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Abstract

Background: In order to isolate an individual’s genotype from a sample of biological material, most laboratories use
PCR and Capillary Electrophoresis (CE) to construct a genetic profile based on polymorphic loci known as Short
Tandem Repeats (STRs). The resulting profile consists of CE signal which contains information about the length and
number of STR units amplified. For samples collected from the environment, interpretation of the signal can be
challenging given that information regarding the quality and quantity of the DNA is often limited. The signal can be
further compounded by the presence of noise and PCR artifacts such as stutter which can mask or mimic biological
alleles. Because manual interpretation methods cannot comprehensively account for such nuances, it would be
valuable to develop a signal model that can effectively characterize the various components of STR signal
independent of a priori knowledge of the quantity or quality of DNA.

Results: First, we seek to mathematically characterize the quality of the profile by measuring changes in the signal
with respect to amplicon size. Next, we examine the noise, allele, and stutter components of the signal and develop
distinct models for each. Using cross-validation and model selection, we identify a model that can be effectively
utilized for downstream interpretation. Finally, we show an implementation of the model in NOCIt, a software system
that calculates the a posteriori probability distribution on the number of contributors.

Conclusion: The model was selected using a large, diverse set of DNA samples obtained from 144 different
laboratory conditions; with DNA amounts ranging from a single copy of DNA to hundreds of copies, and the quality of
the profiles ranging from pristine to highly degraded. Implemented in NOCIt, the model enables a probabilisitc
approach to estimating the number of contributors to complex, environmental samples.
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Background
Biological material collected from the environment is rou-
tinely used as a substrate for DNA testing with applica-
tions including human identification in forensic science,
ancient DNA analysis in anthropology, the evaluation of
transplant success in medicine, the identification of mod-
ified crops in the food industry, and fishery and wildlife
survey in ecology [1–3]. Since the 1980s, laboratories
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conducting human identity testing have targeted hyper-
variable microsatellite regions of DNA known as Short
Tandem Repeats (STRs) which consist of variably sized
repetitive sequences. The general workflow consists of
isolating DNA from cellular material, then amplifying
a set of sequences using the polymerase chain reaction
(PCR). Commonly used human identification assays cur-
rently amplify 13 to 24 loci. Each of the loci is composed
of repeating units of up to 7 base pairs, and amplicons typ-
ically range in length from less than 100 to greater than
300 base pairs [4–6].
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Capillary Electrophoresis and DNA Sequencing After
PCR, amplified STRs are typically identified via Capillary
Electrophoresis (CE) and, sometimes, next-generation
sequencing (NGS). Although NGS is well-established in
innumerable fields, its use in human identity testing
remains limited by the relatively slow pace at which stan-
dards and guidelines are issued by the FBI [7] and the
Scientific Working Group on DNA Analysis Methods
(SWGDAM, [8]). With the first set of guidelines concern-
ing the interpretation of STR data obtained from NGS sys-
tems only recently published in April 2019, CE is likely to
persist as a go-to method for achieving fine-grain separa-
tion of STR amplicons, with modern platforms facilitating
automated analysis of hundreds of samples in one day.
Analysis of environmental samples CE quantifies the
amount of STR amplicons of a given size in Relative Flu-
orescence Units (RFU). Traditionally, analysis of the RFU
signal begins with applying a threshold to separate inter-
pretive signal from noise. Next, the genetic profile(s) of the
contributor(s) are deduced using a combination of pres-
ence/absence rules [9]. This method has been shown to
result in inaccurate interpretation of forensic samples that
contain (i) a low mass of DNA, (ii) a mixture of DNA
from several individuals, or (iii) damaged or degraded
DNA [8, 10, 11]. Alternative methods that employ com-
plex, continuous models of the signal have been devel-
oped to facilitate the interpretation of challenging forensic
samples; these models can be used within a likelihood
ratio (LR) framework to evaluate the strength of the
evidence [12–14].

Model of DNA degradation
Regardless of the application, when biological material is
obtained from an uncontrolled environment, the DNA
present in the sample is often degraded or damaged
through exposure to microorganisms, UV radiation, or
acidic conditions. In addition, compounds that are col-
lected with the biological material may co-extract with the
DNA and inhibit PCR. In forensic samples, the major pro-
cesses resulting in DNA degradation include strand cleav-
age from enzymatic degradation (e.g. DNase I in [15]),
hydrolytic and oxidative reactions, as well as UV expo-
sure [16]. In environmental samples such as biological
stains of unknown origin in forensic cases, the combi-
nation of these different processes preferentially affects
alleles of higher molecular weight. Therefore, degraded
samples typically exhibit low peaks or even drop-out for
alleles of larger size (See Fig. 1 and [17–19]).

Degradation as a random process Degraded, dam-
aged, or inhibited profiles typically show an exponential
decay [20] in which RFU signal decreases as the molecular
weight of the allele increases (Fig. 1). This decay is known
to be consistent with a Poisson process [21, 22]. As such,
we model the degradation of the source DNA fragment

(target) as a random process with a rate λ expressed in
degradation events per base pair (bp). According to the
Poisson model, the probability that a target of length s
is not degraded and, hence, available for amplification is
p(s) = e−λs . The rate λ reflects the level of degrada-
tion of the sample; for example, in the case of degradation
through UV radiation, it reflects both the intensity and
time of exposure. If there are n copies of a target of
size s before degradation, the expected number of copies
available for amplification (i.e. after degradation occurred)
is n . e−λs .

Models of the PCR reaction [23, 24] show that we can
expect a proportional relationship between the number of
copies initially available for amplification and the num-
ber of product amplicons. Since the expected intensity
of the CE signal (the peak height at the allele position)
is proportional to the number of product amplicons,
we have:

H(s) = A . e−λs

where the constant A models the number of amplicons
and their quantification through fluorescence (in RFU
per amplicon). Previous studies [25–29] show that an
affine, proportional peak height is a reasonable model.
This model is consistent with the interpretation that the
probability distribution of peak heights at allelic (true)
positions is composed of a combination of amplicon signal
and baseline noise.

Probabilistic modeling of CE-STR profiles
A CE profile consists of peaks observed at multiple loci
(typically 13 to 24). Peaks are characterized by their
height, measured in RFU. When a peak corresponds to
the genotype of a known contributor to the sample, it is
referred to as an allelic or true peak. Stutter peaks, which
result from strand slippage during PCR, typically present
as one STR repeat unit larger or smaller than the biolog-
ical allele [30]. Our model accounts for both forward and
reverse stutter peaks (n+1 and n−1 stutter), and all other
peaks are classified as (background) noise.

Occasionally, the allele of a contributor does not give
rise to a peak: this phenomenon, called drop-out, is char-
acterized by its frequency. In a similar fashion, we charac-
terize the frequency at which stutter and noise peaks fail
to arise and refer to these instances as stutter and noise
drop-out, respectively. In total, the model has 8 compo-
nents: (1) true (allelic) peaks, (2) forward stutter peaks, (3)
reverse stutter peaks, (4) noise peaks, and their drop-out
counterparts: (5) true drop-out, (6) forward stutter drop-
out, (7) reverse stutter drop-out, and (8) noise drop-out.
Peak height variables are modeled using Gaussian random
variables, and drop-out events are modeled as Bernoulli
random variables.
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Fig. 1 The effect of DNA degradation on CE-STR profiles for (a) an untreated sample exhibiting no decay, (b) a sample degraded with 24 mU rDNase
I exhibiting moderate decay, and (c) a sample exposed to UV radiation for 105 min exhibiting both fast decay and drop-out of high molecular
weight alleles. All profiles were obtained from the same whole blood donor, amplified with the GlobalFiler™ PCR Amplification Kit at 0.25 ng, and
injected for 15 s on the Applied Biosystems 3500

Model selection
Among several alternative models for peak heights and
drop-out models, we seek to identify the best model and
the correct explanatory variables. To compare models,
the basic strategy is to choose the model with the lowest
out-of-sample prediction error. The log likelihoods Lh(f )
and LDO(f ) of a model f are used as a measure of the
prediction error. The prediction error and the log likeli-
hood are inversely related; thus, we define the prediction
error L∗(f ) = −L(f )/N , where N is the number of test
samples.

To estimate the out-of-sample prediction error for a
set of models F = {(f1, · · · , fl}, we employ k-fold cross-
validation (with k = 10) [31] separately on each dataset.

For each model f ∈ F we compute μL(f ) and σL(f )
the mean and (unbiased) standard deviation of 6 × k out-
of-sample prediction error estimates (one for each fold
of cross-validation for each of the 6 datasets). For stutter
peaks and stutter drop-out, log-likelihoods for reverse and
forward datasets are pooled together, leading to 12 × k
out-of-sample prediction error estimates.

To select a model, we use a common model selec-
tion rule [31]: we select the most parsimonious model
f ∗ (i.e., the model with the lowest number of free
parameters) such that μL(f ∗) <

(
μL(fmin) + σL(fmin)

)
,

where
(
μL(fmin), σL(fmin)

)
are the mean and the standard

deviation of the model with minimum error prediction
μL(fmin). In the event that there is more than one
model of the same dimension satisfying μL(f ∗) <(
μL(fmin) + σL(fmin)

)
, we use other criteria for selection,

such as the biological and chemical rationale of the model,
as well as its computational cost.

Results
The model described herein, compatible with the above
referenced continuous LR framework, is distinct from
the previous model in several aspects. First, we used
over 1200 single source empirically derived multiplex STR
profiles from pristine, degraded or damaged DNA, or
inhibited PCR processes to develop the model [32]. Sec-
ond, the models were developed to describe the chemistry
of the PCR - namely the distribution of the number of



Karkar et al. BMC Bioinformatics 2019, 20(Suppl 16):588 Page 4 of 14

amplicons as gamma distributions. While most of the
methods account for drop-out probability, all of them
rely on the application of an Analytical Threshold (AT)
to remove noise peaks. Here, we utilize a combination
of Gaussian models which consider explicitly the proba-
bility of drop-out and frequency of noise peaks. Among
several alternative models, we seek to identify the best
model and the correct explanatory variables. This family
of models, which are both tractable and computationally
sound, can describe multi-contributor samples (i.e., signal
arising from more than one individual) [26, 33].

True peak model
We consider five models for a peak arising from a true
(heterozygote) allele, denoted TP1 to TP5. TP1 to TP4 all
have four free parameters θ = (a, b, c, d). TP5 has five
free parameters. All five models are fitted using Maxi-
mum Likelihood Estimator Lh and use affine functions as
in Eq. 1 (see Methods - Model Components).

DNA template model TP1. This model (similar to the
one in [26]) uses x = cDNA, the template (DNA concen-
tration or amount) of the sample. The template cDNA is a
measurement obtained using qPCR (see Methods). Note
that for a given cDNA, the expected peak height will be the
same for all alleles, regardless of locus and dye colors. This
model accounts for undegraded samples.

Degradation Index model TP2. We set
x = cDNA.e−λ.(si−s1), where si is the length of peak (the
allele) i in base pairs, s1 the length of the smallest auto-
somal target sequence, and λ is the degradation rate
estimated from the DI value q for the sample obtained
from qPCR (see Methods).

Undegraded amplitude model TP3. For each dye color
c, we use an undegraded amplitude model, for all alleles of
size si at all loci of dye color c : xi = Ac, estimated by fix-
ing parameter Bc = 0 in the quantification (see Decayed
Amplitude in Methods).

Decayed amplitude model TP4. Given (Ac, Bc) the set
of quantification parameters of the sample for dye color
c (see Methods), we use the decayed amplitude xi =
Ac . eBc.si .

Decayed amplitude model TP5. We define another
decayed amplitude model where we introduce an extra
free parameter j to account for locus-specific degradation
: xi = Ac . eBc.si/j.

The out-of-sample prediction error measurements
obtained by cross-validation for the five true peak models
we considered are shown in Fig. 2. The decayed amplitude
model with four parameters was selected as it outper-
formed other models of similar or lower complexity.

Fig. 2 Out-of-sample prediction error for allelic (true) peak models.
Markers indicate mean values, and bars extend to ± one standard
deviation. k=10 out-of-sample prediction errors per dataset were
estimated using cross validation. Over the 6 datasets, we obtained 60
values for each model, with: (TP1) DNA template model; (TP2)
Degradation Index model; (TP3) Undegraded, amplitude model; (TP4)
and (TP5): Decayed amplitude models with n = 4 and n = 5 free
parameters

Stutter models
We investigate three families of models for stutter peaks.
SP1 and SP2 model peak heights using Maximum Like-
lihood Estimator Lh and affine functions with four free
parameters (see Methods), SR1 uses stutter ratio with five
free parameters, SPE1 to SPE3 use nested models with up
to nine free parameters.

Affine Models for Peak Heights SP1 and SP2. Affine
Fit Parent Peak Height model SP1 uses xi = PPhi, the
height of the parent allele peak. Affine Fit Decayed Ampli-
tude model SP2 uses xi = Ac . eBc.si , the decayed amplitude
for an allele of size si.

Affine stutter ratio model SR1. A common approach
to characterize stutter peaks is to model the stutter ratio
ri = hi/PPhi, where hi is the height of the stutter peak and
PPhi is the height of the parent allele peak. In the case of an
undegraded sample, this ratio has been shown to decrease
exponentially with the amount of DNA template [26].
The stutter ratio’s random variable in SR1 follows a gaus-

sian distribution : N (ur , vr)

{
ur(xi) = a.e(−b.x) + c
vr(xi) = j.e(−b.x) + k ; θ =

(a, b, c, j, k).

Exponential model with Parent Peak Height SPE1,
SPE2 and SPE3. In cases in which there are a low
number of DNA copies, (i.e., low template or degraded
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samples), the stutter peak, its parent peak, or both peaks
may be in the range of baseline noise; as such, the stutter
ratio can be very high and can exceed 1. Some models cir-
cumvent this scenario by defining the stutter ratio using
the sum of the stutter and parent peak heights [14, 34].
In a similar fashion, we defined a series of models with
xi = PPhi, the height of the parent allele peak, defined as
follows:

SPE1 :
{

u(x) = x.(a.e−b.x+c)
v(x) = x.(j.e−b.x+k)

, θ = (a, b, c, j, k) ;

SPE2:
{

u(x) = x.(a.e−b.x+c) + m
v(x) = x.(j.e−b.x+k) + n ; θ = (a, b, c, j, k, m, n)

;

SPE3:
{

u(x) = x.(a.e−b.x+c) + m
v(x) = x.(j.e−l.x+k) + n ; θ =

(a, b, c, j, k, l, m, n)

Models were selected for reverse and forward stutter
to maintain consistency. Models using stutter ratio and
decayed amplitude (see Fig. 3) appeared the least accu-
rate. All other studied models performed similarly over
the datasets, as shown in Fig. 3. Ultimately, the affine peak
height model using parent peak height was selected since
it achieved the best performance with low complexity.

Noise models
Noise has been shown to be proportional to the DNA
amount in [26]. Recently, [35] showed that log-normal

Fig. 3 Out-of-sample prediction error for stutter peaks, reverse and
forward. Markers indicate mean values, and bars extend to ± one
standard deviation. k=10 out-of-sample prediction errors per dataset
were estimated using cross validation. Over the12 datasets (6 reverse
stutter, 6 forward stutter), we obtained 120 values for each model,
with: (SR1) Stutter ratio model with parent peak height; (SP1) Peak
height model with decayed amplitude; (SP2) Peak height model with
parent peak height model; (SPE1 to SPE3) Exponential parent peak
height models with n = 5 to n = 8 free parameters

modeling of noise peak heights performs better than a
normal model, though the normal distribution cannot
be excluded as a model. Our noise model encompasses
several artifacts commonly excluded in noise studies [11,
36–38] such as N + 2 and N - 2 (double-back) stutters, and
half repeat unit stutters that are present, for example, at
loci SE33 and D1S1656. We investigate three models (NP1
to NP3) that all use Maximum Likelihood Estimator Lh
and affine functions.

Undegraded Model NP1. This model of dimension four
uses xi = Ac, the amplitude of the signal at dye color c.

Decayed Amplitude Models NP2 and NP3. Model NP2
has four free parameters and uses xi = Ac . eBc.si , the
decayed amplitude for allele of size si.

Model NP3 has five free parameters, four from NP2 plus
an extra parameter j : xi = Ac . eBc.si/j to account for locus-
specific degradation.

Decayed amplitude appears to be the best explanatory
variable, particularly at higher injection times (Fig. 4).
The most parsimonious decayed amplitude model was
selected.

Drop-out models
We investigate drop-out using three families of models,
Exponential Regression, Logistic Regression, and constant
frequency. All drop-out models are fitted by maximizing
LDO (see Methods).

Fig. 4 Out-of-sample prediction error for noise peak models. Markers
indicate mean values, and bars extend to ± one standard deviation.
k=10 out-of-sample prediction errors per dataset were estimated
using cross validation. Over the 6 datasets, we obtained 60 values for
each model, with: (NP1) Undegraded amplitude model; (NP2)
Decayed amplitude model, n=4; (NP3) Decayed amplitude model,
n=5
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Allelic drop-out models TDO1 and TDO2. These
drop-out models both have two free parameters θ = (a, b)

and use xi = Ac . eBc.si , the decayed amplitude for
allele of size si. Exponential Regression model TDO1 uses
exponential function : p(DO) = a.e−bx. Decayed Logistic
Regression model TDO2 uses logistic function : p(DO) =
1 − 1

1+e−b(x−a) .

Stutter drop-out models SDO1 and SDO2. Stutter
dropout models use the Exponential Regression function
p(DO) = a.e−bx. Parent Peak Height model SDO1 uses
xi = PPhi, the height of the parent allele peak. Decayed
Amplitude model SDO2 uses xi = Ac . eBc.si , the decayed
amplitude for allele of size si.

Noise drop-out models NDO1 and NDO2. Decayed
Amplitude model NDO1 uses the decayed amplitude and
the Exponential Regression function. Constant frequency
model NDO2 uses a constant function p(DO) = a .

For allelic drop-out (TDO1 and TDO2 on Fig. 5), the
Exponential and Logistic models provided similar results.
Since exponential regression is consistent with previous
studies [26], the exponential form was used for all other
drop-out components.

For stutter drop-out (SDO1 and SDO2 on Fig. 5),
both models performed similarly. The model using parent
peak height as the explanatory variable was selected, how-
ever, because it provides consistency with the explanatory
variable for the stutter peak model.

For noise drop-out (NDO1 and NDO2 on Fig. 5), both
models exhibited similar prediction error. The constant
model was selected because it is more parsimonious.

Software implementation
Data and selected models of the components (see Table 1)
are implemented in the NOCIt/CEESIt software suite
available on the PROVEDIt website [39]. Briefly, NOCIt
is a statistical software that performs a probabilistic eval-
uation of the number of contributors of a DNA sample.
It computes the distribution of the a posteriori probabil-
ity P(N = n|E), n = 1, . . . Nmax for an evidence sample
E of having n = N contributors (see Methods and [26]).
We extended the algorithm to account for differential
degradation rates, implemented the selected models and
conducted a study using over 800 DNA mixtures of 1 to
5 contributors from the PROVEDIt database [32]. The
profiles contain DNA from 1 to 5 contributors; the con-
tributor mixture ratios and template DNA amounts vary;
and the profiles range in quality from pristine to severly
comprised. Fig. 6 presents statistics on the a posteri-
ori probability (APP) calculated by NOCIt for n = 1
to n = Nmax = 5 contributors. Accuracy of the APP
is computed as the frequency at which the APP of the

Fig. 5 Out-of-sample prediction error for drop-out components.
Markers indicate mean values, and bars extend to ± one standard
deviation. k=10 out-of-sample prediction errors per dataset were
estimated using cross validation. From left to right: Allelic drop-out (6
datasets) with: Allele drop-out models (TDO1) exponential, decayed
amplitude model and (TDO2) logistic, decayed amplitude model;
Stutter drop-out, exponential models (6 reverse, 6 forward datasets)
with (SDO1) using Parent Peak Height and (SDO2) using decayed
amplitude; Noise drop-out models (6 datatsets) with (NDO1) using
constant model and (NDO2) using exponential model with decayed
amplitude

Table 1 Models for Peaks and Drop-out components

Component Model Input Likelihood
function

True peak

N (μ, σ);

⎧
⎨

⎩
μ = u(x) = a.x + b

σ = v(x) = c.x + d

xi = Ac .eBc .si

Lh
Noise peak

Forward stutter
xi = PPHi

Reverse stutter

True peak D.O.

p(x) = a.eb.x

xi = Ac .eBc .si

Ldo

Reverse
stutter D.O. xi = PPHi

Forward
stutter D.O.

Noise peak
D.O.

p(x) = a a = f (hi)

For each model component, at each locus, we indicate the probability distribution,
its analytical form, and the model input xi , namely Decayed Amplitude for peaks in
allelic and noise position, and PPHi (parent peak height) for peaks in reverse and
forward stutter position. Peak models follow a normal density, and the frequencies
of drop-out are modeled using an exponential decay. Noise drop-out parameter a is
independent of the observed sample. D.O. denotes drop-out

http://lftdi.camden.rutgers.edu/provedit/software/
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Fig. 6 Accuracy of the a posteriori probability (APP) of the Number of Contributor (NOC) using the selected model components. For n = 1 to
n = Nmax = 5, the APP is produced using an extended version of NOCIt [26] that accounts for differential degradation. 1% accuracy statistic is the
frequency, over 819 Identifiler Plus samples (left panel) and 826 GlobalFiler samples (right panel), for which NOCIt produced an APP > 0.01 for the
true number of contributor(s) in the sample. For each sample, the B value of the decayed amplitude model was used to define 5 categories of
degradation reported as Decay range

actual number of contributor (NOC) is higher than 1%
(P(N = NOC|E) > 0.01). Performance of the model is
excellent for the less ambiguous, less degraded samples,
and exhibits an expected decline for the more complex,
compromised samples.

Discussion
Contrary to models described elsewhere [13, 14, 34, 40],
we separate the modeling of peak heights from the mod-
eling of drop-out: in short, we aim to characterize the
observed peaks rather than model the distribution of
amplicons from individual genotypes. The stutter model
we propose reflects the same approach.

We can examine the models we obtain to understand
the characteristics of CE-STR profiles from the parame-
ters of the model. We can then compare parameters values
between loci of the same or different datasets. For exam-
ple, the frequency of noise peaks, commonly referred to
as drop-in, can be evaluated. In the GlobalFiler™ datasets,
increasing the injection time from 5 to 25 seconds did not
drastically affect the drop-in rate, with a typical median
increase of 1.7% (maximum of 4%, minimum of 0.5%).
The amelogenin locus exhibits different behavior, with
a decrease in noise of 5% (see noise drop-out rate in
Additional file 2: Table S2).

Another informative quantity is the expected amplitude
of the baseline noise relative to the overall signal, which
can be evaluated with the a parameter of the Noise model

u(x) = a.x + b. This parameter can be roughly inter-
preted as the expected proportion of the total signal that
is, on average, attributable to a single noise peak. These
values (see Additional file 1: Table S1) were not signifi-
cantly affected by the injection time. In addition, the value
of second parameter, b, exhibited a small increase in the
range of 0.1 to 1 RFU, suggesting that our noise model is
robust and applicable to a variety of template DNA masses
and instrument settings.

For many applications, evaluation of the drop-out rate
is critical. However, such estimation is not straightfor-
ward since it is conditioned on both the template DNA
mass and level of degradation. Using our model on single-
source samples, one can evaluate the expected drop-out
rate based on the signal amplitude rather than the tem-
plate mass and degradation index. For example, using the
Identifiler Plus kit with 10-second injection, the drop-
out model parameters of locus D5S818 (Additional file 2:
Table S2) are (a = 0.684; b = 0.0139); thus, to ensure
a drop-out rate lower than 1%, a sample should exhibit
total signal amplitude of at least 130 RFU (Details avail-
able at [41]). For a given signal amplitude, our model
estimates the true (allelic) peak height. Given the param-
eters of the true (allelic peak) model of, for example, the
locus D5S818 (see Additional file 1: Table S1), for a sin-
gle source heterozygote sample, a signal amplitude of 130
RFU yields allelic, heterozygous peaks of height 63 RFU
(or 126 RFU for homozygous individuals) on average. In
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a similar fashion, when signal exhibits peaks of 40 RFU
from a heterozygous, single-source, one could expect a
drop-out rate of 5%, and 10% for signal that contains peaks
of 30 RFU.

Conclusion
We propose a continuous, probabilistic model for CE-
STR signal where we utilize the observed amplitude of the
signal to model the DNA amount and level of degrada-
tion. Using a large amount of data, we evaluated several
models for each component of the signal and selected
the model that provides the best out-of-sample prediction
error. Further development of this approach could extend
to categorical data such as SNPs or micro-haplotypes.
Next-generation sequencing data could also be investi-
gated by modeling the number of reads, assuming that the
flow cell is not saturated.

Methods
Samples and datasets
Extraction and generation of condition-dependent DNA
samples
Single-source whole blood samples from a total of fifty
donors were diluted to 1:10, 1:100, and 1:1000 in TE
buffer and subjected to various protocols to generate
untreated or compromised DNA, as described below. The
number of donor cell lines treated with each protocol
is summarized in Table 2. Generally, UV-damaged sam-
ples were extracted using the EZ1®DNA Investigator Kit
on the EZ1®Advanced (Qiagen) following the manufac-
turer’s recommended protocols for Pretreatment for Var-
ious Casework and Reference Samples and DNA Purifica-
tion (Large-Volume Protocol) [42]. All other sample types
were extracted in 50 μL aliquots using the QIAamp®DNA
Investigator Kit (Qiagen) following the manufacturer’s
recommended protocol for Isolation of Total DNA from
Small Volumes of Blood or Saliva [43]. The elution volume
was 50 μL for both extraction methods.

(i) Untreated samples were generated by extracting
aliquots of each whole blood dilution as described above.
These extracts were not subjected to any conditions
intended to induce inefficiencies in amplification.

(ii) rDNase I-degraded samples were produced using the
DNA-free™Kit (Life Technologies). Three levels of degra-
dation were generated by digesting extracts with 6, 12, and
24 mU rDNase I. The digestion parameters followed the
manufacturer’s recommended protocol with a ten-minute
incubation at 37C; the reaction was subsequently halted
by proprietary enzyme inactivation [44].

(iii) Fragmentase®-degraded samples were produced by
extracting 50 μL aliquots of each whole blood dilution

Table 2 Summary of the different protocols utilized to generate
extracts of differing condition. For each protocol, three levels
were generated such that the extracts generally became more
compromised as the level increased (i.e., due to increasing
enzyme concentration, increasing incubation time, increasing
sonication cycle number, etc.)

Number of whole blood donors (n) for each condition
level

Condition I II III N/A

Untreated n=50

(mU) 6 12 24

rDNase I n = 35 n = 35 n = 35

(min) 15 30 45

Fragmentase® n = 15 n = 15 n = 15

(cycles) 2 10 30

Sonication n = 14 n = 14 n = 14

(min) 15 60 120

UV Damage n = 22 n = 22 n = 22

(μL) 15 22 35

Humic Acid n = 22 n = 22 n = 22

The number of donors from which DNA extracts were obtained and subjected to
the various protocols is indicated

using the QIAamp®DNA Investigator Kit and a modified
elution volume of 37 μL deionized water. Three levels
of degradation were created using the NEBNext®dsDNA
Fragmentase®Kit (New England Biolabs) by incubating
extracts with the Fragmentase enzyme cocktail for 15,
30, and 45 min. The digestion parameters followed the
manufacturer’s recommended protocol [45], and the reac-
tions were halted by the addition of 10 μL 0.5 M EDTA.
To remove EDTA, all extracts subsequently underwent
a second extraction following the manufacturer’s recom-
mended protocol [43].

(iv) Sonicated samples were generated by diluting
extracts to a total volume of 200 μL with TE buffer. The
extracts were sonicated using the Fisher Scientific™Model
50 Sonic Dismembrator at 25% amplitude for two, ten, and
thirty sonication cycles, where one cycle was defined as
30s sonication on followed by 30s sonication off.

(v) UV-damaged samples were created by spotting 100
μL aliquots of each whole blood dilution onto glass micro-
scope slides and allowing the stains to air dry for 75
min. The stains were subsequently irradiated using the
QIAgility®UV lamp for 15, 60, and 120 min. All stains
were collected using the double swab method using cotton
swabs moistened with deionized water [46]. Swabs were
air dried overnight, then extracted as described above.
(vi) Humic Acid-inhibited extracts were generated by
combining 50 μL aliquots of each whole blood dilution
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with 50 μL Buffer ATL, 10 μL Proteinase K, and 100 μL
Buffer AL (containing cRNA) [43]. These solutions were
vortexed, incubated at 50°C for 10 min, then briefly cen-
trifuged. Three volumes (15, 22, and 35 μL) of 2 mg/mL
humic acid solution (Sigma Aldrich) were added to the
cell lysate solutions which were subsequently incubated
at room temperature for two hours, vortexing every 30
min to mix. After incubation, the extraction protocol was
resumed to completion.

Quantification, amplification, capillary electrophoresis and
analysis.
All extracts were quantified using Quantifiler®Trio DNA
Quantification Kit (Applied Biosystems) on the Applied
Biosystems®7500 using the manufacturer’s recommended
thermalcycling protocol and an external calibration curve
[47]. The concentration of the small autosomal target was
used to calculate the appropriate volume of extract to
amplify given the desired template mass. Extracts were
amplified on the GeneAmp®PCR Amplification System
9700 using 9600 emulation mode with a gold sample block
using the GlobalFiler®PCR Amplification Kit (Applied
Biosystems) (29 cycles) following the manufacturer’s rec-
ommended protocol at the following target masses: 0.5,
0.25, 0.125, 0.063, 0.031, 0.016, and 0.008 ng [48]. Extracts
were also amplified using the Identifiler®Plus PCR Ampli-
fication Kit (Applied Biosystems) (28 cycles) following the
manufacturer’s recommended protocol (28 cycles) using
the same thermalcycler and template masses specified
above [49]. Positive and negative amplification controls
were processed in tandem. Where necessary, dilutions
were prepared in TE buffer. GlobalFiler®amplicons were
injected for 5, 15, and 25 s at 1.2 kV on the Applied
Biosystems®3500 Genetic Analyzer, and Identifiler®Plus
amplicons were injected for 5, 10, and 20 s at 3 kV on the
Applied Biosystems®3130 Genetic Analyzer. CE profiles
were analyzed with GeneMapper®ID-X v1.4 at an analyti-
cal threshold of 1 RFU. The genotype table for each sample
was exported from GeneMapper®as a CSV file containing
the allele, size, and height for all peaks. Table 3 present a
synthesis of peak calling. Artifacts in the profile, such as
pull-up and complex pull-up, were filtered using NOCIt.
The pull-up height ratio and size range were set to 6% and
±0.6 base pairs, respectively. The complex pull-up height
ratio, sister height ratio, and size range were set to 6%,
50%, and ±0.3 base pairs, respectively.

Characterization of degradation in DNA samples
qPCR Degradation Index as a measurement of degra-
dation One way to evaluate the amount of degradation
of a DNA sample is to estimate the ratio of the number
of copies of two target sequences of differing length [20].
To this end, the Degradation Index, measured using real-
time PCR (qPCR), has been proposed [50]. The Degrada-

Table 3 The number of peaks and drop-out peaks observed for
each model component in the Identifiler™ Plus (IP) 5, 10 and 20
second and GlobalFiler™ (GF) 5, 15 and 25 second datasets

Dataset Model component # peaks # drop-out peaks

IP Allele 39,939 6329

5 second Reverse 14,429 18,840

Forward 4985 28,284

Noise 53,577 461,466

IP Allele 40,110 5,154

10 second Reverse 17,857 14,603

Forward 6478 25,982

Noise 62,698 438,092

IP Allele 39,318 4934

20 second Reverse 20,092 11,709

Forward 7817 23,984

Noise 69,199 421,334

IP Allele 53,175 10,807

5 second Reverse 4942 43,855

Forward 17,366 31,431

Noise 79,436 1,005,765

IP Allele 54,988 7320

15 second Reverse 25,851 21,586

Forward 8145 39,292

Noise 90,603 962,560

IP Allele 56,754 7186

20 second Reverse 30,571 18,092

Forward 10,587 38,076

Noise 98,704 980,775

For each single source profile, peaks were categorized according to the known
donor genotype as allele, reverse stutter, forward stutter or noise. When no peak
was observed, the position was considered drop-out

tion Index is described as: q = s1/s2 where s1 and s2 are
autosomal target sequences of 80 and 214 bp, respectively.
It can be shown that this value is related to the degradation
rate λ by the equation log(q) = −δ.λ where δ = s2 − s1.
CE signal-based characterization of the sample:
Decayed amplitude In the case of controlled, single-
source samples, we expect the total signal at a given locus
to be mainly driven by the total number of amplicons pro-
duced at that locus, which is proportional to the number
of copies initially available for amplification. For degraded
samples, that amount will follow an exponential decrease
that depends on the size of the alleles. We argue that the
evolution of the total signal across loci labeled with the
same fluorescent dye is related to the sample degradation
rate λ.

For each dye color c , we compute the decayed amplitude
function fc(s) = Ac . eBcs , where Ac is the expected signal
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amplitude, for color c, without degradation, and Bc is the
decay factor, which reflects the degradation of the sam-
ple for color c. We define the amplitude of the signal for a
given locus as the sum of all observed peaks (h1, · · · , hn)

at the locus l : Hl = ∑n
1 hi. For a set of N loci (l1, · · · , lN )

at a given dye color (usually 3 ≤ N ≤ 5), we have a set of
N amplitudes (H1, · · · , HN ). At a locus l, for n observed
peaks of height at position of alleles of size (s1, · · · , sn)

we define the weighted average size s̄i of the alleles at the
locus by :

s̄l =
∑n

1 hi.si∑n
1 hi

If the CE profile for a particular dye color presents at
least two loci l, m for which we can compute s̄l, s̄m, then an
exponential regression curve of the form fc(s) = Ac . eBcs

has a unique solution Ac, Bc. Thus, we define the Decayed
Amplitude, for an allele of size si as xi = Ac . eBc.si . Note
that if the CE instrument has the same sensitivity for all
dyes, one can use loci from different dye colors for this
computation. Such a characterization has two major fea-
tures: (i) it does not require a separate measurement of
the DNA amount (i.e., quantitation via qPCR) and (ii)
it does not require prior knowledge of the alleles that
are present in the sample (i.e., the contributor genotype).
These two features enable characterization of the degra-
dation of a sample regardless of its DNA template mass or
allelic content.

Model components
Peaks
The heights of true (allelic) peaks, stutter peaks (forward
and reverse), and noise peaks are modeled as Gaussian
distributions N (μ, σ) with mean and standard deviation
μ = u(x); σ = v(x), where u and v are functions of a given
peak-dependent explanatory variable x (also referenced as
input). As an example, the affine functions used in [26] is:

N (μ, σ)

{
μ = u(x) = a.x + b
σ = v(x) = c.x + d (1)

where θ = (a, b, c, d) is the set of parameters for the
model, which is estimated from data.

Single-source calibration data allow us to classify each
observed peak as one of the four types: true peak, reverse
stutter, forward stutter, or noise. Consider a sequence of
n peaks of a specific type, of peak heights {h1, · · · , hn}. We
estimate the set of parameters for a model using the Max-
imum Likelihood estimator �ML = arg maxθ (Lh), where

Lh = −
n∑

i=1

(

log (v(xi)) + (hi − u(xi))
2

v(xi)2

)

. (2)

For peaks caused by stutter, we also develop models
using the stutter ratio, which for peak i is ri = hi

PPhi
, where

hi is the stutter peak height and PPhi is the height of the
parent allele peak (i.e., the height of the true peak that
caused the stutter). The log likelihood for a sequence of
stutter ratios (ri) is :

Lr = −
n∑

i=1

(

log (vr(xi)) + (ri − ur(xi))
2

vr(xi)2

)

(3)

If we define
{

u(xi) = PPhi . ur(xi)
v(xi) = PPhi . vr(xi)

, we see that the

log likelihood for a sequence of stutter peak heights
{h1, · · · , hn} is Lh = Lr − ∑n

i=1 log (PPhi), which is the
log likelihood we use for comparing various stutter peak
height models.

Drop-out
Drop-out events are denoted with binary indicator vari-
ables

yi = 1hi =
{

0 if hi ≥ 0,
1 if hi = 0.

We model the probability of drop-out of an allele i
with a function p(x) = f (x, θ) using decayed amplitude
xi = Ac . eBc.si , where si is the length of the allele i in
base pairs. We estimate the set of parameters θ for the
model using the Maximum Likelihood estimator �ML =
arg maxθ (LDO) over all n possible allele i with:

LDO = −
n∑

i=1
log ( p(xi).yi + (1 − p(xi)) (1 − yi) )

Estimation of the number of contributor (NOC) of a DNA
sample
We extended the computation of a posteriori probability
(APP) of the NOC N = n given a DNA sample (Evidence
E) defined in [26] to account for differential (individual)
degradation. To summarize the NOCIt algorithm devel-
oped in [26], the probability of observing evidence E
(defined as the set of peaks in a DNA sample) given N =
n, P(E|N = n), can be written as

P(E|N = n)=
∑

θ∈Tn

P(E|N =n, �=θ)P(� = θ |N = n),

where � represents the fraction of the total sample from
each contributor and each contributor’s degradation, and
Tn is the set of all (discretized) possibilities of � com-
patible with N = n. Further, using the independence of
genotypes across loci, we have

P(E|N = n, � = θ) =
∏

l∈L
P(El|N = n, � = θ),
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where El is the evidence at locus l.
At each locus l, NOCIt uses a Monte Carlo algorithm

to generate random samples of N = n genotypes gl =
{gl,1, ..., gl,n} and estimate P(El, G = gl|N = n, � = θ).
These estimates are used to calculate P(El|N = n, � = θ)

and, consequently, P(E|N = n). Finally, NOCIt calculates
the APP according to

P(N = n|E) = P(E|N = n)
∑Nmax

n=1 P(E|N = n)
.
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