
Fang et al. BMC Bioinformatics (2019) 20:488
https://doi.org/s12859-019-3049-1

RESEARCH ARTICLE Open Access

AIKYATAN: mapping distal regulatory
elements using convolutional learning on
GPU
Chih-Hao Fang1, Nawanol Theera-Ampornpunt2, Michael A. Roth3, Ananth Grama1 and Somali Chaterji4*

Abstract

Background: The epigenomics data deluge can leverage sophisticated ML techniques for functionally annotating
the regulatory non-coding genome. The challenge lies in selecting the appropriate classifier for the specific functional
annotation problem, within the bounds of the hardware constraints and the model’s complexity. In our system
AIKYATAN, we annotate distal epigenomic regulatory sites, e.g., enhancers. Specifically, we develop a binary classifier
that classifies genome sequences as distal regulatory regions or not, given their histone modifications’ combinatorial
signatures. This problem is challenging because the regulatory regions are distal to the genes, with diverse signatures
across classes (e.g., enhancers and insulators) and even within each class (e.g., different enhancer sub-classes).

Results: We develop a suite of ML models, under the banner AIKYATAN, including SVM models, random forest
variants, and deep learning architectures, for distal regulatory element (DRE) detection. We demonstrate, with strong
empirical evidence, deep learning approaches have a computational advantage. Plus, convolutional neural networks
(CNN) provide the best-in-class accuracy, superior to the vanilla variant. With the human embryonic cell line H1, CNN
achieves an accuracy of 97.9% and an order of magnitude lower runtime than the kernel SVM. Running on a GPU, the
training time is sped up 21x and 30x (over CPU) for DNN and CNN, respectively. Finally, our CNN model enjoys
superior prediction performance vis-‘a-vis the competition. Specifically, AIKYATAN-CNN achieved 40% higher validation
rate versus CSIANN and the same accuracy as RFECS.

Conclusions: Our exhaustive experiments using an array of ML tools validate the need for a model that is not only
expressive but can scale with increasing data volumes and diversity. In addition, a subset of these datasets have
image-like properties and benefit from spatial pooling of features. Our AIKYATAN suite leverages diverse epigenomic
datasets that can then be modeled using CNNs with optimized activation and pooling functions. The goal is to
capture the salient features of the integrated epigenomic datasets for deciphering the distal (non-coding) regulatory
elements, which have been found to be associated with functional variants. Our source code will be made publicly
available at: https://bitbucket.org/cellsandmachines/aikyatan.

Keywords: Support vector machines (SVM), Random forest (RF), Deep neural networks (DNN), ConvNets (CNN),
Image processing algorithms, Distal regulatory elements, Enhancers, Silencers, Epigenomics, ROC curves, Graphics
processing units (GPU), Hyperparameter tuning, NIH roadmap epigenomics

*Correspondence: schaterji@schaterji.io
1Department of Ag. and Biological Engineering, Purdue University, West
Lafayette, IN, USA
Full list of author information is available at the end of the article

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=s12859-019-3049-1&domain=pdf
http://orcid.org/0000-0002-3651-6362
https://bitbucket.org/cellsandmachines/aikyatan.
mailto: schaterji@schaterji.io
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Fang et al. BMC Bioinformatics (2019) 20:488 Page 2 of 17

Background
Eukaryotic chromosomes comprise of mosaics of acces-
sible (euchromatin) and inaccessible (heterochromatin)
domains whose regulation is controlled by regulatory
elements such as promoters, enhancers, and silencers.
Further, it is estimated that the human genome contains
approximately 20,000 to 25,000 genes representing only
2% of the genomic sequence, while 98% of the genome
is non-coding. The non-coding genome includes main-
tenance elements (e.g., centromeres and telomeres) and
origins of replication that control DNA repair and repli-
cation processes; regulatory elements such as promot-
ers, enhancers, silencers, insulators; and regulatory RNAs
(micro-RNAs), which regulate the spatial, temporal, and
cell-type specific expression of genes. Thus, transcrip-
tional regulation of genes is a complex orchestration,
subject to DNA folding mechanisms and feedback regu-
latory controls. The regulatory controls are accomplished
not only by proximal promoters, but also by distal reg-
ulatory elements, such as, enhancers, superenhancers or
stretch enhancers, insulators, and silencers [1]. Promoters
initiate the transcription process at the transcription start
site (TSS), mediated by transcription factors (TFs) and
other chromatin-modifying enzymes. Enhancers upreg-
ulate gene expression in a distance- and orientation-
independent manner. They do so by displaying binding
sites for ubiquitous and cell-specific TFs and “looping” to
get situated closer to the genes that they target for regu-
lation at that point of space and time [2]. Thus, enhancers
can be separated from the promoters that they regulate by
thousands of base pairs, often situated on different chro-
mosomes, and are drawn close to the transcription factories
or active chromatin hubs during gene activation. Fur-
ther, there are insulators that can restrict the long-range
regulation of genomic enhancers and silencers (barriers),
conceptualized as specialized derivatives of promoters [3],
and potentially acting in either capacity, as dictated by
the biological process [4]. The fact that these distal reg-
ulatory elements (DREs) lack common sequence features
and often reside far away from their target genes has
made them difficult to identify. Further, the annotation of
the non-coding genome is an active research area, with
discoveries in epigenomic regulatory elements uncover-
ing functional features of DNA (epigenomic marks such
as histone modifications, DNA methylation, and genome
folding) associated with gene regulatory domains, in myr-
iad cell types and organisms [5–7].

In AIKYATAN, we solve the problem of predicting
distal regulatory elements from the DNA sequences,
captured by histone modifications, in the vicinity of
p300 co-activator binding sites in the DNA.

We wish to annotate distal regulatory elements (DREs)—
located distal, in a two-dimensional sense, to the genes

that they regulate—comprising of enhancers, insulators,
locus-control regions, and silencing elements. While the
last decade has seen rapid progress in the development of
experimental techniques to identify these regulatory ele-
ments on a genome-wide scale, the characterization of
the epigenomic features that confer regulatory power to
these regions is limited [8–10]. Of these studies, the focus
has primarily been on enhancers, and to some extent,
on insulators, which contribute to cell-type specific gene
expression in distinct ways. Thus, we wish to increase
the scope of predictive algorithms to extensively anno-
tate the varied types of long-range regulatory elements,
“learning” their combinatorial histone modification sig-
natures. This superset can then be pipelined into a more
specific classifier, such as one for identifying enhancers,
e.g., EP-DNN [11], to tease out genomic enhancers from
this superset of DREs. Further, the residual DREs can
then be clustered into other kinds of long-range regula-
tors by unraveling their unique signatures using unsuper-
vised learning or interpretable algorithms, such as [12].
Interpretable algorithms, in this problem, can be advanta-
geous because interpretability will result in possible listing
of feature-importance scores for different histone modifi-
cations and TFs that result in precise and computationally
efficient predictions for target DREs. This can enable the
identification of newer types of DREs, given that the pre-
processing step would decrease some of the noise in the
data sets that we started with. Many types of ML tech-
niques have been applied for classification problems in
epigenomics, where the data has the characteristics of
being both noisy [13] and multi-dimensional [14, 15].
We build a fast and accurate classifier for answering
the binary question of whether a genomic sequence is
a distal regulatory element or not, while taking into
consideration the following criteria when building our
classifier.

• Computational complexity of the MLmodel: The
chosen ML model should be able to process high data
volumes with a large number of training examples
(n), with the additional constraint of inpterpolating
for incompleteness and interpreting
high-dimensional features (d), the often cited curse of
dimensionality, which is ingrained in (epi)genomic
data sets. Otherwise, one has to use either feature
selection or dimensionality reduction on the original
input space in order to reduce d, using a method
similar to [12], or sub-sampling the training set for
learning, potentially obfuscating the real data
distribution. For example, the distribution of genomic
data sets is often found to be skewed normal due to
the fact that there may be a small class of genes that
demonstrate a high level of connectivity in biological
networks forming “network hubs” [16], while the

Fang et al. BMC Bioinformatics (2019) 20:488 Page 3 of 17

more ubiquitous specialized genes control a smaller
subset of biological processes, forming smaller
networks and participating in fewer of those as well.

• Learning the structure of the data: The chosen ML
model should be able to extract knowledge from the
structure of the data, which in this domain has a
three-dimensional contour offering a complexity
similar to that encountered in computer-vision
problems. Otherwise, more often than not, a
lower-complexity model may introduce unacceptable
bias in the learning. We find this empirically for our
linear SVM variant of AIKYATAN, which is mitigated
through the use of the kernel variant, as we have seen
in other problems in the epigenomic annotation
space [17, 18]. In the same vein, a simple ANN-based
model when converted to a deeper model resulted in
a 12% increase in our prediction accuracy in a related
epigenomics classification problem that we solved
recently, classifying genomic sequences as targets of
non-coding regulatory RNA [17]. Thus, in most
cases, we find that with some loss in interpretability, a
non-linear model can handle epigenomic datasets
more accurately [19–21].

Among all types of classifiers, Support Vector Machines
(SVM) are robust inferencingmachines requiringminimal
parameter choices that can be generalized into higher-
dimensional spaces using kernel methods. If the data in
the input space is linearly separable, then a linear SVM
guarantees perfect separation, else a non-linear kernel,
such as a Radial Basis Function (RBF) kernel, SVM is
recommended. Another approach to increase the predic-
tion performance is to use ensemble methods. Random
forest is a popular method in this category and has been
proven to be useful for prevent overfitting. [22]. However,
the memory and the inference time grows as a function
of number of training samples [23], preventing random
forest from being widely used in large-scale data analysis.
Looking at the large volumes of data available in our
problem domain, plus the additional high-dimensionality
attribute [20], neural networks coupled with GPU back-
ends, felt like the natural alternative. With this in mind,
we consider both vanilla Deep Neural Networks (DNN)
and Convolutional Neural Networks (CNN) in this work.
In recent years, CNNs [21–24] have demonstrated suc-
cess in computer vision, especially in image-classification
and recognition tasks. The computer vision applications
of CNNs stem from the design of CNNs being highly cor-
related to the structure of images and their ability to pool
the parameters of the image using kernels or filters result-
ing in data-compression, and to some extent, denoising
of the images. Our input can be regarded as snapshots
of chromatin signals at specific DNA locations, encoding
the spatial notion of the genome into our learning, which

enables a CNN to extract distinctive features locally.
Thus, a CNN is hypothesized to be effective in extract-
ing image-like input features from the two-dimensional
combinatorial histone modification signatures’ data.
With the above discussion as a guiding principle,

we selected a suite of ML protocols under the banner
AIKYATAN1, e.g., linear SVM, kernel SVM, random forest,
DNN, and CNN, specifically targeted to this problem and
using chromatin-based features, namely, 24 histone mod-
ifications’ signatures as feature set, for the classification
task.
We train our models on p300 co-activator binding sites;

H1-specific, transcription factor binding sites (TFBS):
NANOG, OCT4, and SOX2; and uncondensed, cleavage-
sensitive, DNase I Hypersensitivity Regions (DHS); which
are all distal to TSS; as positive examples. The TSS sites
and random genomic regions, which are known to be
distal to DHS, are treated as negative samples. Our empir-
ical results show that linear SVM, while being compu-
tationally tractable, gives poor accuracy, indicating the
bias in the linear model underfitting to the non-linearity
embedded in the data. Random forest achieves similar
performance compared to linear SVM but still could not
outperform kernel SVM and DNN-based models with
increasing training set sizes. Kernel SVM significantly
improves the accuracy but slows down significantly to
the point where it is not feasible to use for a significant-
sized genomic dataset. For example, in our case, with a
1 GB training set size (226k samples), kernel SVM takes
≈ 4.5 days to compute. Consider that by comparison the
total dataset for the histone modifications signatures’ fea-
ture file alone, after data preprocessing, for the human
embryonic stem cell line H1, as available from the NIH
Roadmap Epigenomics Mapping Consortium [52], is 133
GB (30M samples). Further, the computational cost when
performing parameter tuning through cross-validation is
multiplied by the number of parameter combinations. A
DNN achieves comparable accuracy to a kernel SVM,
albeit, with a higher training set size, which is readily
available in our problem domain. As a strong point for
deep learning algorithms, their training time grows linearly
with training set size while the training time for kernel
SVM is between a quadratic and cubic function of the
number of training samples. In addition, the testing time
for kernel SVM grows linearly with number of support
vectors. Quantitatively, we find that on a CPU backend,
the DNN model is 29.x faster than kernel SVM. Finally,
in AIKYATAN, we find that CNN is best-in-class and we
call itDRP-CNN (Distal Regulatory Site Prediction using
Convolutional Neural Networks). We find that CNN per-
forms better than DNN in terms of prediction accuracy.

1AIKYATAN (pronounced “Oi-ko-taan”, origin: Sanskrit) meaning a common
harmonious chord. This name is an

Fang et al. BMC Bioinformatics (2019) 20:488 Page 4 of 17

With the largest training set of 16 GB (3.6M samples),
CNN achieves 2% higher than DNN for the Validation-
Rate experiment, even though for the latter, the DNN
model had already reached a 95.8% prediction accuracy.
In addition, our empirical results also show that DRP-
CNN enjoys superior prediction performance vis-à-vis
the state-of-the-art methods most pertinent to our prob-
lem, e.g., CSIANN [30] and RFECS [31]. Note that these
methods solve a simpler task of enhancer prediction while
AIKYATAN predicts all distal regulatory elements.
To further reduce the computational burden of training,

we use Graphics Processing Units (GPUs) for our task, as
they can significantly reduce the running time required
by CPU-based implementations due to their higher mem-
ory bandwidth and computational capability. This allows
for more elaborate parameter optimization, critical to the
success of deep learning models. For our experiments, we
use Keras [26] as the frontend and Theano [27] as the
backend. With GPU enabled, the training time is sped
up by 21x and 30x over a CPU, for DNN and CNN,
respectively.
Main Contributions:
1. We motivate the use of deep learning variants for our

problem of predicting which genomic sequences
represent DREs and show how to build an ML
classifier based on a Convolutional Neural Network
(RP-CNN) for this biologically important use case.
Specifically, we demonstrate how we formulate
histone modification signals as snapshots and
demonstrate how local feature extraction and the
shift-invariant property of a CNN can apply to
histone modification signals and combinatorial
functions. This illustrates the applicability of CNNs
to biological data that is distinct from typical image
datasets. Our empirical results support our
hypothesis and show that CNN is the best model to
capture these epigenomic patterns, achieving a
validation rate of 97.9% or higher. An added benefit is
the local connectivity and parameter sharing
property of CNNs resulting in dramatic reduction in
the number of parameters, while also contributing to
the shift invariance property. This is important in the
genomics context given the steep rise in the volume
and variety of datasets.

2. We show that a linear SVM and random forest are
not expressive enough for the classification task and
a kernel SVM, although theoretically powerful,
cannot achieve as high a test accuracy as deep
learning approaches due to its high training time
complexity. This attribute limits the kernel SVM
model from learning all the underlying patterns and
nuances present in the entire data set, with this
complexity increasing with the perpetual increase in
data volumes and varieties in genomics, rightly

described as a four-headed beast because of the
complexity in data acquisition, storage, distribution,
and analysis [30].

3. We show how a GPU-backend for the deep learning
task speeds up the training process and makes it
feasible to deploy our algorithmic variants for
high-throughput processing on a large-sized,
biologically relevant data set. In addition, we give
comprehensive empirical results on the comparison
of both training and testing times for AIKYATAN as
well as state-of-the-art methods, such as RFECS [31],
and CSIANN [30], on CPUs.

RelatedWorks
In this subsection, we discuss recent works on predict-
ing a specific set of distal regulatory elements, enhancers,
which is the closest classification task to our prob-
lem at hand. We select two leading-edge ML models
that are representative of two different classes of ML
algorithms, random forest (RFECS) and artificial neural
networks with Fisher discriminant analysis (CSIANN),
respectively for detailed benchmarking of AIKYATAN.
However, it is important to note that AIKYATAN solves the
larger classification problem of whether or not genomic
sequences are distal regulatory elements or not, rather
than the classification of genomic enhancers that all of
these competitors solve. Of these, enhancers are the
most versatile in their usage in the genome and by cur-
rent estimates, there are over a million enhancers in
the genome. We believe solving the overall distal regu-
latory element problem is useful because it is allows us
to classify (downstream) different classes of distal regula-
tory elements rather than annotating genomic enhancers
alone.
RFECS (Random forest-based Enhancer identification

from Chromatin States) [31] proposed a random forest
algorithm to predict p300 enhancers from combinatorial
patterns of histone modifications in H1 and IMR90 cell
types. CSIANN [30] used Fisher Discriminant Analysis
for Feature Extraction/Reduction and use 1 hidden layer
Time-delay neural network for Enhancer Prediction.
DEEP [32] utilized a framework of an ensemble of ker-
nel SVMs with an overarching artificial neural network
(ANN) to predict enhancers in different cell types using
features derived from histone modifications and sequence
characteristics. More recently, EP-DNN [11] used a DNN,
demonstrating superior accuracy of 91.6%, relative to
85.3% for DEEP-ENCODE and 85.5% for RFECS. PEDLA
(predicting enhancers with a deep learning-based algo-
rithmic framework) [33] implemented a Hidden Markov
Model (HMM) with DNN-based probabilities to predict
enhancers from distinct categories of heterogeneous data,
including histone modifications, TFs’ and co-activators’
binding, DNA methylation, sequence characteristics, etc.,

Fang et al. BMC Bioinformatics (2019) 20:488 Page 5 of 17

and achieved superior performance compared to the pre-
vious approaches. PEDLA’s key novelty comes from the
integration of diverse datasets rather than the process of
extracting maximum signal from a single combinatorial
epigenomic dataset (e.g., histone modifications’ signa-
tures for AIKYATAN. In our study, we are investigating
the learning capability and computational efficiency of
machine learning models on a large and diverse epige-
nomics dataset. For this purpose, we include all distal
regulatory elements (e.g., silencers, promoters, and insu-
lators) as positive samples. This is a more challenging
problem because of the diversity of the different types
of regulatory elements. We are also the first to identify
that CNN is the best-of-breed classifier for this problem
domain, due to its ability to capture the spatial abstrac-
tions from the input. Further, none of the prior approaches
quantify the speedup of the various classifiers, relatively
on CPU and GPU; ease of speed up by accelerators being
an attractive attribute of neural networks. Finally, fast
training, while less critical in some domains, is impor-
tant in genomics because of the need to quickly retrain
algorithms, with newer datasets, a product of rapid tech-
nology advances.

ML Background
The SVM paradigm, originally designed for such binary
classification problems, has an impressive geometrical
interpretation of discriminating one class from another
in a multidimensional input space using a maximum-
margin hyperplane [34]. It is commonly known that the
SVMparadigm is amenable with the regularization frame-
work, where we have a data fit component ensuring the
model’s fidelity to the data, on the one hand, and a penalty
component enforcing the model’s simplicity on the other
[35, 36]. The SVM methodology is based on a solid theo-
retical foundation, with the core of the algorithm being a
quadratic programming problem, separating support vec-
tors (“supporting” the decision boundary) from the rest of
the training examples. Specifically, a linear SVM finds a
linear decision boundary with the maximum-margin sep-
aration between the support vectors of the two classes
in the dataset. Further, for overcoming model bias in a
complex data landscape, SVMs can be versatile, deploying
different kernel functions. While commonly used kernels
are polynomial, radial basis function (RBF), and sigmoid,
custom kernels can also be defined using a Gram matrix
(Gramian matrix or Gramian), which is a Hermitian
matrix of inner products. In essence, a kernel SVM
projects data from the input space into an higher-
dimensional feature space (can be infinite-dimensional).
The exact form of the function is determined by the type
of kernel used, we use the RBF kernel. Kernel SVM then
finds the hyperplane in that space to “linearly” separate
the positive and negative training examples. Theoretically,

it is always possible to find such a perfect hyperplane
in the infinite-dimensional space. However, empirically,
finding the best hyper-parameters is time consuming and
even a single run of the kernel SVM algorithm can range
in complexity from O(n2) to O(n3) [37], which makes it
prohibitive for training a large dataset. Thus, while SVMs
are powerful tools, their compute and storage require-
ments increase rapidly with the increase in the number of
training vectors.
Another approach to build a robust classifier is through

ensemble methods. Instead of learning a single strong
classifier, ensemble methods try to construct multiple
weak learners to solve the same problem, random forest
being a prominent member of this family. Random forest
been proven to be more resilient to overfitting because of
its technique of compiling multiple weak learners. How-
ever, they are not suitable for large-scale datasets since the
memory requirement grows as the function of training set
size [41]. Recently, deep learning [38] has emerged as a
powerful tool in the machine learning community, abet-
ted by the volumes and diverse types of datasets. Several
theoretical studies [39–44] have shown that deep learn-
ing approaches are able to learn high-level abstractions
from data using architectures consisting of multiple layers
of non-linear processing units using a variety of activa-
tion functions, with the increasing depth of the layers
increasing the power of abstraction, but only up to a cer-
tain point. Although the success of DNNs is attributed
to the hierarchy introduced by the hidden layers mak-
ing it sort of a hierarchical processing pipeline, there is
a tradeoff between the accuracy achieved by this pro-
cess and the time taken to train this network. Common
examples of the areas in which deep learning has been suc-
cessful include image classification [21], automatic speech
recognition [47], and natural language processing [48].
More recently, deep learning has gained traction in several
prediction problems in bioinformatics, such as structural
predictions of proteins [49] and of RNA-binding pro-
tein targets [50], of RNA splicing predictions [51], and of
genome annotations with some degree of interpretability
[54]. We select two variants of DNNs, the vanilla Deep
Neural Network (DNN) architecture and Convolutional
Neural Networks (CNN), to solve the distal regulatory
element prediction problem.

Results
We preface this section with our evaluation metrics and
data-preprocessing techniques.

Performance Metrics and Data Preprocessing
In this subsection, we start with the benchmarking met-
rics used for the tools we developed in AIKYATAN. We
then move on to the data preprocessing techniques that
were used to refine the raw data to be used as inputs to

Fang et al. BMC Bioinformatics (2019) 20:488 Page 6 of 17

our classifiers. Performance Metrics: We use Validation
Rate (VR) to benchmark AIKYATAN. The standard bench-
marking metrics, e.g. precision-recall (PR) metrics are
not valid here since there are regulatory sites that have
not been experimentally mapped, beyond p300, NANOG,
SOX2, OCT4 binding sites or TSS. In order to use the
more conventional benchmarking metrics, we would have
to evaluate performance on all these sites that are unac-
counted for, which are not experimentally mapped and
hence unknown. This is in line with the observation made
by other enhancer prediction methods such as RFECS and
EP-DNN [11]. Thus, we needed to modify the perfor-
mance metrics used in AIKYATAN.2 RFECS the validation
rate (VR) metric by validating a classification against cri-
teria mentioned below. If a location has histone modifica-
tion enrichment signatures similar to that of an enhancer
(or a distal regulatory site in our case) and a prediction
is made at that location, we can say that the classifica-
tion is valid, given that it is located sufficiently close to
a known enhancer marker or to an open chromatin site,
which means that the site can be exposed to regulatory
factors. Following are the criteria designed for VR-based
evaluation of the algorithms.

• If a classified regulatory site lies within 2.5 kb of a
true positive marker (TPM), then the classification is
“validated”, which we also refer to as “gray area”. This
is because this site is either a known (experimentally
validated) regulatory site, or an unknown regulatory
site that overlaps with open chromatin and we can
assume to be a regulatory site.

• Otherwise, it is deemed “invalid”, which means it is
either a TSS or an Unknown and we know for a fact
that the prediction is incorrect.

Data Preprocessing: Figure 1 represents the process of
generating the VR dataset. We found that a large frac-
tion of samples (8 percent) have no histone modification
signal, which can be seen as all feature values being
zero. Such samples provide nomeaningful information for
training the models, so we remove them from our training
set. In addition, the number of positive and negative sam-
ples in the dataset is not balanced, with positives samples
being in the minority (22% of the total dataset). To avoid
modeling bias in favor of the majority class, we balance
datasets by subsampling from the much larger number
of negative samples. Figure 1 describes the pipeline for
generating training and test sets from the raw histone
modifications’ input. To reduce the variance, we divide
the test set into five non-overlapping test sets and also
generate five overlapping training sets for each training

2We also have the evaluation results using PR metric. We put the results in
the supplement for brevity.

set size. The five training sets are paired with the five
test sets with a one-on-one correspondence. The final VR
numbers are averaged from five train-test pairs for each
experiment.

Empirical Results
We designed experiments to evaluate the training time
and prediction accuracy for the different classifiers in
AIKYATAN. The machines’ specifications are listed in
Table 1. We used Keras [26] as the frontend, with
Theano [27] at the backend, to develop our deep learn-
ing models. Thus, our infrastructure runs on a Python
backend, which is advantageous for ML algorithms as it
can benefit from the rapid progress in Python libraries,
compared to the development in Matlab or C/C++.

Deep learningmodels demonstrate faster computation
time even on CPU
Without a doubt, it is important that a prediction model
should give us superior prediction accuracy. However,
we also have to take the computation time into serious
consideration when choosing a prediction model. Both
training and testing times are important metrics for any
ML algorithm though traditionally testing time has been
considered the more important of the two. However, in
the genomics domain, where volumes of new datasets are
becoming available, the model will have to be retrained to
update itself on a regular basis and therefore we are also
interested in the training times. We measure the train-
ing time and testing time as a function of training set
size for AIKYATAN on the CPU machine. Figure 2a shows
the average training times of the five classifiers with vari-
ous training set sizes. Random forest exhibits O(nlog(n)),
where n denotes the number of training samples, training
time complexity. Linear SVM, CNN, andDNN, have train-
ing time algorithmic complexity of approximately O(n),
while for kernel SVMwith RBF kernel, it is betweenO(n2)
and O(n3) [37]. For our specific parameter for the mis-
classification penalty, this is found to be O(n2.2). We find
empirically that the training time follows the relation lin-
ear SVM < random forest < DNN < CNN � kernel
SVM.With the largest training set size in this experiment,
1,000 MB (226k samples), kernel SVM’s training phase
takes around 50.5 hours, which is 255.6x, 161.8x, 9.0x, and
16.1x slower than the linear SVM, random forest, CNN,
and DNN, respectively. Figure 2b shows the average test-
ing times of the 5 classifiers with various training set sizes.
For most MLmodels, training set size does not affect time
required for testing. This is evident from the results for the
linear SVM, DNN, and CNNmodels. However, the testing
times for the kernel SVM and random forest do increase
with training set size Figure 2c. For random forest, the
prediction time depends on the depth of trees. In an
average case, it is of order �(mn), wherem is the number

Fang et al. BMC Bioinformatics (2019) 20:488 Page 7 of 17

Fig. 1 The pipeline for generating Training and Test Sets for VR dataset

of trees. From Fig 2b, we notice that as the training set size
grows to 1000MB, the prediction time is larger thanDNN,
CNN, and linear SVM. For kernel SVM, the prediction
time grows linearly with the number of SVs, as we show in
Fig 2b. With the training set size of 1000 MB (226k sam-
ples), kernel SVM’s testing phase takes around 57.3 hours,
which is 136.9x, 71.4x, 76.7x, and 98.9x slower than a lin-
ear SVM, random forest, CNN, and DNN, respectively.
Thus, although a kernel SVM has superior prediction per-
formance, the prediction times make it impractical to use,
as datasets tend to be very large in our problem domain.
To summarize, we have shown that when we use CPU
for computation, the training and testing times of a ker-
nel SVM are much higher than for the other models and
the rate of growth in running time is also higher for a
kernel SVM. In the case for random forest, although the
time requited to construct model is relatively low, the pre-
diction time is higher than other DNN, CNN, and linear
SVMs when the size of training set is large.
Computation Cost Comparison for CNN, RFECS, and
CSIANN Here, we compare the training and testing time
for CNN with RFECS and CISANN on 16 GB training
set (3643k samples). We could not deploy RFECS and
CSIANN on the CPU machine (X3430 processor) that
we used for the experiments with AIKYATAN (specs in
Table 1) because of smaller numbers of cores and lower
clock rates of the processor. Instead, we ran RFECS and
CSIANN methods on the higher-end Platinum 8168 pro-
cessor with 24 cores. While utilizing all cores on the
higher-end CPU, RFECS still takes 45.6 hours for train-
ing and 1.78 hours for testing while AIKYATAN-CNN
takes 9.13 hours for training and 0.27 hours for testing.
Thus, RFECS’ training time is about 5X that of ours3. For
CSIANN, a bottleneck of the model lies in the high com-

3We admit that there exists a parallel version of RFECS. However, we could
also speed up the computation of our models using multiple CPUs and even
GPUs. In our experiments, we already have shown that the computation time
for CNN on single CPU is significantly faster than RFECS. Thus, we do not do
further comparisons of multi-CPUs or GPUs for run time comparisons.

putation cost of the inversion of the large matrix, O(d3)
where d is the dimension of features and usually d >> 1,
during the Fisher Discriminant Analysis. We failed to fin-
ish the training of CSIANN within a week using CPU.
Thus, we put the matrix inversion computation task into
a P100 GPU while other computations remain on CPU
for CSIANN. After this modification, CSIANN still takes
31 hours for training and 1.5 hours for testing, 3X times
slower than our CNN. In summary, CNN modeling takes
less time to train than both RFECS and CSIANN and is
also easily amenable to speedup by GPUs. For the next
experiment, we investigate how much we can speed up
both training and testing through the use of a GPU.

Deep LearningModels can leverage GPU-based
accelerators
The computation in a neural network can be decomposed
into multiple matrix operations, which have the Single
Instruction Multiple Data (SIMD) characteristic. These
operations are therefore well suited for exploiting the par-
allelism that is available on GPUs. In this experiment, we
quantify how much speedup is possible for AIKYATAN
DNN and CNN variants by executing them on a GPU.We
fixed the model architectures and used the same num-
ber of training epochs, which is 50, for both DNN and
CNN and trained on different training set sizes. In order
to train on a larger dataset, we used the datasets used
for VR metrics in this experiment. We first examine the
speedup ratio of using GPU over CPU. Figure 3a and
b show the training times for DNN and CNN respec-
tively. For DNN, using GPU is 21x faster than using CPU,
while for CNN, it is 30x faster. This can be explained by
the fact that CNN training involves a greater number of
matrix operations for the convolution phase and thus the
CNN operations canmore effectively leverage all the GPU
cores.
Next, we examine the training time and testing time

for DNN and CNN on GPUs for different training set
sizes.

Fang et al. BMC Bioinformatics (2019) 20:488 Page 8 of 17

Table 1 Computational specifications of machines used for the experiments

Environment CPU Number of Cores GPU

GPU machine Intel(R) Core(TM) i7-2600 CPU @ 3.40 GHz 4 NVIDIA Telsa K40

CPU machine Intel(R) Xeon(R) X3430 CPU @ 2.40 GHz 4 N/A

GPU machine Intel(R) Xeon(R) Platinum 8168 CPU @ 2.70GHz 24 NVIDIA P100

Figure 3c and Fig 3d shows the training and testing
time on GPU for DNN and CNN using varying training
set sizes from 500 MB (133k samples) to 16 GB (3643k
samples). The training and testing time on GPU behaves
similar to the training and testing time on CPU for both
DNN and CNN in that the training time grows linearly
with the training set size and the testing time remains con-
stant no matter how the size of training set size grows.
With the largest training set size of 16 GB, DNN takes
around an hour and CNN takes 1.27 hours for training
on GPU. Regardless of training set sizes, CNN’s training
time relative to DNN’s remains constant, at approximately
1.2. CNN’s testing time relative to DNN’s also remains
constant and the two are approximately equal.

CNN achieves superior performance in prediction
capability and time compared to state-of-art methods
First, we show the prediction performance of our
CNN with state-of-art methods, e.g., RFECS [31] and
CSIANN [30]. Because of the high dimensionality of the
training data, both RFECS and CSIANNmanaged tomake
the computation tractable by using only a subset of his-
tone modifications for learning. Furthermore, CISANN
reduces the dimensionality of features using Fisher’s
Discriminant Analysis (FDA). In contrast, we aim at
demonstrating our computational model is not only able
to consume high-dimensional data but also able to learn
intricate non-linear features from them resulting in higher
expressiveness. Toward achieving a fair comparison, we
used our dataset (24 histone modifications instead of a
subset) and applied it to RFECS and CSIANN. Again,
we selected RFECS and CSIANN as two representative
leading edge sophisticated models that use similar epige-
nomics datasets as AIKYATAN (as inputs to themodel) and
known to be sophisticated classifiers while being distinct.
Table 2 shows the average VR and the standard deviation
of VR on a 16 GB training set for CNN, RFECS, and
CSIANN. CNN achieved 1% higher VR than RFECS even
though it has already achieved a reasonable VR of 96.65%.
CSIANN made two simplifications. First, dimensionality-
reduction techniques were used so that coarser features
were used for the learning process. Second, only one hid-
den layer was used for its neural network model. With
these two simplifications, CSIANN, performed better
than random guessing, but was not able to generalize well
on our distal regulatory elements’ prediction problem.

Finally, CNN is the most insensitive to the changes in
dataset, which is shown in Table 2. The standard deviation
of VR derived from the five 16 GB datasets is the smallest,
compared to RFECS and CSIANN.
Next, we are also interested in how the performance

grows as a function of training set size. We investigate our
AIKYATAN’s prediction performance with RFECS [31].
We do not do further analysis for CSIANN because not
only other methods significantly outperform its infer-
ence capability but also its high computation cost due.
Figure 4 shows the average VR, benchmarking the pre-
dictions of AIKYATAN vis-à-vis competition. Algorithmic
Performance: Both kernel and linear SVM achieve a high
VR for small training set sizes, outperforming deep learn-
ing variants. However, as the training set size becomes
larger, the rate of improvement for both linear and ker-
nel SVM is smaller than for deep learning approaches,
especially DNN. Further, the variation of DNN perfor-
mance on smaller datasets is high, indicating that the
DNN model is not stable at this size. This phenomenon
occurs because of the large number of learning parameters
of a DNN. But as the training set grows, the DNN’s per-
formance becomes stable and outperforms linear SVM.
Looking at the trend, one would expect that a kernel SVM
can achieve higher VR with larger training set sizes. How-
ever, due to a kernel SVM’s high computational cost, we
could not train the model for a dataset size larger than 1
GB (230k samples) in an acceptable time.
On the contrary, the lower computational cost of DNN

and CNN allows us to train them using increasingly larger
training sets as more and more data becomes available
for building the model. We find that the VR performance
of deep learning approaches continues to improve with
increasing training set sizes. Using 16 GB (3643k samples)
training sets, DNN can achieve similar VR to a kernel
SVM, while CNN can outperform a kernel SVM, requiring
less time for both training and testing phases, which we
have already quantified in previous experiments. We also
test the performance for random forest. As we can see,
although random forest is more stable than other meth-
ods, it does not increase much prediction performance as
training set size grows. When trained on the largest data
set, random forest only achieve 94 % validation rate, 1.7
and 3.8 worse than DNN and CNN respectively. RFECS
improves the performance for random forest, at the small-
est dataset in this experiments it starts with 95% and reach

Fang et al. BMC Bioinformatics (2019) 20:488 Page 9 of 17

Fig. 2 Comparison runtime for Aikyatan. Figures 2a and 2b show the training and testing times using CPU for the models, with varying training set
sizes. As shown in Figure 2a, linear SVMs, DNNs, and CNNs training times scale approximately O(n) while random forests traing time grows at the
rate of O(nlog(n)) and kernel SVMs training time grows at the rate of O(n2.2), where n denotes the number of training samples. As in Figure 2b, linear
SVMs, DNNs, and CNNs testing times remained constant, whereas random forests testing time grows with the rate .(mn), where m denotes the
number of trees, and kernel SVMs testing time grows rapidly as training size increases, with corresponding increase in SVs. Figure 2c shows the
relationship between the number of SVs obtained from the training set and the testing time for the kernel SVM. For the kernel SVM, the testing time
grows linearly with SVs

to 96.65%. However, the VR is still at the same level with
kernel SVM and 1.2% worse than CNN.
Ranking the Algorithms inAIKYATAN: To rank average VR
performance among the four ML models in AIKYATAN,

we perform statistical significance tests to compare (1)
linear SVM and kernel SVM on 1 GB training sets, (2)
kernel SVM on 1 GB training sets versus DNN on 16
GB training sets, (3) kernel SVM on 1 GB training sets

Fang et al. BMC Bioinformatics (2019) 20:488 Page 10 of 17

Fig. 3 Training and Testing times and GPU speedup of DNN and CNN models. Figures 3a and 3b show the speed-up ratio for DNN and CNN,
respectively. The orange line represents the speed-up ratio, training time using CPU divided by training time using GPU, for training set sizes varying
from 1 GB to 8 GB. The speed-up ratio remained constant and the speed up is around 21x for DNN and 30x for CNN, respectively. Figures 3c and 3d
shows how training time and testing time grows as training set size increases for DNN and CNN, when deployed on GPU. We fixed DNN and CNN
architectures among all training sets and the number of learning epochs to be 50. Both DNN and CNN training times grow linearly when deployed
on GPU

versus RFECS on 16 GB training sets, and (3) DNN and
CNN on 16 GB training sets. (4) DNN and random for-
est on 16 GB training sets. For (1), (3), and (4) we use
paired one-tailed t-testing since they are trained using the
same group of training sets, whereas for (2) and (3), we
use unpaired one-tailed t-testing since they use different
groups of training sets. We found that all of the p-values
are smaller than 0.05, with the exception of case (2) and
(3). We conclude that CNN outperforms the other five
models; that kernel SVM, RFECS, and DNN are at the
same level; DNN outperforms random forest; and that the
linear SVM’s performance is the worst because of the bias
(underfitting).

Table 2 VR Numbers on 16 GB (3643k samples) training set for
CNN, RFECS, and CSIANN

CNN RFECS CSIANN Random

Avg. VR 0.9786 0.9665 0.5715 0.2265

Std. VR 0.0068 0.0100 0.1754 NA

Discussion
Kernel SVM has emerged as a popular general-purpose
ML model and has been used successfully in many
domains, especially because of its solid theoretical
foundations, based on Vapnik–Chervonenkis theory (VC
theory [34]). The first results in the field of discrimina-
tion, exposed in Vapnik and Chervonenkis (1971), dealt
with the computation of dichotomies with binary-valued
functions. However, Kernel SVM’s major drawback is
its high time complexity to train the model, which is a
quadratic to cubic function of the number of training sam-
ples. This puts a strain on how much data can be used to
train the model, which can lead to situations where the
learned model is not discriminating enough to capture all
the nuances in the data. In the genomics area, increas-
ing amounts of data are becoming available, and therefore,
there is the possibility of using larger and larger amounts
of training data to improve a classifier’s accuracy. This
led us to consider deep learning models for the problem
of predicting distal genomic regulatory sites. However,
since long training times are a bottleneck for deep learning

Fang et al. BMC Bioinformatics (2019) 20:488 Page 11 of 17

Fig. 4 Average VR performance are shown for Aikyatan. To obtain a larger data set size, unlike in RFECS, where the training set only contains peaks, we
include gray area into our training set. By varying the threshold that is used to turn the raw real-valued prediction into one of the two classes, we can
generate a VR curve where X-axis is the number of samples predicted as positive and Y-axis is the portion of these predicted positive samples that
are validated, i.e., the validation rate (VR). In order to compare the prediction performance across the ML models, we control for the same number of
predictions across these models. In order to find the specific number of predictions, we obtained the target number of predictions from RFECS where
the best validation in its original data set is for around 100K predictions. Since we took 70% of the original data set as the training set and 30% as the
test set and further divided test sets into 5 non-overlapping test sets, our target number of predictions becomes 6000 in each sub-sampled test set

algorithms, we use GPU accelerators for faster execu-
tion of our neural network models. From other domains,
such as computer vision applications of image recogni-
tion and classification, it is known that CNN converges
faster than DNN if the shift invariant property of the
pattern holds. We hypothesized that stemming from the
three-dimensional folding abilities of a genome and the
image-like properties of the histone modification signals,
the translational invariance property also holds for our
problem. So, we evaluated CNN architectures alongside
DNN and verified this fact. Our results hold promise for
the use of deep learning approaches for high-dimensional
and diverse genomic datasets. While we have used single-
node executions here (for both CPU and GPU implemen-
tations), it is possible to use distributed deep learning
frameworks, such as TensorFlow [63] and PyTorch [64]
as the data volumes and heterogeneity become more sub-
stantial. Given that AIKYATAN is the first algorithm of its
kind classifying DREs, many of which are yet to be studied
in detail, we believe our algorithm can reduce the noise
and discover patterns in new types of DREs plus capture
the nuances in existing classes of DREs, for example, in
enhancers and their sub-types.

Conclusions
In this study, we demonstrate how we formulate his-
tone modification signals as snapshots and demon-
strate how local feature extraction and the shift-invariant
property of a CNN can apply to histone modification
signals and combinatorial epigenomic features. Empirical

results demonstrate that CNN has superior generalization
performance, achieving a validation rate of 97.9% or
higher, compared to standard DNN, linear SVM, ker-
nel SVM as well as the state-of-the-art methods, such
as CSIANN and RFECS. Moreover, we give empirical
results on training and testing times. With GPU enabled,
CNN’s training time is sped up by 30x over a CPU. With
the largest training set size in training time comparison
of AIKYATAN, 1,000 MB (226k samples), kernel SVM’s
training phase takes around 50.5 hours, which is 255.6x,
161.8x, 9.0x, and 16.1x slower than the linear SVM, ran-
dom forest, CNN, and DNN, respectively. Overall, taking
into account the expressiveness of the ML models and the
computational efficiency, we conclude that Distal Regula-
tory Element prediction task favors CNN due to its high
expressiveness and ease of accelerating its computation.

Methods
A. Overview
Figure 5a, b, and c represent an overview of AIKYATAN’s
training and testing phases. Our AIKYATAN suite includes
a linear SVM model, a radial basis function (RBF) ker-
nel SVM model, random forest, and deep learning vari-
ants, DNN and CNN for the task of predicting DREs in
the human embryonic cell line (H1), a tier 1 ENCODE
project cell type. To obtain the feature vector for each
genome position, we use histone modification signatures
as input features. Our binary classification task then
is as follows: given histone modification signatures at
genome location i, predict whether genome position i is

Fang et al. BMC Bioinformatics (2019) 20:488 Page 12 of 17

Fig. 5 An overview plot describing five machine learning (ML) models training and testing phases. Figure 5a describes the training phase for four
ML models. Figure 5b describes the prediction phase. After having tuned the hyperparameters for each model, we evaluate its performance using
the validation-rate (VR) metric. Figure 5c describes the legend we use and the hyperparameters tuned for each model

a distal regulatory site or not, i.e., distal to promoters
or TSSs.

B. Epigenomic datasets
Histone modification signatures: We use 24 histone mod-
ifications for our prediction task. The data was obtained

from the NCBI database under NCBI GEO accession
number GSE16256. The 24 histone modifications are as
follows: H2AK5ac, H2BK120ac, H2BK12ac, H2BK15ac,
H2BK20ac, H2BK5ac, H3K14ac, H3K18ac, H3K23ac,
H3K27ac, H3K27me3, H3K36me3, H3K4ac, H3K4me1,
H3K4me2, H3K4me3, H3K56ac, H3K79me1, H3K79me2,

Fang et al. BMC Bioinformatics (2019) 20:488 Page 13 of 17

H3K9ac, H3K9me3, H4K20me1, H4K5ac, and H4K91ac,
in H1, which were generated as a part of the NIH
Epigenome Roadmap Project [52]. These histone modifi-
cations comprise of a superset of all that are hypothesized
to be relevant biologically to the presence (or absence)
of regulatory sites [31]. The ChIP-seq reads of these his-
tone modifications give us their enhancement level. These
were binned into 100 base pair (bp) intervals and normal-
ized against their corresponding inputs by using an RPKM
(reads per kilobase per million) measure [53]. Multiple
replicates of histone modifications were used to minimize
batch-related differences and the replicates’ RPKM-levels
were averaged to produce a single RPKM measurement
per histone modification. This averaged RPKM enrich-
ment level of a histone modification is its signature.
For any given location, the histone modification signa-
tures within 1000 bp of that location are used as input
to the models. A window of 1000 bp incorporates ten
100 bp bins on each side. With 20 bins for each of the
24 histone modifications, the input comprises 480 fea-
tures in total. Included locations: For training and testing,
the positive set includes all the p300 binding sites, cell
type-specific Transcription Factor Binding Sites (TFBS)
(NANOG, OCT4, and SOX2), and DNase I Hypersensi-
tivity Sites (DHS), which are at least 1000 bp away from
the nearest known Transcription Start Site (TSS). Since
p300 co-activators, DNase I, and Transcription Factors
(TFs) also bind to TSS, which are not distal regulatory ele-
ments, we only considered the binding sites that are distal
to known TSS sites as positives. The remaining locations
were considered as negatives. Narrow DHS peaks were
downloaded from UCSC’s ENCODE site. [54] The acces-
sion numbers: GSE37858, GSE18292, and GSE17917, con-
tain genome-wide binding data for H1 p300, NANOG,
OCT4, and SOX2. p300 and TF peaks were determined
using the MACS peak-calling software, with default
p-value cutoffs. ChIP-seq input files were used as treat-
ment or background.

C. Machine learning models
In this work, we selected a suite of ML protocols under
the banner AIKYATAN 4, e.g., linear SVM, kernel SVM,
random forest, DNN, and CNN, specifically targeted to
this problem and using chromatin-based features, namely,
24 histone modifications’ signatures as feature set, for
the classification task. The description of SVMs, random
forest and the corresponding hyperparameter tuning pro-
cedure can be found in the Supplementarty materials.
A high-level goal of our work is to optimize individual
“algorithmic motifs” or “kernels” recurring in compu-
tational genomics algorithms and then stitch together

4AIKYATAN (pronounced “Oi-ko-taan”, origin: Sanskrit)meaning a common
harmonious chord. This name is an

an optimized library of kernels for specific genomics
applications, as envisioned in the domain-specific library
(DSL)—Sarvavid [59]

Deep neural networkmodel
The DNN architecture has 480 inputs and and 1 output,
applying the PReLu (Parametric ReLu [55]) activation
function for each neuron, which is essentially a Leaky
ReLu but with a learnable coefficient to tackle the dying
ReLu problem in the vanilla ReLu function. The tuned-
DNN architecture has three hidden layers, with 600 neu-
rons in the first layer, 500 in the second, and 400 in the
third. To prevent overfitting, dropout was applied between
each hidden layer, with a dropout rate of 0.3. We use mean
squared error as the loss function. We experimented with
the following optimizers: RMSProp [56], Adadelta [57],
Adagrad [58], and Adam [59]. We found that the RMS
Prop [56] optimizer worked best for this DNN architec-
ture. The DNN architecture is shown in Fig 6a.

Convolutional neural networkmodel
CNNs have tremendously improved the prediction per-
formance of image-classification tasks. This improvement
comes from the following attributes of CNNs.

• CNNs are able to perform local feature extraction
through the design of specific filters that can pick up
target features from the images, and at scale, the
parameters such as stride length and filter size can
modify the rate at which these target features are
detected from the images.

• CNNs demonstrate a shift invariant property, which
means the exact position of the features does not
matter and this comes from the pooling of the
features in the pooling step, a useful artefact of which
is the dimensionality reduction that occurs in the
process.

• CNNs perform non-linear transformation of the
input through the use of various activation functions.
Since the third characteristic is similar to traditional
neural networks, we only describe local feature
extraction and the shift-invariant property in greater
detail. Local feature extraction: Images have
structures, with increasing levels of complexity
starting with local features of the image and moving
on to more abstract, global features. Distinct from the
standard fully-connected neural network that treats
each pixel position as an independent variable, the
kernel of the convolutional layer in a CNN looks at a
small region of the input (receptive field) at a time
and extracts meaningful features locally from the
input (initially). The subsequent convolutional layers
hierarchically extract higher-level features from the
previous layers’ output and the process carries on

Fang et al. BMC Bioinformatics (2019) 20:488 Page 14 of 17

Fig. 6 Figure 6a shows the DNN architecture. It takes 24 histone modifications (each has 20 features) as input and predicts whether a genomic
location is a distal regulatory site or not. There are three hidden layers and one output layer. Between each hidden layer, we used PReLU as
activation function and dropout with rate 0.3 between each hidden layer, to prevent overfitting. Figure 6b gives an illustrative example of row-wise
stacking of histone modifications used as inputs to our CNN model. As shown in Figure 6b, each location has various histone modification signals,
represented by zigzag lines with di.erent colors in the figure. For illustration purposes, we only represent four histone modification signals. By
stacking these signals row-wise, these signals are captured as snapshots of informative features of the genome at each location. Similar to standard
RGB images where channels provide di.erent color features, each type of histone modification signal provides unique information to the model.
Since the patterns of those signals are quite di.erent across di.erent types of histone modifications, removing any subset of them could result in
information loss. With the proper design of the convolution kernel, where the height can cover all signals, the convolution kernel can extract local
features to the next layer of the designed CNN. The width of the kernel should not be too large. Too wide a kernel would result in the kernel
convolving remote features that are irrelevant to characterizing the local information. Figure 6c shows the CNN architecture. The input is in 2D form
with each row representing one histone modification feature. After each convolutional layer, it has PReLu layer (due to the space constraint, we
skipped showing them in the Figure). After Max-Pooling for down sampling, CNN connects two layers of fully connected neurons, each layer has 300
neurons, and finally connects with output. To prevent overfitting, we also add dropout with rate 0.5 between Max-Pooling and first fully connected
layer and between first and second fully connected layer, and dropout with rate 0.3 between the second fully connected layer and output layer

Fang et al. BMC Bioinformatics (2019) 20:488 Page 15 of 17

with the ability to extract higher-order abstractions
with increasing network depths. Now these kernels
are essentially an array of numbers (called weights or
parameters of the filter) and these “kernel weights”
are adjusted throughout the learning process. At the
end, these kernels are capable of extracting relevant
features for increasing the prediction performance
for the task at hand. Shift invariance: There are two
invariant properties of CNNs: location invariance
and translation invariance. First, since the weights of
a specific kernel are shared when scanning through
the local region of inputs, no matter where the object
that the model is trying to identify, “scanning” the
kernel across the image will produce the same output.
In other words, the weight sharing characteristic of
the kernel of the convolutional layer allows the
learned model to be insensitive to the location of the
target object in the image. We call this the location
invariant property of the CNN. Second, when a
kernel scans a specific region of input, it computes
the dot product between the learned weights and the
local inputs. Thus, if the original input is slightly
rotated, the dot product does not change much. The
pooling layer essentially performs a downsampling
operation to the output of the previous layer.
Specifically, it distills the most salient features among
the nearby ones to capture snapshots in the images.
Thus, no matter where the salient features are
located within that region, the pooling operator will
pick them up. These two factors contribute to the
translation invariance property of the CNN.

Histone modification signals are snapshots of genome:
Typical images have three channels: R, G, and B. Each
channel encodes different values for the same location
of the image and these values are essential to represent
image. One can also only use gray scale to represent
images. However, the gray scale images discard the color
information. Similar to images, different histone modi-
fication signals characterize distinct properties at each
genome location. Therefore, by stacking each histone
modification feature row-wise with the proper design of
filters or kernels, a location-by-location snapshot of the
genome is acquired. We give an illustrative example of
how we stack histone modification combinatorial signa-
tures for encoding the information into the CNN in Fig 6b.
We hypothesize that the information extracted from his-
tone modification snapshots can be well characterized by
the CNN model due to the following reasons. First, the
histone signals may be slightly transformed due to the
sampling techniques. Those nuances should not affect
the output of the learned model. Second, the location of
histone modifications signals in the snapshot should not
affect the prediction outcome. And third, the permutation

of histone modification signals should not change the
prediction outcome. We believe that CNN could gener-
alize well from histone modification snapshots since it
can perform local feature extraction and can preserve the
shift invariant property. Our empirical results support our
hypothesis.
Sensitivity analysis on the hyperparameters’ tuning
space: A valid concern when using deep learning mod-
els is that the search space for hyperparameter tuning
is too large to generate a specific architecture for a spe-
cific problem statement. However, through our analysis
for tuning the hyperparameters, we find that the search-
ing is tractable and can be explained by standard learning
theory [34]. Specifically, we test the size of the kernels of
the convolutional layers and the window size of the pool-
ing layer. We find that the higher the number of kernels,
the better the validation rate is, up until 128 kernels. This
is because the designed CNN requires enough number of
kernels to extract distinct features, in order to construct
more nuanced outputs for the next layer. However, if the
number of kernels exceeds 128, those additional kernels
become redundant, resulting in the CNN overfitting to
the noise in the features, as is typical in the genomics
domain. We leave the details of the sensitivity analysis on
these hyperparameters in supplementary Figure S2a, S2b,
and S2c.
Final CNN architecture: Our final CNN architecture
after performing sensitivity analysis is shown in Fig 6c.
The 480 input features are reshaped into two dimen-
sions, with 24 rows of histone modifications and 20
columns of features for each histone modification. The
first convolutional layer uses 64 kernels, with 24 rows
and 2 columns, with stride size of 1 to scan through
the input, forming the output volume of the first con-
volutional layer as [64×1×19]. The second convolu-
tional layer uses 64 kernels, with 1 rows and 2 column,
with a stride size 1, forming the volume [64×1×18].
Each convolutional layer connects with PReLu layer
for thresholding the output from convolutional layer,
retaining the same output volume as its previous con-
volutional layer. The Max-Pooling [60] uses pool size
[1×2] for downsampling. After downsampling, it con-
nects with two fully-connected layers, each with 300 neu-
rons. Finally, the second fully-connected layer connects
the last layer with one neuron representing the output
layer. We use mean-squared error as the loss function.
We tried RMSProp [56], Adadelta [57], Adagrad [58], and
Adam [59] optimizers and found Adagrad [58] to work
the best for our model. In order to prevent overfitting,
we added dropout at a rate of 0.5 between Max-Pooling
and the first fully connected layer and between the first
and second fully connected layer, and dropout rate of
0.3 between the second fully connected layer and the
output layer.

Fang et al. BMC Bioinformatics (2019) 20:488 Page 16 of 17

Additional file

Additional file 1: This file contains the following: a brief summary of SVM
and Random Forest models for distal regulatory site prediction, PR Metric
and Data Preprocessing, PR Results, 1 Figure that describes the pipeline for
generating the PR dataset, 1 Figure that summarizes the PR results, and 3
Figures that summarize the Sensitivity analysis for tuning our
Convolutional Neural Network. (PDF 421 kb)

Abbreviations
AUC: Area under curve; CNN: Convolutional neural network; DHS: DNase I
hypersensitivity regions; DNN: Deep neural network; DRE: Distal regulatory
element; GPU: Graphics processing unit; ML: Machine learning; PR: Precision
recall; RBF: Radial basis function; RF: Random forest; RPKM: Reads per kilobase
per million; SVM: Support vector machines; TF: Transcription factor; TFBS:
Transcription factor binding site; TPM: True positive marker; TSS: Transcription
start site; VR: Validation rate

Acknowledgements
Not Applicable.

Authors’ contributions
Conceptualization , SC; Formal Analysis: CHF, NT, MR, and SC; Investigation,
CHF, NT, and SC; Data Curation, CHF, MR; Writing – Original Draft, CHF and SC;
Writing – Review & Editing, CHF, NT, AG, and SC, Visualization, CHF and SC;
Project Administration, AG and SC; Funding Acquisition, AG and SC All authors
have read and approved the manuscript.

Funding
Supported by the NIH Grant# 1R01AI123037 (A.G., S.C.) and through a grant
from the Lilly Endowment (Wabash Heartland Innovation Network) (S.C.). The
funding bodies did not play any role in the design of AIKYATAN, the
interpretation of data, or the writing of this manuscript.

Availability of data andmaterials
All source code will be made publicly available at https://bitbucket.org/
cellsandmachines/aikyatan.

Ethics approval and consent to participate
Not Applicable.

Consent for publication
Not Applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Ag. and Biological Engineering, Purdue University, West
Lafayette, IN, USA. 2College of Computing, Prince of Songkla University,
Bangkok, Thailand. 3Google Inc., Mountain View, California, USA. 4Department
of Ag. and Biological Engineering, Purdue University, Purdue University, IN, USA.

Received: 2 March 2019 Accepted: 22 August 2019

References
1. Heintzman ND, Ren B. Finding distal regulatory elements in the human

genome. Curr Opin Genet Develop. 2009;19(6):541–9.
2. Weintraub AS, Li CH, Zamudio AV, Sigova AA, Hannett NM, Day DS,

Abraham BJ, Cohen MA, Nabet B, Buckley DL, et al. Yy1 is a structural
regulator of enhancer-promoter loops. Cell. 2017;171(7):1573–88.

3. Parker SC, Stitzel ML, Taylor DL, Orozco JM, Erdos MR, Akiyama JA,
van Bueren KL, Chines PS, Narisu N, Black BL, et al. Chromatin stretch
enhancer states drive cell-specific gene regulation and harbor human
disease risk variants. Proc Nat Acad Sci. 2013;110(44):17921–6.

4. Raab JR, Kamakaka RT. Insulators and promoters: closer than we think.
Nat Rev Genet. 2010;11(6):439.

5. Consortium EP, et al. An integrated encyclopedia of dna elements in the
human genome. Nature. 2012;489(7414):57–74.

6. ShlyuevaD, Stampfel G, Stark A. Transcriptional enhancers: from properties
to genome-wide predictions. Nat Rev Genet. 2014;15(4):272–86.

7. Kellis M, Wold B, Snyder MP, Bernstein BE, Kundaje A, Marinov GK,
Ward LD, Birney E, Crawford GE, Dekker J, et al. Defining functional dna
elements in the human genome. Proc Natl Acad Sci. 2014;111(17):6131–8.

8. Kelsey G, Stegle O, Reik W. Single-cell epigenomics: Recording the past
and predicting the future. Science. 2017;358(6359):69–75.

9. Hait TA, Amar D, Shamir R, Elkon R. Focs: a novel method for analyzing
enhancer and gene activity patterns infers an extensive
enhancer–promoter map. Genome Biol. 2018;19(1):56.

10. Theera-Ampornpunt N, Chaterji S. Prediction of enhancer rna activity
levels from chip-seq-derived histone modification combinatorial codes.
In: 2017 IEEE International Conference on Bioinformatics and Biomedicine
(BIBM). IEEE; 2017. p. 1206–14.

11. Kim SG, Harwani M, Grama A, Chaterji S. EP-DNN: A deep neural
network-based global enhancer prediction algorithm. Sci Rep. 2016;6:1–13.

12. Kim SG, Theera-Ampornpunt N, Fang C.-H., Harwani M, Grama A,
Chaterji S. Opening up the blackbox: an interpretable deep neural
network-based classifier for cell-type specific enhancer predictions. BMC
Syst Biol. 2016;10(2):54.

13. Ernst J, Kellis M. Large-scale imputation of epigenomic datasets for
systematic annotation of diverse human tissues. Nat Biotechnol.
2015;33(4):364.

14. Gundem G, Perez-Llamas C, Jene-Sanz A, Kedzierska A, Islam A, Deu-
Pons J, Furney SJ, Lopez-Bigas N. Intogen: integration and data mining of
multidimensional oncogenomic data. Nat Methods. 2010;7(2):92.

15. Deng G, Yang J, Zhang Q, Xiao Z-X, Cai H. Methcna: a database for
integrating genomic and epigenomic data in human cancer. BMC
genomics. 2018;19(1):138.

16. Lehner B, CrombieC, Tischler J, Fortunato A, Fraser AG. Systematic mapping
of genetic interactions in caenorhabditis elegans identifies common
modifiers of diverse signaling pathways. Nat Genet. 2006;38(8):896.

17. Koo J, Zhang J, Chaterji S. Tiresias: Context-sensitive approach to
decipher the presence and strength of microrna regulatory interactions.
Theranostics. 2018;8(1):277.

18. Ghoshal A, Grama A, Bagchi S, Chaterji S. An ensemble svm model for
the accurate prediction of non-canonical microrna targets. In:
Proceedings of the 6th ACM Conference on Bioinformatics,
Computational Biology and Health Informatics. ACM; 2015. p. 403–12.

19. Theera-Ampornpunt N, Kim SG, Ghoshal A, Bagchi S, Grama A, Chaterji
S. Fast training on large genomics data using distributed support vector
machines. In: Communication Systems and Networks (COMSNETS), 2016
8th International Conference On. IEEE; 2016. p. 1–8.

20. Mou L, Li G, Zhang L, Wang T, Jin Z. Convolutional neural networks over
tree structures for programming language processing. In: AAAI; 2016. p. 4.

21. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep
convolutional neural networks. In: Advances in Neural Information
Processing Systems; 2012. p. 1097–105.

22. Szegedy C, LiuW, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D,
Vanhoucke V, Rabinovich A, et al. Going deeper with convolutions. CVPR;
2015. p. 1–9.

23. Simonyan K, Zisserman A. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556. 2014. p1–14.

24. He K, Zhang X, Ren S, Sun J. Deep residual learning for image
recognition. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition; 2016. p. 770–778.

25. Bernstein BE, Stamatoyannopoulos JA, Costello JF, Ren B, Milosavljevic A,
Meissner A, Kellis M, Marra MA, Beaudet AL, Ecker JR, Farnham PJ, Hirst
M, Lander ES, Mikkelsen TS, Thomson JA. The nih roadmap epigenomics
mapping consortium. Nat Biotech. 2010;28(10):1045–1048. Opinion and
Comment.

26. Chollet F. Keras. GitHub. 2015. https://github.com/fchollet/keras.
27. Theano Development Team. Theano: A Python framework for fast

computation of mathematical expressions. arXiv e-prints.
2016;abs/1605.02688.

28. Dao LT, Galindo-Albarrán AO, Castro-Mondragon JA, Andrieu-Soler C,
Medina-Rivera A, Souaid C, Charbonnier G, Griffon A, Vanhille L,
Stephen T, et al. Genome-wide characterization of mammalian promoters
with distal enhancer functions. Nat Genet. 2017;49(7):1073.

https://doi.org/s12859-019-3049-1
https://bitbucket.org/cellsandmachines/aikyatan
https://bitbucket.org/cellsandmachines/aikyatan
https://github.com/fchollet/keras

Fang et al. BMC Bioinformatics (2019) 20:488 Page 17 of 17

29. Rickels R, Shilatifard A. Enhancer logic and mechanics in development
and disease. Trends Cell Biol. 2018;28(8):608–30.

30. Stephens ZD, Lee SY, Faghri F, Campbell RH, Zhai C, Efron MJ, Iyer R,
Schatz MC, Sinha S, Robinson GE. Big data: astronomical or genomical?
PLoS Biol. 2015;13(7):1002195.

31. Rajagopal N, Xie W, Li Y, Wagner U, Wang W, Stamatoyannopoulos J,
Ernst J, Kellis M, Ren B. Rfecs: a random-forest based algorithm for
enhancer identification from chromatin state. PLoS Comput Biol.
2013;9(3):1002968.

32. Kleftogiannis D, Kalnis P, Bajic VB. DEEP: a general computational
framework for predicting enhancers. Nucleic Acids Res. 2014. p1–14.

33. Liu F, Li H, Ren C, Bo X, Shu W. Pedla: predicting enhancers with a deep
learning-based algorithmic framework. bioRxiv. 2016. URL https://doi.org/
10.1101/036129.
http://biorxiv.org/content/early/2016/05/18/036129.full.pdf. Accessed
Aug 2019.

34. Vapnik VN. An overview of statistical learning theory. IEEE Trans Neural
Netw. 1999;10(5):988–99.

35. Wahba G, et al. Support vector machines, reproducing kernel hilbert
spaces and the randomized gacv. Adv Kernel Meth-Supp Vect Learn.
1999;6:69–87.

36. Evgeniou T, Pontil M, Poggio T. Regularization networks and support
vector machines. Adv Comput Math. 2000;13(1):1.

37. Bordes A, Ertekin S, Weston J, Bottou L. Fast kernel classifiers with online
and active learning. J Mach Learn Res. 2005;6(Sep):1579–619.

38. Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with
neural networks. Science. 2006;313(5786):504–07. URL https://doi.org/10.
1126/science.1127647.
http://science.sciencemag.org/content/313/5786/504.full.pdf. Accessed
Aug 2019.

39. Why does deep and cheap learning work so well? J Stat Phys. 2017;168(6):
1223–47.

40. Poggio T, Mhaskar H, Rosasco L, Miranda B, Liao Q. Why and when can
deep-but not shallow-networks avoid the curse of dimensionality: A
review. Int J Autom Comput. 2017;14(5):503–19.

41. Anselmi F, Rosasco L, Tan C, Poggio T. Deep convolutional networks are
hierarchical kernel machines. arXiv preprint arXiv:1508.01084. 2015.

42. Poggio T, Rosasco L, Shashua A, Cohen N, Anselmi F. Notes on
hierarchical splines, dclns and i-theory. Tech Rep. 2015.

43. Poggio T, Anselmi F, Rosasco L. I-theory on depth vs width: hierarchical
function composition. Tech Rep. 2015.

44. Mhaskar H, Liao Q, Poggio T. Learning functions: when is deep better
than shallow. arXiv preprint arXiv:1603.00988. 2016.

45. Mhaskar HN, Poggio T. Deep vs. shallow networks: An approximation
theory perspective. Anal Appl. 2016;14(06):829–48.

46. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep
convolutional neural networks. In: Pereira F, Burges CJC, Bottou L,
Weinberger KQ, editors. Advances in Neural Information Processing
Systems 25. Curran Associates, Inc; 2012. p. 1097–105. URL http://papers.
nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-
neural-networks.pdf. Accessed Aug 2019.

47. Hinton G, Deng L, Yu D, Dahl GE, Mohamed A-r, Jaitly N, Senior A,
Vanhoucke V, Nguyen P, Sainath TN, et al. Deep neural networks for
acoustic modeling in speech recognition: The shared views of four
research groups. IEEE Signal Proc Mag. 2012;29(6):82–97.

48. Collobert R, Weston J, Bottou L, Karlen M, Kavukcuoglu K, Kuksa P.
Natural language processing (almost) from scratch. J Mach Learn Res.
2011;12(Aug):2493–537.

49. Lena PD, Nagata K, Baldi PF. Deep spatio-temporal architectures and
learning for protein structure prediction. In: Advances in Neural
Information Processing Systems; 2012. p. 512–20.

50. Zhang S, Zhou J, Hu H, Gong H, Chen L, Cheng C, Zeng J. A deep
learning framework for modeling structural features of rna-binding
protein targets. Nucleic Acids Res. 2016;44(4):32. doi:10.1093/nar/gkv1025.
http://nar.oxfordjournals.org/content/44/4/e32.full.pdf+html. Accessed
Aug 2019.

51. Leung MKK, Xiong HY, Lee LJ, Frey BJ. Deep learning of the
tissue-regulated splicing code. Bioinformatics. 2014;30(12):121–9.
doi:10.1093/bioinformatics/btu277.
http://bioinformatics.oxfordjournals.org/content/30/12/i121.full.pdf+html.
Accessed Aug 2019.

52. Bernstein BE, Stamatoyannopoulos JA, Costello JF, Ren B, Milosavljevic A,
Meissner A, Kellis M, Marra MA, Beaudet AL, Ecker JR, et al. The nih
roadmap epigenomics mapping consortium. Nat Biotechnol. 2010;28(10):
1045–8.

53. Hawkins RD, HonGC, Lee LK, NgoQ, Lister R, PelizzolaM, Edsall LE, Kuan S,
Luu Y, Klugman S, et al. Distinct epigenomic landscapes of pluripotent
and lineage-committed human cells. Cell stem cell. 2010;6(5):479–91.

54. UCSC ENCODE DNase. http://hgdownload.cse.ucsc.edu/goldenPath/
hg19/encodeDCC/wgEncodeUwDnase/. Accessed Aug 2019.

55. He K, Zhang X, Ren S, Sun J. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In: Proceedings of
the IEEE International Conference on Computer Vision; 2015. p. 1026–34.

56. Tieleman T, Hinton G. Lecture 6.5-rmsprop, coursera: Neural networks for
machine learning. University of Toronto, Tech Rep. 2012.

57. Zeiler MD. Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701. 2012.

58. Duchi J, Hazan E, Singer Y. Adaptive subgradient methods for online
learning and stochastic optimization. J Mach Learn Res. 2011;12:2121–59.

59. Kingma D, Ba J. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980. 2014.

60. Scherer D, Müller A, Behnke S. Evaluation of pooling operations in
convolutional architectures for object recognition. In: International
Conference on Artificial Neural Networks. Springer; 2010. p. 92–101.

61. Hofmann T, Schölkopf B, Smola AJ. Kernel methods in machine learning.
Ann Stat. 20081171–220.

62. Quora. What is the recommended minimum training data set size to train
a deep neural network? Quora. 2016. https://www.quora.com/What-is-
the-recommended-minimum-training-data-set-size-to-train-a-deep-
neural-network. Accessed Aug 2019.

63. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M,
Ghemawat S, Irving G, Isard M, et al. Tensorflow: a system for large-scale
machine learning. In: OSDI; 2016. p. 265–83.

64. Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin Z,
Desmaison A, Antiga L, Lerer A. Automatic differentiation in pytorch. In:
NIPS-W; 2017. p. 1–4.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1101/036129
https://doi.org/10.1101/036129
http://arxiv.org/abs/http://biorxiv.org/content/early/2016/05/18/036129.full.pdf
https://doi.org/10.1126/science.1127647
https://doi.org/10.1126/science.1127647
http://arxiv.org/abs/http://science.sciencemag.org/content/313/5786/504.full.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://dx.doi.org/10.1093/nar/gkv1025
http://arxiv.org/abs/http://nar.oxfordjournals.org/content/44/4/e32.full.pdf+html
http://dx.doi.org/10.1093/bioinformatics/btu277
http://arxiv.org/abs/http://bioinformatics.oxfordjournals.org/content/30/12/i121.full.pdf+html
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeUwDnase/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeUwDnase/
https://www.quora.com/What-is-the-recommended-minimum-training-data-set-size-to-train-a-deep-neural-network
https://www.quora.com/What-is-the-recommended-minimum-training-data-set-size-to-train-a-deep-neural-network
https://www.quora.com/What-is-the-recommended-minimum-training-data-set-size-to-train-a-deep-neural-network

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Related Works
	ML Background

	Results
	Performance Metrics and Data Preprocessing
	Empirical Results
	Deep learning models demonstrate faster computation time even on CPU
	Deep Learning Models can leverage GPU-based accelerators
	CNN achieves superior performance in prediction capability and time compared to state-of-art methods

	Discussion
	Conclusions
	Methods
	A. Overview
	B. Epigenomic datasets
	C. Machine learning models
	Deep neural network model
	Convolutional neural network model

	Additional file
	Additional file 1

	Abbreviations
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher's Note

