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Abstract

Background: It is widely believed that tertiary nucleotide-nucleotide interactions are essential in determining RNA
structure and function. Currently, direct coupling analysis (DCA) infers nucleotide contacts in a sequence from its
homologous sequence alignment across different species. DCA and similar approaches that use sequence information
alone typically yield a low accuracy, especially when the available homologous sequences are limited. Therefore, new
methods for RNA structural contact inference are desirable because even a single correctly predicted tertiary contact

structural features.

DIRECT is able to improve the RNA contact prediction.

can potentially make the difference between a correct and incorrectly predicted structure. Here we present a new
method DIRECT (Direct Information REweighted by Contact Templates) that incorporates a Restricted Boltzmann
Machine (RBM) to augment the information on sequence co-variations with structural features in contact inference.

Results: Benchmark tests demonstrate that DIRECT achieves better overall performance than DCA approaches.
Compared to mfDCA and pImDCA, DIRECT produces a substantial increase of 41 and 18%, respectively, in accuracy on
average for contact prediction. DIRECT improves predictions for long-range contacts and captures more tertiary

Conclusions: We developed a hybrid approach that incorporates a Restricted Boltzmann Machine (RBM) to augment
the information on sequence co-variations with structural templates in contact inference. Our results demonstrate that
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Background

RNA molecules play critical roles in various biological
processes [1-8]. Therefore, a comprehensive determina-
tion of RNA structure is critical to understanding
structure-function relationships. Unfortunately, it is still
challenging to precisely determine structure from direct
experimentation [9]. In response, many computational
RNA tertiary structure prediction methods have been
developed, including homology or fragments-based pre-
diction (ModeRNA, Vfold, RNAComposer, 3dRNA)
[10-16] and simulation-based prediction (SimRNA,
Rosetta FARFAR, iFoldRNA, NAST) [17-21]. Using
these strategies, sequence and secondary structure infor-
mation can be used to predict RNA tertiary structures.
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The secondary structure is able to define the stem
regions and single-stranded loops but leaves RNA ter-
tiary topology unaddressed. Although prediction accu-
racy has been improved over the years, the tertiary
prediction task remains challenging for large RNAs with
complex topology. One promising approach is to first
predict the tertiary contacts (loop-loop contacts and
contacts in junction regions) and then use these interac-
tions to predict the RNA structure. The starting point
for this approach is to determine the potential contacts
themselves.

One can exploit what is known about nucleotide-
nucleotide interactions from experimental studies to heur-
istically provide data about the distances involved in such
interactions. One of the most successful methods for con-
tact prediction, based on this approach, is direct coupling
analysis (DCA). DCA infers the interacting nucleotides in
a sequence from the sequence coevolution across different
species [22-33]. A recent mean-field formulation of DCA
(mfDCA) provides an efficient computational framework
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to extract direct contact information and has been applied
to many RNAs. It has been shown that DCA provides suf-
ficient native intra-domain and inter-domain nucleotide-
nucleotide contact information for riboswitch and RNA-
protein complexes [34—36]. Another inference method
called plmDCA, which maximizes the pseudo-likelihood
instead of using the mean-field approximation for maxi-
mizing the likelihood, improves the contact predictions
[37]. In addition to DCA, there are also network-based or
machine learning approaches to infer covariation signals
from multiple sequence alignments [38—45]. The feature
common to these approaches is the exclusive use of evolu-
tionary information extracted from homologous sequences.
The prediction accuracy thus depends on accurate multiple
sequence alignments of a thousand or more homologous
sequences.

An alternative to contact prediction from sequence co-
variations is to incorporate structural information as well.
Skwark et al. applied a pattern-recognition approach to
the contact prediction of a residue pair by examining the
expected pattern of nearby contacts surrounding the pair
[46]. Specifically, a 3 x 3 matrix of local contacts is con-
structed as follows. Each residue of the pair is expanded
into a fragment of three residues by including the two
neighbors, and all residue-residue contacts between the
two fragments form the 3 x 3 matrix with element value
of 1 for contact and O for non-contact. It was found that a
contact at the center of the 3 x 3 matrix is typically sur-
rounded by three other contacts in the matrix and a non-
contact at the center. However, a contact at the center is
likely surrounded by no more than one other contact. By
incorporating these local contact patterns, this pattern-
recognition approach is able to improve the prediction of
alpha helices and beta strands for protein secondary
structures.

However, it is more important and difficult to pinpoint
the RNA interactions in loop-loop and junction regions
than to identify its secondary structure of base-pair
interactions. Existing methods on proteins only consider
local structural patterns modeled as statistical potential.
This approach ignores global structural features that
might be useful in improving the RNA prediction accu-
racy. Therefore, we introduce a new method that first
learns a lookup table of contact weights by a Restricted
Boltzmann Machine (RBM) from non-redundant and
known RNA structures. Then, this lookup table is used
to improve RNA contact prediction obtained from
sequence co-evolution by DCA. We call our method
Direct Information REweighted by Contact Templates
(DIRECT). In a benchmark testing on riboswitch,
DIRECT outperforms the state-of-the-art DCA predic-
tions for long-range contacts and loop-loop contacts.
Moreover, DIRECT maintains better predictions when
the number of available sequences is limited. Here, we

Page 2 of 12

examined the accuracy of contact prediction for the 5
RNAs using only 50 randomly chosen homologous
sequences that represent about 11 to 43% of all available
sequences for the 5 RNAs.

Results

DIRECT achieves better overall performance

Traditional direct coupling analysis (DCA) for RNA con-
tact prediction has some drawbacks. For one, DCA
requires a sufficient number of homologous sequences
for accurate sequence co-evolution analysis, which may
not be readily available. Moreover, a co-evolving pair of
nucleotides can interact within the same molecule
(intra-molecule) or across the homodimer interface
(inter-molecule) of the RNA. In addition, several
unknown factors, other than intra- or inter-molecular
interactions, can result in co-evolving pairs and make it
difficult to detect the true contacts among the evolving
pairs without additional information. One way to over-
come this difficulty is to augment the contact detection
of a target RNA sequence with additional information
on the structural contact template expected of the RNA
class to which the target RNA belongs. To this end, we
employ a Restricted Boltzmann Machine to learn the
contact template of RNAs by using the structures and
then improve the contact predictions (Additional file 1:
Figure S1).

We used a published riboswitch benchmark dataset to
evaluate DIRECT described in Methods (Additional file 1:
Table S1, Figure S2) [34]. Six target RNAs are tested as
shown in Fig. 1a, b, ¢, d, e, f. For a given target RNA, the
RNA itself and its homologs are removed from the train-
ing set. We compare the success rate of mfDCA and
DIRECT in predicting the true intra-molecular contacts
from the top detected co-evolving pairs (up to top 100).
As shown in Fig. 1a, b, ¢, d, e, f, DIRECT is 5%~ 7% more
precise (positive predictive value defined in Methods) than
mfDCA for 1Y26, 2GDI, 2GIS, and 3IRW predictions.
There is also a slight increase by 2% for 30W1I prediction.
The improvement continued beyond the top 100 pairs.
The only exception is 3VRS, for it differs from others by
its higher-order RNA architecture stabilized by pseudo-
knots with few standard Watson-Crick pairs, which may
lead to a low accuracy for contact prediction. The average
increase in true positive is 13%. We further evaluated our
method DIRECT comparing it to plmDCA, an algorithm
that infers the direct coupling using pseudo-likelihood
maximization. As shown in Fig. 1g, h, i, j, k, 1, DIRECT is
6%~ 8% more precise (positive predictive value defined in
Methods) than plmDCA for 1Y26, 2GIS, and 30WI pre-
dictions. There is also a slight increase by 2% for 3IRW
prediction. Though DIRECT produces lower PPV in
2GDI and 3VRS, DIRECT has 11% more true positive on
average.
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Fig. 1 DIRECT vs. DCA. Accuracy of nucleotide-nucleotide contact prediction for all six RNAs in the testing set. a, b, ¢, d, e and f Comparison
between DIRECT and mfDCA. The number of true contacts among the top predicted contacts is shown for each of the six RNAs. Except for 3VRS,
DIRECT (blue lines) achieves 13% higher true positive on average than mfDCA (red lines) for true contacts among the top 100 predicted contacts.
g, h, 1, j, k and | Comparison between DIRECT and pImDCA. DIRECT (blue lines) achieves 11% higher true positive on average than pImDCA (red
lines) for true contacts among the top 100 predicted contacts

Number of top predicted contacts

DIRECT improves predictions for long-range contacts

A contact range measures the sequence distance between
the two nucleotides in the contact. Contacts at different
ranges convey different information. Short-range contacts
in an RNA molecule reflect its local secondary structure.
Long-range contacts are base pairs whose contact is based

on folding back, loop-loop, or junction interactions. The
loop-loop and junction interactions dictate the RNA
topology of its structure and are likely to be more useful
than secondary structure pairs in structure prediction. A
slight improvement in long-range contact prediction,
therefore, can have a significant impact on the accuracy
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and speed of RNA tertiary structure modeling because
long-range contacts drastically reduce the structural
space that needs to be searched for modeling. Predic-
tion based on long-range contacts remains difficult
for most traditional methods. DCA predicts more
accurately for short- (5~12nt) and medium-range
(13~24 nt) contacts, but less accurately for long-range
(24 nt+) contacts. DIRECT, however, utilizes the
structural contact template to re-rank DCA predic-
tions and is able to improve the long-range contact
prediction (shown in Additional file 1: Table S2).

DIRECT captures more tertiary structural features

The interaction types between different RNA secondary
structure elements vary significantly. According to Char-
gaff’s second parity rule, base-pair contacts are easier to
predict. It remains difficult to predict long-range tertiary
contacts. DIRECT is designed to capture the structural
contact and improve the prediction accuracy for long-
range tertiary contacts. To verify this, we divided the ter-
tiary contacts into four categories: stem-loop, loop-loop,
intra stem-stem, and inter stem-stem contacts. The intra
stem-stem contacts between two nucleotides in the same
stem determine the stem topology such as bending or
twisting. On the other hand, contacts of stem-loop,
loop-loop, and inter stem-stem can be used as distance
constraints on the RNA tertiary fold.

In Additional file 1: Table S3, it can be seen that the
largest improvement of predictions by DIRECT lies in
tertiary structural contacts. The correct prediction of
base pairs can determine RNA secondary structure. The
prediction accuracies of base pairs are similar between
DCA and DIRECT. These results show that DCA
already performs well for base-pair prediction. In con-
trast, DIRECT improves contacts involving tertiary inter-
actions are improved. There are significant increases of
3~8 intra stem-stem contacts correctly predicted for
1Y26, 2GIS, 30WI, and 3IRW. The intra stem-stem
contacts indicate more bending or twisting contacts in
these RNA structures. A more pronounced effect can be
observed for the other three types of contacts (loop-loop,
loop-stem, and inter stem-stem) predictions. In particu-
lar, contacts involving loop regions are more accurately
predicted. The results show that DIRECT predicts better
tertiary fold.

DIRECT identifies more native contacts

To test if DIRECT is able to identify more native RNA
contacts, we ran 4 popular RNA tertiary structure pre-
diction programs (3dRNA, RNAcomposer, simRNA, and
Vfold3D) on a given riboswitch to build a number of ter-
tiary structures and evaluated the percentage of top con-
tacts by DIRECT that were actually retained as the
structure deviates from the native one. The results of
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riboswitch 1Y26 are shown in Fig. 2. All other riboswitch
tests can be downloaded from our website. We analyzed
the Predicted Contacts based on DIRECT prediction
(PC), Native Contacts in PC (NC), and RNA Contacts
based on predicted structures (RC). Figure 2a shows the
correlation between native contacts and RMSDs. The
all-atom root-mean-square deviation (RMSD) is mea-
sured against the true native structure. The color in
Fig. 2a is the percentage of native contacts identified by
DIRECT out of top 100 predicted contacts (RC/NC).
The predicted structure with the lowest RMSD contains
35 native contacts (100%) while the predicted structure
with the largest RMSD contains 29 native contacts
(83%). The results show that the native-like structures
have much more identified native contacts than the
structures with large RMSD values. In addition, we
tested the correlation between predicted contacts based
on DIRECT prediction and RMSDs if we do not know
the native structure. The color in Fig. 2b is the percen-
tage of DIRECT predicted contacts out of the top 100
predicted contacts (RC/PC). The predicted structure
with the lowest RMSD contains 40 predicted contacts
(40%) while the predicted structure with the largest
RMSD contains 32 predicted contacts (32%). The results
also show that native-like structures have much more
predicted contacts by DIRECT. All results suggest that
DIRECT is able to identify more native contacts that
define the true RNA tertiary structure.

DIRECT improves RNA contact predictions using non-
redundant RNA training sets

We then used another three non-redundant RNA train-
ing sets to evaluate the prediction accuracy of DIRECT.
The non-redundant RNA training set 2 contains all the
representative high-quality structures of 147 classes with
length from 50 nt to 120 nt. The homology sequence or
structure between training and testing sets were
removed to ensure that RNAs in the training and testing
sets have no sequence and structural overlap. As shown
in Additional file 1: Figure S3, DIRECT is 21%~ 95%
and - 4%~ 60% more precise (positive predictive value)
than mfDCA and plmDCA, respectively, for 1Y26, 2GDI,
2GIS, 3IRW, 30WI, and 3VRS predictions. Taken
together, these results suggest that DIRECT is able to
improve RNA contact predictions by learning structure
template from more known structures as in the RNA
non-redundant training set.

Another two non-redundant RNA training sets are as
follows: (1) non-redundant RNAs with length from 50 nt
to 120 nt without any riboswitch structure (training set 3
in Methods Section), and (2) all non-redundant RNAs
without any riboswitch structure (training set 4 in
Method Section). The results showed an average accu-
racy increase of 15 and 4% compared to mfDCA and
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Fig. 2 The contact and RMSD distributions in different RNA structures. The 11 structures are generated by 3dRNA, RNAcomposer, simRNA, and
Vfold3D. a shows the correlation between native contacts and RMSDs. The predicted structure with the lowest RMSD contains 35 native contacts
(100%) while the predicted structure with the largest RMSD contains 29 native contacts (83%). The color in (b) is the percentage of DIRECT
predicted contacts out of the top 100 predicted contacts (RC/PC). The predicted structure with the lowest RMSD contains 40 predicted contacts
(40%) while the predicted structure with the largest RMSD contains 32 predicted contacts (32%). The results suggest that DIRECT is able to
identify more native contacts than non-native models with large RMSDs

pImDCA using training set 3, and 7 and 11% using the
training set 4. The predictions clearly indicate that there
are indeed generic and useful RNA structural features
discerned by DIRECT that can improve contact predic-
tion for a specific class of RNA.

DIRECT achieves reliable prediction of conserved contacts
The hypothesis of direct coupling analysis stipulates that
co-evolving nucleotides in an RNA molecule may form
intra-molecular contacts to support its structure and func-
tion. DCA thus aims to disentangle the direct pairwise
couplings from indirect correlations of the sequence varia-
tions. While highly conserved contacts are critical for
RNA structural stability and function, their detection by
DCA may be difficult due to insufficient information on
variations. To examine if DIRECT can improve the pre-
diction in this case, we divided nucleotides into different
types based on their conservation scores calculated by the
ConSurf program [47]. The continuous conservation
scores are first divided into a discrete scale of 9 grades and
the predicted contacts are then classified into three cate-
gories: variable contacts (both nucleotides in grade 1-3),
conserved contacts (both nucleotides in grade 7-9), and
other contacts. As shown in Fig. 3, DIRECT improves the
prediction for variable contacts in 1Y26, 2GIS, and 3IRW
as well as other contacts in 1Y26, 2GD], 2GIS, and 30W1.
Although slight improvements observed, it is clear that
additional information beyond sequence variation and the
structural template is required to achieve a reliable predic-
tion for conserved contacts.

Discussion
Previous research suggests the number of sequences
should be more than three times the length of the

molecule for reliable contact prediction [28]. However,
many RNA families do not satisfy this condition. While
loosening the criterion for homology may result in more
sequences, this approach inevitably leads to low accuracy
in contact prediction. It remains challenging to extract
evolutionary information from an insufficient number of
sequences. To check if DIRECT can address the issue of
insufficient sequences, we performed contact prediction
on 5 target riboswitches using only 50 randomly chosen
sequences. The lengths of the 5 RNAs range from 52 to
92 nucleotides and already exceed 50, the number of
sequences used. The results in Additional file 1: Table S4
show that DIRECT outperforms DCA with an average
increase of 12% in prediction precision suggesting that
DIRECT can improve predictions even when the number
of homologous sequences is insufficient.

To investigate the predictive accuracy on different
structural templates, we incorporated a Restricted Boltz-
mann Machine (RBM) to augment the information on
sequence co-variations with four different training sets
in contact inference. The contacts learned by Restricted
Boltzmann Machine fall mainly into two categories
(Additional file 1: Figure S4). One is about the long-
range contacts of loop-loop interactions, for example,
the loop-loop contacts of A-riboswitch (PDB code:
1Y26), TPP riboswitch (PDB code: 2GDI), SAM-I ribos-
witch (PDB code: 2GIS), and ¢-di-GMP riboswitch (PDB
code: 3IRW). The other one is about the contacts in
junction regions. The contacts of glycine riboswitch
(PDB code: 30WI) and fluoride riboswitch (PDB code:
3VRS) define the junction orientations. Unlike local pat-
tern recognition, the global indicator in terms of loop-
loop or junctions contacts is more robust in capturing
the folding topology of the entire structure beyond some
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Fig. 3 The number of correctly predicted contacts according to the conservation grades of the two nucleotides involved in the contact for all
tested riboswitch RNAs. The contacts are divided into variable type (both nucleotides with conservation-grade 1-3), conserved type (both
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particular parts. DIRECT is able to successfully identify
the RNA contact with an average PPV around 0.6 in top
30 predicted contacts (Additional file 1: Figure S8).

Conclusions

In summary, we developed a hybrid approach that incor-
porates a Restricted Boltzmann Machine (RBM) to aug-
ment the information on sequence co-variations with
structural templates in contact inference. Our results
demonstrated a 41 and 18% precision increase for RNA
contact prediction in comparison to the mfDCA and
pImDCA when structural templates are utilized. In fact,
our approach establishes a straightforward framework
that can incorporate any additional information, such as
NMR spectroscopy data, by training a corresponding
Restrictive Boltzmann Machine to further improve the
prediction on RNA contacts.

Methods

Inference workflow

DIRECT (Direct Information REweighted by Contact Tem-
plates) improves the prediction of tertiary contacts by using
both sequence and structure information. Figure 4 illus-
trates the workflow of DIRECT. First, the corresponding
RNA multiple sequence alignment (MSA) is extracted
from Rfam database. Second, the traditional direct-

coupling analysis (DCA) predicts the tertiary contacts
from sequence coevolution in MSA. Third, contact
weighs are calculated using structural templates
trained by Restricted Boltzmann Machine (RBM).
Then, DIRECT reweighs the mfDCA/pImDCA contact
predictions. The inference framework consists of
completely hierarchical modules and thus offers the
flexibility to incorporate more sequences and struc-
tures that may become available in the future, as well
as further improved DCA methods for enhanced
performance.

Restricted Boltzmann machine (RBM)

The Restricted Boltzmann Machine (RBM) is a graphical
model for unsupervised learning that can extract fea-
tures from the input data [48]. RBM has a visible layer
and a hidden layer. The restriction is that units in the
visible layer only interact with units from the hidden
layer. This network structure leads to a factorized prob-
ability for observing a given configuration, which in turn
further simplifies the learning process. The energy of an
RBM is given by

E(v,h|W,b,c) = -bTv—c"h-h"Wv (1)

where W is the connection weight matrix between visible
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probability of having a given v, h is then

1
h b _ —E(v,h|W.b,c) 2
Pl bW, b,0) =~ e @)

Z(W7 bv C) = Zv he*E(V,h\WJ)‘C) (3)

where z(W, b, c) is the partition function that sums up
all possible v and h. The RBM is trained through sto-
chastic gradient descent (SGD) on negative log-
likelihood of the empirical data. L(W, ¢, b, T) is defined
as the loss function, which we want to minimize during
SGD:

1
L(W,¢,b,T) = - >y logP(v[W, b, ) (4)

where P(v| W, b, c) is given by
P(v|W,b,c) = p(v,h|W,b,c) (5)

T above is a set of samples from the empirical data. By
minimizing the loss function, we can update the para-
meters W, b, ¢ according to the equations below:

W= W oL(W,b,c, T) (©)
oW
. OL(W,b,c,T)
b =b- b (7)

~ OL(W,b,c,T)
e — (8)

Contact definition and evaluation criteria

Two nucleotides are considered in contact if they con-
tain a pair of heavy atoms, one from each nucleotide,
less than a pre-defined cutoff [49-51]. Previous work
indicated that 8 A can serve as a reliable contact cutoff
for RNA tertiary structural study [34, 35]. To compare
DIRECT with earlier methods, we use the same reliable
contact distance cutoff of 8 A as in previous studies [34,
35]. A-form RNA rises 2.6 A per base pair; the stacking
interaction is thus small if the distance of two nucleo-
tides is larger than 8 A. Since adjacent nucleotides in a
sequence are always in contact, we only consider con-
tacts between nucleotides that are separated by more
than four nucleotides in a sequence to measure tertiary
contacts of interest. To evaluate the quality of a predic-
tion, we compute the positive predictive value (PPV) as
follows.

| 7P|

PPV = i
|TP| + |FP|

©)

where TP (FP) denotes the true (false) positive and
stands for the number of true (false) positives.
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Training and testing sets

Riboswitch is a regulatory portion of a messenger RNA.
When binding with a small ligand, this regulatory seg-
ment will regulate the translation of the entire mRNA.
In this study, we constructed four different training sets
ranging from containing no homologous riboswitch with
similar RNA size to strictly no riboswitch with all RNA
sizes. This is to ensure that there is no data leakage
between the training set and testing set so that the fea-
tures captured by DIRECT are generic and useful RNA
template patterns. Details of the datasets are as follows.

(1) RNA non-redundant training set 1. To generate a
representative set of riboswitch families for our study,
we systematically selected riboswitch families from the
Rfam database. The ten representative riboswitches in
the training set are shown in Additional file 1: Table S5.
We analyzed the sequence identity value (calculated by
CLUSTALW, http://www.genome.jp/tools-bin/clustalw)
and structural similarity via RMSD value (calculated by
PyMOL, www.pymol.org) between each pair of RNAs in
the training set (Additional file 1: Table S6). The large
values for sequence diversity and RMSD suggest that the
RNAs in the training set share little similarity in
sequence and structure.

(2) RNA non-redundant training set 2. We collected
all the representative high-quality structures with resolu-
tion <3.0A of 147 classes of RNA 3D Hub non-
redundant RNA set (version 3.21) with length from 50
nt to 120 nt [52]. RNA 3D Hub ensured that sequence
identity between any two sequences is < 95%. It is noted
that existing methods for RNA tertiary structure predic-
tion (for example, RASP and 3dRNA) also used a
sequence identity of 95% to reduce redundancy in train-
ing set [14, 15, 53]. RNAs that share sequence or struc-
ture homology in training and testing sets were removed
from the training set. These steps ensure that structures
in the training set and testing sets have a similar size but
no sequence and structural overlap.

(3) RNA non-redundant training set 3. We collected
all the representative high-quality structures in RNA
non-redundant training set 2, then removed all ribos-
witch structures in this training set. These steps ensure
no riboswitch structure in the training set.

(4) RNA non-redundant training set 4. Unlike RNA
non-redundant training set 3 that collected similar
size RNAs as a testing set (from 50 nt to 120 nt), we
collected all the representative high-quality tertiary
structures with resolution <3.0A of 1023 classes of
RNA 3D Hub non-redundant RNA set (version 3.21).
Then, we also removed all the riboswitch structures
in this training set. These steps ensure no riboswitch
structure in the training set. The lists of RNA non-
redundant training set 3 and 4 can be downloaded
from our website.
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For the testing set, we used the published testing dataset
including six riboswitches (Additional file 1: Table S1) [34].

Weight of structural information learned by RBM for
prediction of riboswitch

The Restricted Boltzmann Machine (RBM) is used to
extract the contact knowledge from riboswitch struc-
tures in the training set (Fig. 5).

Step 1: Prepare the training set (Fig. 5a and b). Ribos-
witch structures in the training set are converted into
contact maps by applying the distance cutoff of 8 A. The
lengths of the testing riboswitches range from 52 to 94
nucleotides. For the convenience of integrating the tem-
plates of structural information, all distance maps are
resized by linear interpolation into the same size of
100 x 100 pixels before applying the distance cutoff of 8
A. Image resizing is widely used in deep learning com-
munities to train a machine with fixed input of picture
sizes. One of the popular architecture of convolutional
neural networks, VGG-16, is trained with over 14 mil-
lion images belonging to 1000 classes [54]. All images
are resized into a size of 224 x244 x3 (RGB image)
before being fed into the machine. VGG-16 achieves
70.5% accuracy for top 1 prediction and 90% accuracy
for top 5 predictions. Following a similar consideration
and given that the riboswitches in our training set have
varying lengths of 54 to 94 nucleotides, we also resized
distance maps into a fixed size of 100 x 100 and then
converted it into a contact map using a cutoff of 8 A.
The resizing done by the linear interpolation will keep
the spatial information invariant between nucleotides.
For example, the distance between nucleotide 1 and 4 in
an RNA with 50 nucleotides will stay the same between
position 1 and 8 after we resize the distance matrix into
100 x 100. The contact patterns are almost identical
between original and resized ones (Additional file 1:
Figure S5) since one is a coarse-grained version of the
other. These results show that the global features and
local patterns are kept during the resizing. To remove
the overlap between the training set and testing set, we
exclude all homologous training structures with respect
to the riboswitch structure in the testing set for each
prediction. To be more precise for this blind test, when
predicting each of the six riboswitches in the test set, the
targeting riboswitch and all its homologs are removed
from the training set. RBM learned six different weights
of structural information for the six riboswitches. We
converted the lower triangle contact maps into a one-
dimensional array with one channel per contact (as 1) or
non-contact (as 0). The elements of this one-
dimensional array will be fed into the visible units of
RBM. Thus, in our six different tests, the number of visi-
ble units of RBM is determined by the size of the contact
map (or in other words, the number of nucleotides in
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Fig. 5 Further refined workflow for part of Fig. 4 on training a Restricted Boltzmann Machine (RBM) to detect contact patterns. Specific steps to
extract the contact weights from RNA tertiary structure are as follows. a Prepare contact training set. A contact map of a given RNA is
constructed from its nucleotide-nucleotide distance matrix. Two nucleotides are considered in contact if a pair of heavy atoms, one from each
nucleotide, is less than 8 A apart. The lower triangles of the contact map are maintained and then converted to a one-dimensional array as the
input to RBM. b Training set. The training set consists of all contact maps of riboswitch structures but with the testing homologous riboswitch
structure removed. € RBM model. Parameters in RBM are trained by the Contrastive Divergence (CD) algorithm. d Gibbs sampling. We run Gibbs
sampling to generate new contact maps using RBM model. The last 50,000 samples are maintained for contact weight calculation. e Contact
weight. The Gibbs sampling results are normalized into one contact matrix representing nucleotide-nucleotide contact weights for a typical
riboswitch structure

the riboswitch). The length of our testing riboswitches is
between 52 and 94 nucleotides. Moreover, the optimal
number of hidden units is determined to be 100 via a
grid search (Additional file 1: Figure S5).

Step 2: Learning the shared weights (Fig. 5c). Training
the RBM efficiently by stochastic gradient descent (SGD)
involves an algorithm called Contrastive-Divergence

(CD) invented by Hinton [55]. In this study, we use a
typical learning rate of 0.1 and epochs of 10,000 during
RBM training.

Step 3: Gibbs sampling (Fig. 5d). After RBM is trained
from the structures of existing riboswitch RNA, we gen-
erated 10,000 new structures and kept the last 5000
structures to model the equilibrium that represents
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RBM’s belief for the most common structure of ribos-
witches. What the RBM learned in the previous step
is the hidden connections between hidden representa-
tions and contact patterns (visible representations).
Gibbs sampling method is the widely used approach
to get samples from an energy-based model. We
turned the model into a generative mode to produce
visible contact patterns through a Gibbs sampling
process. To get the unbiased samples from the model
we learned in the previous step, we need to run
Gibbs sampling for a long time for convergence. 10,
000 samples generated by the model at this stage are
converged.

Step 4: Contact weight learned by RBM (Fig. 5e). We
counted the contact frequency for each nucleotide
among these 5000 structures and took this frequency as
the final weight matrix learned by RBM on the structure
information of the riboswitch.

Direct coupling analysis

The direct coupling analysis (DCA) is performed to
infer the interacting nucleotides from sequence coevo-
lution across different species [22, 35, 56]. We first
removed the sequences with gaps of more than 50%
in multiple sequence alignment (MSA) and then cal-
culated the amino acid frequencies for single-
nucleotide and a pair of nucleotides. The direct cou-
plings that indicate the interaction strength between
two sites are defined as

P%(A,B)
DI = PHA,B) In L —— 10
1= 2B In (10
with the help of an isolated two-site model
P§(A,B) = exp{e;j(A,B) + i(A) + h;(B)}/Z;
(11)

hi(A) and h j(B) are defined by the empirical single-
nucleotide frequency f;(A) = ZBPZ(A,B) and f(B)
= >4P4(A, B). Mean-field DCA (mfDCA) is done by a
simple mean-field approximation, see Morcos et al.
(Morcos, et al., 2011) for details. Ekeberg also proposes a
method called plmDCA using pseudo-likelihood maxi-
mization for inferring direct coupling [37, 57]. We used
the downloaded versions of mfDCA and plmDCA algo-
rithms. The mfDCA was downloaded from http://dca.
rice.edu/portal/dca/download. The plmDCA was down-
loaded from the Marks lab at Harvard Medical School
(http://evfold.org/evfold-web/code.do).
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Direct information scores reweighted by structural
contact frequency

The final contact prediction is DI scores reweighted by
structural information learned by RBM with better con-
tact prediction accuracy.

DIRECT = DI x W* (12)

where DI is the direct information by direct coupling
analysis, W is RBM-based structural contact frequency.
Among the different powers of W considered (up to the
4th power), we finally selected the 2nd power of W as in
Eq. (12) to balance the contributions from both patterns
of sequence evolution and RBM-based structural contact
frequency.

Tertiary structure prediction

We predicted RNA tertiary structures using 3dRNA,
RNAcomposer, simRNA and Vfold3D [11, 14, 15, 17, 58].
For each RNA structure prediction, we used the corre-
sponding sequence and secondary structure on the RNA
structure modeling servers. All tertiary structures are pre-
dicted automatically.

Regularization

Regularization is a strategy that aims to reduce the gen-
eralization errors [59]. Most machine learning methods
add restrictions on the parameters. For example, L1 and
L2 regularization are adding a cost function that pena-
lizes high-value weights to prevent overfitting. The
weight of RBM is a matrix of 4951 x 101 (connecting the
4950 visible units and 100 hidden units, the one extra
unit on each side is the bias unit). Although we did not
implement the regularization in our model training, the
obtained weights shown in Additional file 1: Figure S7
did not take extreme values associated with overfitting.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512859-019-3099-4.

Additional file 1. Supplementary material, including all supplementary
figures and supplementary tables.
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