
SOFTWARE Open Access

DECA: scalable XHMM exome copy-number
variant calling with ADAM and Apache
Spark
Michael D. Linderman1* , Davin Chia1, Forrest Wallace1 and Frank A. Nothaft2,3

Abstract

Background: XHMM is a widely used tool for copy-number variant (CNV) discovery from whole exome sequencing
data but can require hours to days to run for large cohorts. A more scalable implementation would reduce the
need for specialized computational resources and enable increased exploration of the configuration parameter
space to obtain the best possible results.

Results: DECA is a horizontally scalable implementation of the XHMM algorithm using the ADAM framework and
Apache Spark that incorporates novel algorithmic optimizations to eliminate unneeded computation. DECA
parallelizes XHMM on both multi-core shared memory computers and large shared-nothing Spark clusters. We
performed CNV discovery from the read-depth matrix in 2535 exomes in 9.3 min on a 16-core workstation (35.3×
speedup vs. XHMM), 12.7 min using 10 executor cores on a Spark cluster (18.8× speedup vs. XHMM), and 9.8 min
using 32 executor cores on Amazon AWS’ Elastic MapReduce. We performed CNV discovery from the original BAM
files in 292 min using 640 executor cores on a Spark cluster.

Conclusions: We describe DECA’s performance, our algorithmic and implementation enhancements to XHMM to
obtain that performance, and our lessons learned porting a complex genome analysis application to ADAM and
Spark. ADAM and Apache Spark are a performant and productive platform for implementing large-scale genome
analyses, but efficiently utilizing large clusters can require algorithmic optimizations and careful attention to Spark’s
configuration parameters.

Keywords: Exome sequencing, Copy-number variation, High-performance computing

Background
XHMM [1] is a widely used tool for copy-number
variant (CNV) discovery from whole exome sequencing
(WES) data, but can require hours to days of computa-
tion to complete for larger cohorts. For example,
XHMM analysis of 59,898 samples in the ExAC cohort
required “800 GB of RAM and ~1 month of computa-
tion time” for the principal component analysis (PCA)
component of the algorithm [2]. Substantial execution
time and memory footprints require users to obtain
correspondingly substantial computational resources and
limit opportunities to explore the configuration param-
eter space to obtain the best possible results.

Numerous algorithms have been developed for WES
CNV discovery (see [3] for a review), including the re-
cent CLAMMS [4] algorithm, which was specifically de-
signed for large cohorts. Although XHMM was not
specifically designed for large cohorts, the example
above shows it is being actively used on some of the
largest cohorts in existence. Our focus was to: 1) im-
prove the performance of this widely used tool for its
many users; and 2) report on the process of implement-
ing a complex genome analysis for on-premises and
cloud-based distributed computing environments using
the ADAM framework and Apache Spark.
ADAM is an in-memory distributed computing frame-

work for genome analysis built with Apache Spark [5, 6].
In addition to ADAM, multiple tools, including GATK
4, have (re)implemented genomic variant analyses with
Spark [7–14] (see [15] for a review of genomics tools

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: mlinderman@middlebury.edu
1Department of Computer Science, Middlebury College, 75 Shannon St,
Middlebury, VT 05753, USA
Full list of author information is available at the end of the article

Linderman et al. BMC Bioinformatics (2019) 20:493
https://doi.org/10.1186/s12859-019-3108-7

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-019-3108-7&domain=pdf
http://orcid.org/0000-0002-9643-7148
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:mlinderman@middlebury.edu

implemented with Spark). The common motivation for
using Spark is automatic and generalizable scalability;
operations over Spark’s partitioned collections of
elements, termed resilient distributed datasets (RDD),
can be automatically distributed by the Spark runtime
across the available computing resources on a variety of
computer systems from multicore workstations to
(cloud-based) share-nothing clusters [16]. In contrast,
many current genome analysis tools are parallelized by
partitioning input files (either physically or via
coordinate-sorted indices) stored on a shared file system.
Relying on a shared file system for parallel execution in-
troduces I/O overhead, excludes the use of scalable
shared-nothing cluster architectures, and makes it diffi-
cult to port applications to cloud computing platforms.
Here we present DECA, a horizontally scalable im-

plementation of XHMM using ADAM and Apache
Spark. XHMM is not parallelized, although the user
could partition the input files for specific steps them-
selves and invoke multiple instances of the XHMM
executable. In contrast, as shown in Fig. 1a, DECA
parallelizes each step of the XHMM algorithm by
sample and/or file region to improve execution time
compared to the original XHMM implementation and
a manually parallelized version of XHMM on a wide
variety of computer systems, including in the cloud,
while keeping the memory footprint within the re-
sources of a typical compute node (16-256GB). Our
secondary goal was to explore the utility of imple-
menting complex genome analyses with ADAM and
Apache Spark and report our “lessons learned” paral-
lelizing XHMM with these technologies.

Implementation
DECA implements the three steps of the XHMM algo-
rithm shown in Fig. 1a: 1) target coverage calculation (to
produce the read-depth matrix), 2) PCA normalization
and filtering, and 3) CNV discovery by hidden Markov
model (HMM) Viterbi decoding. XHMM is designed to
use the GATK per-target coverage already calculated as
part of a typical genome analysis workflow. DECA can
also use a GATK per-target coverage file or can calculate
the coverage directly from the original coordinate-sorted
BAM files (read via Hadoop-BAM [17]).
DECA implements the XHMM algorithm as a se-

quence of map, reduce and broadcast operations
over RDDs, e.g. the rows of the read depth matrix
(each row is a sample) or chunks of a BAM file,
which define the operations that are independent
and potentially parallelizable. Spark splits this pro-
gram over RDDs into jobs (all of the actions per-
formed between reading and writing data), splits jobs
into stages (all of the actions bound by IO or com-
munication) that must be sequentially executed, and
stages into tasks (atomic units of computation which
are distributed across the cluster for execution).
Spark automatically and transparently partitions
those RDDs and the associated computational tasks
(expressed as a task graph) across the available com-
puting resources on the different platforms. There is
a single DECA implementation used with all plat-
forms, although, as described below, the user may
need to adjust the partition sizes (via command line
parameters) to achieve the best possible performance
on different platforms.

PCA Normalization & Filtering

GATK Depth
of Coverage

DECA Depth
of Coverage

BAM Files

s

t

CNV Discovery
w/ HMM

Filter I SVD Filter II Z-score

s

t

GFF3
File

Sample Sample & File regionParallelism

Phase
Discovery
Z-score
Filter II
PCA Norm.
Filter I
Read Mat.
Other

1 2 4 8 16
5 10 20 40 Dyn

Cores

(a) (b)
DECA XHMM

Cluster

Workstation Cluster

50
100
200
500

500
1000
1500
2000
2535

0

5e+04

1e+05

Samples

Phase
CNV Calling
Coverage

DECA(c)

Ti
m

e
(s

)Read-depth
matrix

Normalized read-
depth matrix

0

5000

10000

15000

20000

Ti
m

e
(s

)

Workstation

XHMMDECA XHMM

1 2 4 8 16

Mod.

Fig. 1 DECA parallelization and performance. a DECA parallelization (shown by dashed outline) and data flow. The normalization and discovery
steps are parallelized by sample (rows of the samples (s) × targets(t) read-depth matrix). The inputs and outputs of the different components are
shown with thinner arrows. b DECA and XHMM execution time starting from the read-depth matrix for s = 2535 on both the workstation and on-
premises Hadoop cluster for different numbers of executor cores. Mod. XHMM is a customized XHMM implementation that partitions the
discovery input files and invokes XHMM in parallel. c DECA execution time for coverage and CNV discovery for different numbers of samples
using the entire workstation (16 cores) and cluster (approximately 640 executor cores dynamically allocated by Spark)

Linderman et al. BMC Bioinformatics (2019) 20:493 Page 2 of 8

For example, the rows of read-depth matrix (s samples
× t targets) are typically partitioned across the worker
nodes and remain resident on a single worker node
throughout the entire computation (i.e. computation is
sent to the data). Computations over the read depths are
performed in parallel on the worker nodes with only
summary statistics, e.g. per-target means, communicated
between nodes (by reducing from workers to the driver
and then broadcasting from the driver to the workers).
The first stage of the read depth calculation job reads
chunks of the BAM file (via Hadoop-BAM), assigns
reads to targets, and local to each task, computes the
number of reads assigned to that target from that task.
Between the first and second stage, the Spark workers
“shuffle” the intermediate counts over the network to
co-locate all coverage counts for a given target on the
same node before computing the final counts in the sec-
ond stage (which are either written to storage or con-
sumed by subsequent jobs).
Identifying and removing systematic biases is a key

step in WES CNV calling. To do so, XHMM performs
singular value decomposition (SVD) on the filtered and
centered read-depth matrix (s samples × t targets) and
removes (by default) K components with relative vari-
ance greater than 0.7 / n (for n components) that are
correlated with systematic biases. Specifically, XHMM
removes the K components with variance, vi ¼ σ2i that
satisfy this condition:

vi≥
0:7
P

v
n

In practice K < < n. XHMM computes all n compo-
nents; however, we can identically determine K by esti-
mating the total variance from k < n components,
reducing the time and memory required for SVD. DECA

employs a novel iterative algorithm that initially per-
forms SVD with a small k (n / 10 by default) and in-
creases k until the estimate of the total variance is
sufficiently precise to determine K. For n = 2498, for ex-
ample, DECA computes k = 250 components (instead of
2498) to remove K = 27. This iterative approach does
not change the number of components removed during
PCA normalization, or the effect of the normalization
step compared to XHMM; instead this algorithmic
optimization reduces the computational requirements
for determining the number of components to remove.
Specifically, we can estimate the total variance as:

Xk

i¼1

vi

 !

þ n−k−1ð Þvk

Since vi is monotonically decreasing, our estimate is
necessarily greater than but approaching the total vari-
ance and thus our estimate for the cutoff to remove
components is necessarily greater than but approaching
the actual cutoff. Any component with vi greater than
this estimated cutoff will be removed. However, some
components with vi less than the “over” estimate could
still also be removed. We can similarly compute a cutoff
is that necessarily less than the actual cutoff, i.e. an
“under” estimate, by assuming vi > k are 0. If the first
component to be retained, i.e. the K + 1 component, has
variance less than this “under” estimate, then we are
guaranteed to have accurately determined K. The algo-
rithm for determining K is shown in Fig. 2.
Figure 3 shows K, the number of components to be re-

moved, the minimum k to accurately determine K, and
the actual k DECA uses for different numbers of initial
samples in the cohort. Although k is generally small
relative to n (less than 10%), for some datasets the mini-
mum k to determine K can be much larger. Since re-

Fig. 2 Algorithm for determining K components to removing during PCA normalization

Linderman et al. BMC Bioinformatics (2019) 20:493 Page 3 of 8

computing the SVD is time consuming, users may con-
sider increasing the initial k from the default of 10% of n
to reduce the chance of needing to compute more com-
ponents. Tuning the initial k is area of ongoing work.
To minimize the required memory for the Spark driver

and executors, on a cluster DECA does not collect the
entire read-depth matrix, O(st), to a single node and
SVD is implemented using the distributed algorithm in
Spark’s MLlib [18] that requires O(t) storage on the ex-
ecutors and O(kt), where k is typically 0.1 s, storage on
the driver (at the cost of O(k) passes).
To mitigate underflow when multiplying small prob-

abilities in the HMM model, XHMM implements the
HMM computation in log-space using the “log-sum-exp
trick” and the long double floating point type. DECA
similarly implements the Viterbi algorithm in log space,
but implements the scaled versions of the forward and
backward algorithms [19]. The long double type is not
available in the Java Virtual Machine and so all compu-
tations in DECA use double precision floating point.

Results
Performance evaluation
DECA was evaluated on the on-premises single node
and cluster environments described in Table 1 and using
Databricks and Elastic Map Reduce on Amazon AWS.
Total wall-clock execution time is measured with the
time utility. The execution times for individual phases

are measured with timing functionality available in the
ADAM library. However, due to the lazy construction
and evaluation of the Spark task graph, the timing of
individual phases is approximate. Specific parameters
used for benchmarking are recorded in the source re-
pository. Unless otherwise noted, all benchmarking was
performed with DECA commit 0e4a424 and an unmodi-
fied copy of XHMM downloaded from the XHMM web-
page [20].
We called CNVs in the 1000 Genomes Project phase 3

WES data with s = 2535 samples and t = 191,396 exome
targets [21]. The s = 2535 read-depth matrix was gener-
ated from the 1000 Genomes Projects phase 3 WES data
using GATK DepthOfCoverage [22] according to the
XHMM protocol [23] using the target file provided by
the 1000 Genomes project. Smaller numbers of samples
were obtained by taking subsets of the s = 2535 read
depth matrix. We excluded targets with extreme GC
fraction or low complexity as described in the XHMM
protocol. Following the typical usage for XHMM, the
read-depth matrix included coverage for all targets and
excluded targets were removed during normalization.
When performing CNV discovery directly from BAM
files with DECA, excluded targets were removed prior to
generating the read-depth matrix. All values for user-
settable parameters of XHMM were taken from the
XHMM protocol.
Figure 1b shows execution time for DECA and

XHMM starting from the tab-delimited read-depth
matrix. We performed CNV calling on the entire 1000
Genomes phase 3 cohort (s = 2535) in 9.3 min on the 16-
core workstation (35.3× speedup vs. XHMM) and 12.7
min using 10 executor cores (and 5 driver cores) on the
cluster (18.8× speedup vs. XHMM). Note that CNV dis-
covery alone only utilizes a small fraction of the 56-node
cluster. DECA could readily scale to much larger cohorts
on such a system.
As shown in the execution time breakdown, the

speedup is driven by the more efficient HMM model
and parallelization of SVD and the HMM model. Using
a single workstation core, DECA is approximately 4.4×
faster than XHMM. The DECA HMM implementation
in isolation is approximately 25× faster than the XHMM
HMM on a single workstation core and 325× when
using 16 workstation cores.
As noted above, although XHMM itself is not paralle-

lized, the inputs to the CNV discovery phase can be

0

200

400

600

0 500 1000 1500 2000 2500
Samples

Minimum k to determine K
DECA k

K

C
om

po
ne

nt
s

Fig. 3 Components to be removed in PCA normalization. K
components to be removed during PCA normalization, minimum k
components when computing the SVD to accurately determine K,
and final k used by DECA for different numbers of initial samples for
the XHMM default relative variance cutoff of 0.7 / n

Table 1 On-premises evaluation systems

Workstation 16-core workstation with two 8-core 2.1 GHz Intel Xeon E5–2620 CPUs, 256 GB RAM, and 16 TB of HDD in 2 × −striped JBOD (four 4 TB
7200 RPM HDDs connected via 6Gbps SATA).

Cluster 56-node Hadoop cluster with 16-core nodes managed by YARN. Each node has two 8-core 2.6 GHz Intel Xeon E5–2670 CPUs, 256 GB RAM and
4 TB of HDD (four 1 TB 7200RPM HDDs connected via 6Gpbs SATA). Nodes are connected with two 1GbE connections and one switchable
10GbE/40Gbps IB connection to a 40GbE TOR switch. HDFS was configured with 128MB blocks and a 2× replication factor.

Linderman et al. BMC Bioinformatics (2019) 20:493 Page 4 of 8

partitioned by the user and the XHMM executable in-
voked independently on each sub-file. To explore the
scaling of this file-based approach, we implemented a
parallel wrapper script for XHMM on the workstation.
The execution time breakdown is shown in Fig. 1b as
“Mod. XHMM”. The modified XHMM is 5.6× faster
than single-core XHMM when using 16 workstation
cores, while DECA is 7.9× faster than single-core DECA.
Overall DECA is 6.3× faster than the modified XHMM
when using 16 workstation cores.
Figure 1c shows the total execution time to discover

CNVs directly from the coordinate-sorted BAM files for
different numbers of samples. DECA can call CNVs
from the BAM files for the entire cohort in 4:52 (4 h and
52min) utilizing up to 640 cores on the cluster. Execu-
tion time is dominated by the coverage calculations.
Figure 1c also shows the effect of DECA’s iterative algo-

rithm for PCA normalization (discovery for s = 1500 re-
quires more time than s = 2000 or s = 2535 due to
iteratively computing more SVD components) and the
performance variability of the shared cluster environment.
DECA can be run unmodified on cloud-based clus-

ters such as Databricks [24] and Amazon AWS’ Elas-
tic MapReduce (EMR), reading from and writing data
to Amazon S3. We called CNVs in the full s = 2535
cohort starting from the read-depth matrix in 12.3
min using 32 executor cores on Databricks on Ama-
zon AWS with an estimated compute cost of less
than $0.35. The Databricks cluster was comprised of
four 8-core i3.2xlarge executor nodes and one 4-core
i3.2xlarge driver node. We similarly called CNVs on
Amazon EMR in 9.8 min using a cluster of four 8-
core i3.2xlarge nodes (along with a m4.large master
node) with an estimated compute cost of less than
$0.35 (not including cluster startup time). We called
CNVs directly from the coordinate-sorted BAM files,
obtained via the 1000 Genomes public S3 bucket,
using 512 executor cores on Amazon EMR in 12.6 h

with a compute cost of approximately $225. The
EMR cluster was comprised of 64 8-core i3.2xlarge
executor nodes and one 4-core i3.2xlarge driver node.
We sought to minimize costs for this much larger
compute tasks and so used a conservative auto-
scaling policy that slowly ramped up the cluster size
from 3 to 64 instances over the span of two hours.
For all AWS-based clusters we exclusively used spot
instances to minimize costs.

Comparison of DECA and XHMM results
Figure 4a shows the comparison of XHMM and DECA
CNV calls for the full 1000 Genomes Project phase 3
WES dataset (s = 2535) when starting from the same
read-depth matrix (t = 191,396). Of the 70,858 XHMM
calls, 99.87% are called by DECA with identical copy
number and breakpoints and a further 37 have an over-
lapping DECA call with the same copy number. Only 55
XHMM calls do not have an overlapping DECA call. We
do not expect identical results between XHMM and
DECA due to differences in numerical behavior when
multiplying small probabilities in the HMM algorithms.
The 55 XHMM-only events fall into two categories: 1)

50 events spanning just targets 1–3, 2) 5 events with Q_
SOME quality scores (the phred-scaled probability that
at least one target is deleted or duplicated) at XHMM’s
default minimum calling threshold of 30. Most overlap-
ping CNV calls only differ by 1 target (67.6%).
Figure 4b shows a comparison of the XHMM and

DECA-calculated quality scores for the 70,766 exactly
matching calls. The root mean square (RMS) error in
Q_SOME for calls with a XHMM Q_SOME of less than
40 (i.e. those calls close to the calling threshold of 30) is
0.12; the RMS error is 2.04 for all of the calls.
DECA’s coverage calculation is designed to match the

GATK DepthOfCoverage command specified in the
XHMM protocol. As part of the protocol, the XHMM
authors distribute a subset of the 1000 Genomes exome

XHMM DECA

55 17
Overlap:
Exact:

37
70766

(a)

0

25

50

75

100

0 25 50 75 100
XHMM Some Quality (SQ)D

E
C

A
 S

om
e

Q
ua

lit
y

R
an

ge

(b)

Fig. 4 Comparison between DECA and XHMM results. a Concordance of XHMM and DECA CNV calls for the full 1000 Genomes Project phase 3
WES dataset (s = 2535) when starting from the same read-depth matrix (t = 191,396). Exact matches have identical breakpoints and copy number,
while overlap matches do not have identical breakpoints. b Range of Some Quality (SQ) scores computed by DECA compared to XHMM
probability for exact matching variants

Linderman et al. BMC Bioinformatics (2019) 20:493 Page 5 of 8

sequencing datasets, specifically reads covering 300 tar-
gets in 30 samples. For those 9000 targets, the DECA
read-depth differed from the target coverage calculated
with GATK 3.7–0-gcfedb67 for only three targets and by
less than 0.02.

Discussion
The primary goal was to make improvements to the per-
formance and scalability of XHMM. Our secondary goal
was to explore the utility of building complex genome
analyses with ADAM and Apache Spark. Here we report
our “lessons learned” re-implementing XHMM with
these technologies:

Library choice matters
XHMM uses LAPACK to perform SVD. The OpenBLAS
implementation used here can be several-fold faster than
the Netlib reference implementation linked from the
XHMM webpage. Table 2 shows the speedup when link-
ing XHMM against OpenBLAS. Switching LAPACK li-
braries could immediately benefit XHMM users.

Spark makes exploiting “embarrassingly parallel” easy
and generalizable, but algorithmic optimizations remain
important
The initial DECA implementation obtained many-fold
speedups, particularly for the “embarrassingly parallel”
HMM model where each sample can be analyzed inde-
pendently. Using Spark MLlib and other libraries we
could quickly develop implementations for the PCA
normalization and filtering steps that could scale to even
larger cohorts. However, without optimizations to re-
duce k, the slower reduced-memory implementation of
SVD would reduce possible speedups. Transitioning to a
normalized implementation for the HMM forward and
backward algorithms and double precision floating re-
sulted in many-fold speedup of the discovery step with
minimal differences in the quality scores calculated with
those algorithms. The algorithmic optimizations are

independent of Spark and could be applied to any
XHMM implementation.

Performance optimization depends on Spark-specific
expertise
Improving application performance requires careful at-
tention to distributed programming best practices, e.g.
locality, but also Spark-specific expertise such as: RDD
caching to avoid re-computation, RDDs vs. Spark SQL
(the latter is reported to improve reduce performance,
but did not for DECA), and defining performant values
for the many Java Virtual Machine (JVM) and Spark
configuration parameters to ensure sufficient numbers
of tasks, efficient construction of the task graph, and effi-
cient cluster resource utilization.
The two key parameters the user modifies to con-

trol concurrency are the number of partitions of the
input data and the Spark minimum chunk size for
the input. The former determines the minimum
number of partitions created when reading the
XHMM read-depth matrix from a file and is gener-
ally used to increase the number of tasks beyond the
number of HDFS blocks (the default partitioning for
HDFS files) for computationally intensive tasks. In
contrast, when computing the coverage directly from
BAM files, the total number of tasks can be in the
thousands and needs to be reduced to efficiently
construct the task graph. Setting the minimum
chunks size larger than the HDFS block size reduces
the number of tasks.

Conclusion
Here we describe DECA, a horizontally scalable im-
plementation of the widely used XHMM algorithm
for CNV discovery, which parallelizes XHMM on
multicore workstations and large on-premise and
cloud-based share-nothing Hadoop clusters using
ADAM and Apache Spark. Through a combination
of parallelism, novel algorithmic enhancements and
other optimizations, DECA achieves a 35-fold
speedup compared to the existing XHMM imple-
mentation for calling CNVs in the 2535 sample 1000
Genomes exome cohort and can scale to even larger
cohorts. By parallelizing all phases of the algorithm,
DECA achieves better scaling than approaches based
on file partitioning. DECA can be directly deployed
on public clouds reducing the need for specialized
computational resources to call CNVs in large WES
cohorts. We found ADAM and Apache Spark to be
a performant and productive platform for imple-
menting large-scale genome analyses, but efficiently
exploiting large clusters can require algorithmic opti-
mizations and careful attention to Spark’s many con-
figuration parameters.

Table 2 Execution time for XHMM PCA step (--PCA) for
different LAPACK libraries. Execution time and speedup for
XHMM linked to NetLib and OpenBLAS libraries on the single
node workstation using a single core

Samples NetLib Time (s) OpenBLAS Time (s) Speedup

50 9.8 9.5 1.03

500 208.7 112.4 1.86

1000 568.5 241.5 2.35

1500 1150.6 398.5 2.89

2000 2000 585.6 3.42

2535 3178.2 819 3.88

Linderman et al. BMC Bioinformatics (2019) 20:493 Page 6 of 8

Availability and requirements
Project name: DECA
Project home page: https://github.com/bigdatagenomics/

deca
Operating system(s): Platform independent
Programming language: Scala and Java
Other requirements: Maven, Spark 2.1.0+, Hadoop 2.7,

Scala 2.11
License: Apache 2
Any restrictions for use by non-academics: None

Abbreviations
CNV: Copy number variation; HMM: Hidden Markov Model; JVM: Java Virtual
Machine; PCA: Principal Components Analysis; RDD: Resilient Distributed
Dataset; RMS: Root mean square; SVD: Singular-value Decomposition;
WES: Whole exome sequencing

Acknowledgements
The authors gratefully acknowledge Menachem Fromer’s assistance with
questions about XHMM.

Authors’ contributions
MDL and FAN conceptualized the project and wrote the manuscript. MDL,
FAN, DC, and FW contributed to the development of DECA. All authors have
read and approved the manuscript.

Funding
This work was supported by Middlebury College (to MDL, DC, and FW), and the
sponsors of the AMPLab (https://amplab.cs.berkeley.edu/amp-sponsors/) including
NSF [CCF-1139158], LBNL [7076018], DARPA [FA8750-12-2-0331], NIH
[U54HG007990–01, HHSN261201400006C] and a NSF Graduate Research
Fellowship (to FAN). The funding sources had no role in the design of the study,
the collection, analysis, and interpretation of data or in writing the manuscript.

Availability of data and materials
The datasets analyzed during the current study are available from the
International Genome Sample Resource, http://www.internationalgenome.org.

Ethics approval
Not applicable.

Consent for publication
Not applicable.

Competing interests
FAN was a consultant for and is now employed by Databricks, Inc.

Author details
1Department of Computer Science, Middlebury College, 75 Shannon St,
Middlebury, VT 05753, USA. 2AMPLab, University of California, Berkeley,
Berkeley, CA, USA. 3Databricks, Inc., San Francisco, CA, USA.

Received: 24 June 2019 Accepted: 20 September 2019

References
1. Fromer M, Moran JL, Chambert K, Banks E, Bergen SE, Ruderfer DM, et al.

Discovery and statistical genotyping of copy-number variation from whole-
exome sequencing depth. Am J Hum Genet. 2012;91:597–607.
https://doi.org/10.1016/j.ajhg.2012.08.005.

2. Ruderfer DM, Hamamsy T, Lek M, Karczewski KJ, Kavanagh D, Samocha KE,
et al. Patterns of genic intolerance of rare copy number variation in 59,898
human exomes. Nat Genet. 2016;48:1107–11. https://doi.org/10.1038/ng.3638.

3. Zhao M, Wang Q, Wang Q, Jia P, Zhao Z. Computational tools for copy
number variation (CNV) detection using next-generation sequencing data:
features and perspectives. BMC Bioinformatics. 2013;14(Suppl 11):S1.
https://doi.org/10.1186/1471-2105-14-S11-S1.

4. Packer JS, Maxwell EK, O’Dushlaine C, Lopez AE, Dewey FE,
Chernomorsky R, et al. CLAMMS: a scalable algorithm for calling
common and rare copy number variants from exome sequencing data.
Bioinformatics. 2015;32:btv547. https://doi.org/10.1093/bioinformatics/
btv547.

5. Nothaft FA, Massie M, Danford T, Zhang Z, Laserson U, Yeksigian C, et al.
Rethinking data-intensive science using scalable analytics systems. In:
Proceedings of the 2015 ACM SIGMOD international conference on
Management of Data. Melbourne: ACM; 2015. p. 631–46. https://doi.org/10.
1145/2723372.2742787.

6. Massie M, Nothaft F, Hartl C, Kozanitis C, Schumacher A, Joseph AD, et al.
ADAM: Genomics Formats and Processing Patterns for Cloud Scale
Computing. 2013. http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/
EECS-2013-207.html.

7. Wiewiórka MS, Messina A, Pacholewska A, Maffioletti S, Gawrysiak P,
Okoniewski MJ. SparkSeq: fast, scalable and cloud-ready tool for the
interactive genomic data analysis with nucleotide precision.
Bioinformatics. 2014;30:2652–3. https://doi.org/10.1093/bioinformatics/
btu343.

8. O’Brien AR, Saunders NFW, Guo Y, Buske FA, Scott RJ, Bauer DC.
VariantSpark: population scale clustering of genotype information. BMC
Genomics. 2015;16:1052. https://doi.org/10.1186/s12864-015-2269-7.

9. Bahmani A, Sibley AB, Parsian M, Owzar K, Mueller F. SparkScore:
Leveraging Apache Spark for Distributed Genomic Inference. In: 2016
IEEE international parallel and distributed processing symposium
workshops (IPDPSW), vol. 2016: IEEE. p. 435–42. https://doi.org/10.1109/
IPDPSW.2016.6.

10. Li X, Tan G, Zhang C, Xu L, Zhang Z, Sun N. Accelerating large-scale
genomic analysis with Spark. In: 2016 IEEE International Conference on
Bioinformatics and Biomedicine (BIBM): IEEE; 2016. p. 747–51. https://doi.
org/10.1109/BIBM.2016.7822614.

11. Hail. https://github.com/hail-is/hail. Accessed 8 Jun 2018.
12. Zhang D, Zhao L, Li B, He Z, Wang GT, Liu DJ, et al. SEQSpark: a complete

analysis tool for large-scale rare variant association studies using whole-
genome and exome sequence data. Am J Hum Genet. 2017;101:115–22.
https://doi.org/10.1016/j.ajhg.2017.05.017.

13. Klein M, Sharma R, Bohrer CH, Avelis CM, Roberts E. Biospark: scalable
analysis of large numerical datasets from biological simulations and
experiments using Hadoop and spark. Bioinformatics. 2017;33:303–5.
https://doi.org/10.1093/bioinformatics/btw614.

14. Babadi M, Benjamin DI, Lee SK, Smirnov A, Chevalier A, Lichtenstein L, et al.
Abstract 3580: GATK CNV: copy-number variation discovery from coverage
data. Cancer Res. 2017;77(13 Supplement):3580 LP – 3580. https://doi.org/
10.1158/1538-7445.AM2017-3580.

15. Guo R, Zhao Y, Zou Q, Fang X, Peng S. Bioinformatics applications on
apache spark. Gigascience. 2018;7. https://doi.org/10.1093/gigascience/
giy098.

16. Zaharia M, Chowdhury M, Das T, Dave A, Ma J, McCauley M, et al. Resilient
distributed datasets: a fault-tolerant abstraction for in-memory cluster
computing. In: Proceedings of the 9th USENIX conference on Networked
Systems Design and Implementation; 2012. p. 2. http://dl.acm.org/citation.
cfm?id=2228301. Accessed 7 Aug 2017.

17. Niemenmaa M, Kallio A, Schumacher A, Klemelä P, Korpelainen E, Heljanko
K. Hadoop-BAM: directly manipulating next generation sequencing data in
the cloud. Bioinformatics. 2012;28:876–7. https://doi.org/10.1093/
bioinformatics/bts054.

18. Meng X, Bradley J, Yavuz B, Sparks E, Venkataraman S, Liu D, et al.
MLlib: machine learning in apache spark. J Mach Learn Res. 2016;17:
1–7 http://www.jmlr.org/papers/v17/15-237.html. Accessed 7 Aug
2017.

19. Rabiner LR. A tutorial on hidden Markov models and selected applications in
speech recognition. Proc IEEE. 1989;77:257–86. https://doi.org/10.1109/5.18626.

20. Fromer M, Purcell SM. XHMM. https://atgu.mgh.harvard.edu/xhmm/index.
shtml. Accessed 8 May 2019.

21. Auton A, Abecasis GR, Altshuler DM, Durbin RM, Abecasis GR, Bentley DR,
et al. A global reference for human genetic variation. Nature. 2015;526:68–
74. https://doi.org/10.1038/nature15393.

22. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al.
The genome analysis toolkit: a MapReduce framework for analyzing next-
generation DNA sequencing data. Genome Res. 2010;20:1297–303.
https://doi.org/10.1101/gr.107524.110.

Linderman et al. BMC Bioinformatics (2019) 20:493 Page 7 of 8

https://github.com/bigdatagenomics/deca
https://github.com/bigdatagenomics/deca
https://amplab.cs.berkeley.edu/amp-sponsors/
http://www.internationalgenome.org
https://doi.org/10.1016/j.ajhg.2012.08.005
https://doi.org/10.1038/ng.3638
https://doi.org/10.1186/1471-2105-14-S11-S1
https://doi.org/10.1093/bioinformatics/btv547
https://doi.org/10.1093/bioinformatics/btv547
https://doi.org/10.1145/2723372.2742787
https://doi.org/10.1145/2723372.2742787
http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-207.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-207.html
https://doi.org/10.1093/bioinformatics/btu343
https://doi.org/10.1093/bioinformatics/btu343
https://doi.org/10.1186/s12864-015-2269-7
https://doi.org/10.1109/IPDPSW.2016.6
https://doi.org/10.1109/IPDPSW.2016.6
https://doi.org/10.1109/BIBM.2016.7822614
https://doi.org/10.1109/BIBM.2016.7822614
https://github.com/hail-is/hail
https://doi.org/10.1016/j.ajhg.2017.05.017
https://doi.org/10.1093/bioinformatics/btw614
https://doi.org/10.1158/1538-7445.AM2017-3580
https://doi.org/10.1158/1538-7445.AM2017-3580
https://doi.org/10.1093/gigascience/giy098
https://doi.org/10.1093/gigascience/giy098
http://dl.acm.org/citation.cfm?id=2228301
http://dl.acm.org/citation.cfm?id=2228301
https://doi.org/10.1093/bioinformatics/bts054
https://doi.org/10.1093/bioinformatics/bts054
http://www.jmlr.org/papers/v17/15-237.html
https://doi.org/10.1109/5.18626
https://atgu.mgh.harvard.edu/xhmm/index.shtml
https://atgu.mgh.harvard.edu/xhmm/index.shtml
https://doi.org/10.1038/nature15393
https://doi.org/10.1101/gr.107524.110

23. Fromer M, Purcell SM. Using XHMM software to detect copy number
variation in whole-exome sequencing data. Curr Protoc Hum Genet. 2014;
81:7.23.1–7.23.21. https://doi.org/10.1002/0471142905.hg0723s81.

24. Databricks Inc. Databricks. https://databricks.com. Accessed 8 Jun 2018.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Linderman et al. BMC Bioinformatics (2019) 20:493 Page 8 of 8

https://doi.org/10.1002/0471142905.hg0723s81
https://databricks.com

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	Results
	Performance evaluation
	Comparison of DECA and XHMM results

	Discussion
	Library choice matters
	Spark makes exploiting “embarrassingly parallel” easy and generalizable, but algorithmic optimizations remain important
	Performance optimization depends on Spark-specific expertise

	Conclusion
	Availability and requirements
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

