaining insights of various binding abilities can deepen
our understanding on protein-protein interface. Deter-
mination of binding sites is widely applied in molecular
biology research. It is of great interest to understand how
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proteins bind with each other, which helps us understand
energetics and mechanisms of complexes. How to build
more effective models based on sequence information,
structure information and physicochemical characteris-
tics, is the key technology for identifying protein-protein
interface. There are many efficient techniques for the
protein-protein interface prediction [1–11].

Some approaches use machine learning methods and
statistical methods to analyze the differences between
interface residues and non-interface residues on the sur-
faces [12–15]. ProMate [16] creates the circle around each
surface residue, which can be used to extract the statis-
tical histogram of many features. Then, it estimates the
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probability of each circle to be on the interface, and some
circles with high probability values are clustered to iden-
tify binding residues. PPI-Pred [17] generates an interact-
ing patch and a non-interacting patch for each training
protein, and extract several features from these patches to
build an SVM model for predicting the interacting patch
in each testing protein. PINUP [18] proposes an empir-
ical scoring function, including interface propensity and
residue conservation score. It calculates the occurrence of
each top scoring spot, therefore predicts residues on inter-
face spots. Meta-servers combine the strengths of some
existing approaches: meta-PPISP [19] combines three pre-
diction servers; metaPPI [20] combines five identification
methods. ProBiS [21, 22] predicts protein-protein inter-
face by local structure alignment. It compares the infor-
mation of a testing protein to some binding sites in the
known database, for detecting similar structural residues.

Another kind of methods check the possible poses of
two subunits; that is, how these subunits may dock. Dock-
ing methods based on fast Fourier transformation (FFT)
[23], geometric surface matching [24], as well as inter-
molecular energy [25] have been proposed. The general
approach is to explore all possible poses, and use one
energy function to identify near-native poses. The prob-
lem of exploring all possible poses has been well-solved by
some methods [26–28]. The key issue here is to design an
energy function based on various properties and features
that can identify near-native poses, such as hydrophobic
and conserved polar at specific locations [29], hydrogen
bonds and salt bridges [30], secondary structure com-
position [31], relative surface area burial and weighted
hydrophobicity [32], force field energy evaluation [33–35].
FRODOCK 2.0 [36] presents an user-friendly protein-
protein docking server based on an improved version
including a complementary knowledge-based potential.
InterEvDock [37] is a server for protein docking based
on a free rigid-body docking strategy, intergrating co-
evolutionary information. SnapDock [38] is a highly effi-
cient template-based protein-protein docking algorithm,
utilizing the interface PIFACE library. CIPS [39] proposes
a new pair potential combining interface composition
with residue-residue contact preference, screening dock-
ing solutions obtained either with all-atom or with coarse-
grain rigid docking. ZRANK [40, 41] combines an atom-
based potential (IFACE) with five residue-based potentials
for ranking solutions. It provides fast and accurate re-
scoring models from ZDOCK. ClusPro [42] develops a
fast algorithm for filtering docked conformations with
good surface complementarity and ranking them based
on their clustering properties. RosettaDock [43] con-
structs the energy function by using van der Waals ener-
gies, orientation-dependent hydrogen bonding, implicit
Gaussian solvation, side-chain rotamer probabilities and
a low-weighted electrostatics energy. HADDOCK [44]

makes use of the biochemical and biophysical interaction
data, such as chemical shift perturbation data resulting
from NMR titration experiments.

In this paper, we calculate the local information on the
protein-protein interface, through multi-scale local aver-
age block and hexagon structure construction. Given a
pair of input proteins, we use the trained support vec-
tor regression (SVR) model to select best protein-protein
docking poses. Experiments show that our method
achieves better results than some state-of-the-art meth-
ods. Here, we use the CAPRI evaluation criteria [45], Irmsd
value and Fnat value. On Benchmark v4.0 [46], our method
has average Irmsd value of 3.28Å and overall Fnat value of
63%. On the CAPRI targets, our method has average Irmsd
value of 3.45Å and overall Fnat value of 46%. The suc-
cess rates by our method on Benchmark v4.0 are 41.5%.
Comparing to the existing methods, our method is a
valuable technological tool for identifying protein-protein
interface.

Methods
We find the relative orientation and position between two
subunits, and each relative orientation and position com-
bination is referred to as a configuration or pose. Given
a configuration, we can determine the interface region
between two subunits and fix the orientation as well as
position of the regions far from the interface.

Here, we utilize our previous enumeration method [47]
to identify the docking configurations of two subunits.
It performs a large number of rigid transformations to
enumerate the poses. Then, we design a novel energy
function and build a trained SVR model to evaluate dock-
ing poses and select the top-ranking poses with lowest
energy values. The flowchart is shown in Fig. 1.

In this paper, our main work is to obtain the local infor-
mation on protein-protein interface for energy evaluation.
First, each pair of proteins can be encoded with physic-
ochemical property and position specific scoring matrix.
Then, we establish two novel models, multi-scale local
average block and hexagon structure construction, for
representing local sequence and structural information on
protein-protein interfaces. Finally, our proposed proper-
ties can be effectively applied to identify docking poses, as
well as existing energy items.

Physicochemical property
We can use six physicochemical properties [48, 49] to
extract protein features, since one protein can be repre-
sented by a vector of physicochemical property. These
physicochemical properties are analyzed as hydrophobic-
ity (H), volumes of side chains of amino acids (VSC),
polarity (P1), polarizability (P2), solvent-accessible surface
area (SASA) and net charge index of side chains (NCISC)
of amino acid, respectively. The physicochemical property
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Fig. 1 The flowchart of our method for identifying protein-protein interface

values of 20 amino acid types are shown in Table 1.
They can be normalized to zero mean and unit standard
deviation (SD) as follows:

P
′
i,j = Pi,j − Pj

Sj
; i = 1, 2, ..., 20; j = 1, 2, ..., 6 (1)

where Pi,j is the value of physicochemical property j for
amino acid type i, Pj is the mean over 20 amino acid types

of physicochemical property j, and Sj is the corresponding
standard deviation of physicochemical property j.

Position specific scoring matrix
The protein evolutionary information can be described
by Position Specific Scoring Matrix (PSSM), generated by
PSI-BLAST [50]. Given a protein, the PSSM information
is stored in the L×20 matrix (protein length: L; amino acid
types: 20), calculated as follows:
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Table 1 Original values of six physicochemical properties for 20
types of amino acids

Amino Acid H VSC P1 P2 SASA NCISC

A 0.62 27.5 8.1 0.046 1.181 0.007187

C 0.29 44.6 5.5 0.128 1.461 -0.03661

D -0.9 40 13 0.105 1.587 -0.02382

E -0.74 62 12.3 0.151 1.862 0.006802

F 1.19 115.5 5.2 0.29 2.228 0.037552

G 0.48 0 9 0 0.881 0.179052

H -0.4 79 10.4 0.23 2.025 -0.01069

I 1.38 93.5 5.2 0.186 1.81 0.021631

K -1.5 100 11.3 0.219 2.258 0.017708

L 1.06 93.5 4.9 0.186 1.931 0.051672

M 0.64 94.1 5.7 0.221 2.034 0.002683

N -0.78 58.7 11.6 0.134 1.655 0.005392

P 0.12 41.9 8 0.131 1.468 0.239531

Q -0.85 80.7 10.5 0.18 1.932 0.049211

R -2.53 105 10.5 0.291 2.56 0.043587

S -0.18 29.3 9.2 0.062 1.298 0.004627

T -0.05 51.3 8.6 0.108 1.525 0.003352

V 1.08 71.5 5.9 0.14 1.645 0.057004

W 0.81 145.5 5.4 0.409 2.663 0.037977

Y 0.26 117.3 6.2 0.298 2.368 0.023599

PSSM(i, j)=
20∑

k=1
ω(i, k)×D(k, j); i=1, ..., L; j=1, ..., 20

(2)

where ω(i, k) is the frequency of amino acid type k at
the position i, and D(k, j) is the value of Dayhoff ’s muta-
tion matrix (substitution matrix) [51] between amino acid
types of k and j.

These PSSM elements can be normalized in a range of
[ 0, 1] using the min-max normalization as follows:

PSSM
′
(i, j) = PSSM(i, j) − PSSMmin

PSSMmax − PSSMmin
;

i = 1, ..., L; j = 1, ..., 20
(3)

where PSSMmax and PSSMmin represent the maximal and
minimal elements of PSSM.

Multi-scale local average block
We utilize Multi-scale Local Average Block (MLAB)
algorithm to extract the conserved information of local
regions. The original Average Block (AB) algorithm was
proposed by Jeong et al. [52]. Different from the orig-
inal AB algorithm, we use multi-scale size to split the

matrix horizontally. The MLAB features can describe the
local relationship between target residue and neighboring
residues. Given a residue R, we denote R−1, R−2, ..., R−5

be the five residues before R in the sequence, and
R+1, R+2, ..., R+5 be the five residues after R in the
sequence. Then, R±1, R±2, ..., R±5 are referred to as the ten
sequential neighbors.

We split the information of target residue into six local
sequential regions with varying composition, via global
zone (A), bisection (B and C) and trichotomy (D, E and
F). These local regions can describe multiple overlap-
ping continuous and discontinuous interaction patterns,
shown in Fig. 2. We calculate the mean of each local block
as follows:

L(k, j) = 1
BL

k

BL
k∑

i=1
ML

k (i, j); k = 1, ..., 6; j = 1, ..., 20

(4)

where L(k, j) is the mean of k-th block in the column j, BL
k

is the total number of rows in block k, and ML
k (i, j) is the

value of cell in i-th row and j-th column of block k.

Hexagon structure construction
We build the hexagon structure for each target residue to
describe its neighborhood information, as demonstrated
in Fig. 3. We assume that Cα is the origin, Cβ is along
the positive direction of y-axis, and N is on the x-y plane
where x is positive. The 3D space is partitioned along y-
axis into six equal subspaces by three planes, and the angle
between any two planes is 60◦. Given a residue R, we locate
nearest non-local Cα to Cα of residue R within a certain
distance in each subspace. Here, we say a residue is non-
local to residue R if and only if it is separated by at least
three residues from residue R in sequence. We call these
six residues as spatial neighbors of residue R, denoted as
H1

R, H2
R, ..., H6

R.
We split the hexagon structure of target residue into six

local spatial regions with varying composition, via global
zone (A), bisection (B and C) and trichotomy (D, E and F).
We calculate the mean of each local space as follows:

H(k, j) = 1
BH

k

BH
k∑

i=1
MH

k (i, j); k = 1, ..., 6; j = 1, ..., 20

(5)

where H(k, j) is the mean of k-th space in the column j, BH
k

is the total number of rows in space k, and MH
k (i, j) is the

value of cell in i-th row and j-th column of space k.
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Fig. 2 Schematic diagram of Multi-scale Local Average Blocks feature extraction

Fig. 3 Schematic diagram of Hexagon Structure Construction feature extraction
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Extracting interface residues
The above proposed features can be effectively applied
to extract protein-protein interface residues and identify
docking poses, as well as existing energy items. The energy
items are listed as follows:

• amino acid contact energy – amino acid probabilities
of interface residues [53].

• secondary structure contact energy – secondary
structure probabilities of interface residues [53].

• structural neighborhood energy – probability of
structural neighboring property on interface [54].

• dihedral angle energy – statistical analysis of dihedral
angle correlation on interface [55].

• π-π interaction energy – geometrical property on
π-π interaction [55].

• multi-scale local average block on protein 1D
sequence.

• hexagon structure construction on protein 3D
structure.

We use a trained support vector regression (SVR) model
to rank docking poses, and then report the top-ranking
poses with lowest energy values [56–58]. For the training
set, we use Irmsd (rmsd value between predicted interfaces
and native complexes) as the response values for all con-
figurations of each pair of proteins, and the above energy
items can be regarded as seven groups of features for
each pose. Some configurations with the lowest predicted
response values can be reported as the final result on the
testing set. For a given pair of proteins, we use the trained
SVR model to select top 10 predictions with lowest energy
values.

Results
In this section, we compare our method to many existing
methods for identifying protein-protein interfaces. Exper-
iments show that our method performs better than some
state-of-the-art methods on Benchmark v4.0 and the
CAPRI targets, based on the prediction quality improved
in terms of CAPRI evaluation criteria.

Evaluation criteria
A complex may contain several subunits and multiple
binding interfaces. Each binding interface in a complex
occurs in a pair of subunits. Two residues between a pair
of subunits are called interface residues, if any two atoms,
one from each residue, interact. By interacting, the dis-
tance between two atoms from a pair of different residues
is less than 6Å.

According to CAPRI evaluation criteria [45], three eval-
uation measures are commonly used in protein-protein
interface prediction. A pair of residues on different sides

of interface is considered to be in contact if any of their
atoms are within 6Å. One is the fraction of native contacts
Fnat , defined as the number of correct residue-residue
contacts in the predicted configuration divided by the
number of contacts in the native complex. The other
is the fraction of non-native contacts Fnon−nat , defined
as the number of incorrect residues-residue contacts in
the predicted configuration divided by the total number
of contacts in that predicted pose. The third is root-
mean-square deviation of interface Irmsd, defined as rmsd
value between all backbone atoms of interfaces in pre-
dicted pose and in native complex, after two interfaces are
superimposed.

The CAPRI evaluation use different cutoffs on these
three measures to assign predicted poses into four quality
classes: Incorrect (Fnat < 10% or Irmsd > 4.0Å), Accept-
able (10% <= Fnat < 30% and 2.0Å< Irmsd <= 4.0Å),
Medium (30% <= Fnat < 50% and 1.0Å< Irmsd <=
2.0Å), or High (Fnat >= 50% and Irmsd <= 1.0Å).

Statistical analysis
We analyze different regression models and evaluate the
performance of energy items on CAPRI [45]. CAPRI is
a community-wide experiment to assess the capacity of
docking methods.

Assessment of regression model
To assess the effectiveness of regression model, we analyze
the performance of Support Vector Regression [59] and
Linear Regression [60] with same energy items on CAPRI,
and the results are shown in Fig. 4. The average Irmsd
value for cases by Support Vector Regression is 3.45Å.
The average Irmsd value for cases by Linear Regression
is 3.57Å. It confirms our hypothesis that Support Vec-
tor Regression can accurately identify the protein-protein
interface.

Assessment of energy items
To assess the effectiveness of energy items, we analyze
the performance of different cases on CAPRI. We re-
evaluate configurations selected by different energy items,
and the results are shown in Fig. 5. The average Irmsd value
for cases with sequence contact energy (amino acid con-
tact energy, secondary structure contact energy) is 3.63Å.
The average Irmsd value for cases with structural inter-
action energy (structural neighborhood energy, dihedral
angle energy, π-π interaction energy) is 3.57Å. The aver-
age Irmsd value for cases with multi-scale local energy
(multi-scale local average block on protein 1D sequence,
hexagon structure construction on protein 3D structure)
is 3.51Å. Average Irmsd values for these cases are less than
that for cases with all energy items (3.45Å). It confirms
our hypothesis that the multi-scale local representations
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Fig. 4 Performance of different regression models on CAPRI

on sequence and structural information are the important
factors to consider in the protein-protein interface
prediction.

Docking validation
We evaluate the performance of our method on the
protein-protein complexes in Benchmark 4.0 [46]. All tar-
gets in Benchmark 4.0 are classified into three categories:
rigid-body (easy) cases, medium difficult cases and diffi-
cult cases, according to the magnitude of conformational
change after binding. Our method is compared to Snap-
Dock [38], InterEvDock [37] and FRODOCK 2.0 [36]. The
success rate reports the percentage of cases for which at
least one out of top 10 predictions is an acceptable or bet-
ter solution on CAPRI criteria. The protein-protein dock-
ing results of different methods are shown in Table 2. The
success rates by our method, FRODOCK 2.0, InterEvDock

and SnapDock on Benchmark v4.0 are 41.5%, 29.0%, 29.4%
and 37.0%, respectively. Our method improves the success
rate at least by 4.5%.

Protein-protein interface prediction
In this study, we compare our predicted interfaces with
ZRANK [40, 41] and FiberDock(external tool) [28], and
also with ClusPro [42]. We consider 79 complexes from
Dockground [61] as the training set. In order to avoid
over-fitting, we exclude complexes sharing more than 30%
identity with cases in testing set. The average Irmsd value
is 1.49Å, and the overall Fnat and Fnon−nat values are 85%
and 16%.

Evaluation on benchmark v4.0
On Benchmark v4.0, our method achieves average Irmsd
value of 3.28Å and overall Fnat value of 63%, which

Fig. 5 Performance of different energy items on CAPRI
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Table 2 The prediction results by our method, FRODOCK 2.0,
InterEvDock and SnapDock on Benchmark v4.0

success rate

FRODOCK 2.0 29.0% (51/176)

InterEvDock 29.4% (25/85)

SnapDock 37.0% (57/154)

Our Method 41.5% (73/176)

improves upon Irmsd of 3.89Å and Fnat of 49% for ZRANK,
and Irmsd of 3.99Å and Fnat of 46% for ClusPro. Results
are shown in Table 3. The complexes are classified into
three categories, according to the magnitude of confor-
mational change after binding. In rigid-body group, our
method achieves average Irmsd value of 2.86Å and overall
Fnat value of 69%, which improves upon Irmsd of 3.31Å and
Fnat of 56% for ZRANK, and Irmsd of 3.33Å and Fnat of
55% for ClusPro. In medium difficulty group, our method
achieves average Irmsd value of 3.35Å and overall Fnat value
of 59%, which improves upon Irmsd of 4.46Å and Fnat of
39% for ZRANK, and Irmsd of 4.71Å and Fnat of 30% for
ClusPro. In difficulty group, our method achieves average
Irmsd value of 5.39Å and overall Fnat value of 36%, which
improves upon Irmsd of 6.18Å and Fnat of 28% for ZRANK,
and Irmsd of 6.53Å and Fnat of 21% for ClusPro.

Evaluation on Capri
We evaluate protein-protein interface prediction by our
method, ZRANK and ClusPro on CAPRI. On 35 CAPRI
targets, our method achieves average Irmsd value of 3.45Å
and overall Fnat value of 46%, which improves upon Irmsd
of 4.18Å and Fnat of 40% for ZRANK, and Irmsd of 5.12Å
and Fnat of 32% for ClusPro. Our method predicts 9 incor-
rect, 12 acceptable, 12 medium, 2 high quality results.
ZRANK+FiberDock predicts 14 incorrect, 7 acceptable,
7 medium, 7 high quality results. ClusPro predicts 13
incorrect, 11 acceptable, 8 medium, 3 high quality results.

Binding sites identification
Some existing methods use machine learning and statisti-
cal approaches to predict binding sites. Each comparison

with an existing method is performed using the test data
by the compared method in the literature.

Comparison to metaPPI, meta-PPISP and pPI-Pred
In this experiment, the test data in metaPPI [20] is used to
predict binding sites. The data consists of 41 complexes,
divided into two categories: enzyme-inhibitor (EI) and
others. The overall Fnat and Fnon−nat values for each pre-
diction method are shown in Table 4. The overall Fnat val-
ues for our method, metaPPI, meta-PPISP and PPI-Pred
achieve 62%, 28%, 38% and 38%, respectively. The over-
all Fnon−nat values for these four methods achieve 34%,
51%, 54% and 64%, respectively. Our method improves
the overall Fnat value by at least 24%. The average sizes
of predicted interface residues for our method, metaPPI,
meta-PPISP and PPI-Pred are 22.1, 13.2, 18.2 and 27.8,
while the average size of actual interface residues is 22.7.
The number of residues predicted correctly for these four
methods are 12.9, 5.5, 7.5 and 8.2.

Comparison to proMate and pINUP
Our method is compared to ProMate and PINUP. The
test data is originally used by ProMate [16], including
57 unbound proteins and their complexes. The results
are reported in Table 5. The overall Fnat values for our
method, PINUP and ProMate achieve 60%, 42% and 13%,
respectively. The overall Fnon−nat values for these three
methods achieve 45%, 55% and 47%, respectively. Our
method improves the overall Fnat value by at least 19%.
The average sizes of predicted interface residues for our
method, PINUP and ProMate are 25.6, 19.0 and 5.4, while
the average size of actual interface residues is 22.6. The
number of residues predicted correctly for these three
methods are 12.6, 8.3 and 2.7.

Case study
We evaluate interface prediction of our method on two
different cases.

Interface prediction on sK/RR interaction
We study HisKA domain of sensor histidine kinase
(PF00512) and its partner response regulator domain
(PF00072) in Pfam database [62]. Interface identification

Table 3 The prediction results by our method, ZRANK+FiberDock and ClusPro on Benchmark v4.0

Subseta No. of cases
Our Method ZRANK+FiberDock ClusPro

Irmsd Fnat Fnon−nat Irmsd Fnat Fnon−nat Irmsd Fnat Fnon−nat

Rigid 123 2.86 69% 35% 3.31 56% 49% 3.33 55% 51%

Medium 29 3.35 59% 39% 4.46 39% 59% 4.71 30% 69%

Difficult 24 5.39 36% 58% 6.18 28% 67% 6.53 21% 77%

Overall 176 3.28 63% 39% 3.89 49% 53% 3.99 46% 58%

aSubset is based on the magnitude of conformational change after binding
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Table 4 Comparison to metaPPI, meta-PPISP and PPI-Pred

Type
Our Method metaPPI meta-PPISP PPI-Pred

Fnat Fnon−nat Fnat Fnon−nat Fnat Fnon−nat Fnat Fnon−nat

E-Ia 65% 23% 37% 39% 55% 44% 47% 54%

others 59% 42% 22% 59% 26% 61% 31% 71%

Overall 62% 34% 28% 51% 38% 54% 38% 64%

aE-I is the type of enzyme-inhibitor

can be tested by using structural representatives of HisKA
domain of SK (HK853; PDB ID code 2C2A chain A) and
of RR domain (Spo0F; PDB ID code 1PEY chain A), as well
as co-crystal structure of Spo0F in complex with Spo0B
(PDB ID code 1F51 chain A:E). We analyze 25 interacting
residues, involving 13 SK positions and 12 RR positions.
For HK853, predicted interface residues being part of
interface are 267, 268, 271, 272, 275, 276, 291, 294 and
298, as indicated by red boxes in Fig. 6. Predicted inter-
face residues of SK belonging to non-interface are 245,
249, 253 and 256. For Spo0F, predicted interface residues
being part of interface are 14, 15, 18, 19, 21 and 22, as indi-
cated by red boxes in Fig. 6. Predicted interface residues
of RR belonging to non-interface are 56, 57, 86, 87, 90
and 91.

Interface prediction on spirulina platensis
We study spirulina platensis α-subunit (PDB ID code
1GH0 chain A) and β-subunit (PDB ID code 1GH0
chain B). We analyze 30 interacting residues, involving
15 α-subunit positions and 15 β-subunit positions. For
α-subunit, predicted interface residues being part of inter-
face are 5, 6, 9, 10, 24, 27, 31, 38 and 42, as indicated by red
boxes in Fig. 7. Predicted interface residues of α-subunit
belonging to non-interface are 78, 79, 82, 83, 117 and 118.
For β-subunit, predicted interface residues being part of
interface are 5, 6, 9, 10, 24, 27, 31, 38 and 42, as indicated
by red boxes in Fig. 7. Predicted interface residues of β-
subunit belonging to non-interface are 78, 79, 82, 83, 117
and 118.

Discussion
Lots of protein-protein identification approaches are
based on analyzing some different features, such as
sequence and structural properties, as well as other
physicochemical properties. Most of the features only
describe the property of current interacting residues, but

Table 5 Comparison to PINUP and ProMate

Our Method PINUP ProMate

Fnat Fnon−nat Fnat Fnon−nat Fnat Fnon−nat

Overall 60% 45% 42% 55% 13% 47%

cannot represent real situation well, thus are insufficient
to predict interface residues with high accuracy. Although
many computational methods have been used to pre-
dict protein-protein interfaces, the effectiveness and
robustness of previous prediction models can still be
improved. Main improvements of our proposed method
come from adopting the effective feature extraction
models that can capture useful protein information.
All results demonstrate that our method is a valu-
able technological tool for identifying protein-protein
interface.

Conclusions
We identify two new features: multi-scale local average
block and hexagon structure construction. Given a pair
of proteins, we use the trained SVR model to select best
poses. From experimental results, the prediction abil-
ity of our method is better than that of other existing
state-of-the-art approaches. It demonstrates that our pro-
posed method is a very promising and useful support
tool for future proteomics research. In the future work,

Fig. 6 Our method detects the binding residues on SK/RR interaction.
Interface residues are described in red boxes and non-interface
residues are described in black boxes
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Fig. 7 Our method detects the binding residues on spirulina
platensis. Interface residues are described in red boxes and
non-interface residues are described in black boxes

we will extend our method to predict important special
complexes.
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