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on protein sequences and minimax
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Abstract

Background: Molecular recognition features (MoRFs) are one important type of disordered segments that can promote
specific protein-protein interactions. They are located within longer intrinsically disordered regions (IDRs), and undergo
disorder-to-order transitions upon binding to their interaction partners. The functional importance of MoRFs and
the limitation of experimental identification make it necessary to predict MoRFs accurately with computational
methods.

Results: In this study, a new sequence-based method, named as MoRFMPM, is proposed for predicting MoRFs. MoRFMPM
uses minimax probability machine (MPM) to predict MoRFs based on 16 features and 3 different windows, which neither
relying on other predictors nor calculating the properties of the surrounding regions of MoRFs separately. Comparing
with ANCHOR, MoRFpred and MoRFCHiBi on the same test sets, MoRFMPM not only obtains higher AUC, but also obtains
higher TPR at low FPR.

Conclusions: The features used in MoRFMPM can effectively predict MoRFs, especially after preprocessing. Besides, MoRFMPM
uses a linear classification algorithm and does not rely on results of other predictors which makes it accessible
and repeatable.
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Background
Intrinsically disordered proteins (IDPs) are protein se-
quences that contain at least one region lacking a
unique 3-D structure [1]. Although not being folded,
IDPs perform a variety of important functions such as
molecular recognition, transport catalysis, signaling
regulation, entropic chain activities, and so on [2]. Fur-
thermore, a single protein may contain several
disordered regions that possess different functions [3].
The functions of disordered regions usually stem from
their ability to bind to partner molecules [4]. Disor-
dered regions can provide malleable interfaces which
can recognize molecules through increase complemen-
tarity via induced fit or offer alternative interaction
upon variable conditions and more complex cellular
responses [5]. These recognition regions may form

folded and complementary interfaces, while the neigh-
boring regions, often denoted as fuzzy, can maintain
their disordered state [6]. The notion of fuzziness im-
plies that conformational heterogeneity can be main-
tained upon interactions of IDPs [7]. The disordered
regions mainly contain two types of binding motifs:
short linear motifs (SLiMs) and MoRFs. SLiMs are
enriched in IDRs. They are generally conserved and
3-10 residues long, and thus may not fall into regular
secondary structures [7]. MoRFs generally locate within
longer IDRs and are up to 70 residues long [8]. They
promote specific protein-protein interactions, and
undergo disorder-to-order transitions upon binding
their partners [4]. According to the structures they
adopt in bound state, MoRFs can be classified into four
subtypes: α-MoRFs, β-MoRFs, ι-MoRFs and complex-
MoRFs [9]. The first three types form α-helix, β-strand,
irregular secondary structure and the last one contains
multiple secondary structures when bound [9].
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Because of the functional importance of MoRFs and
the limitation of experimental identification, several
computational methods have been produced in recent
years, such as α-MoRF-Pred I [10], α-MoRF-PredII [11],
ANCHOR [12, 13], MoRFpred [14], MSPSSMpred [15]
and MoRFCHiBi [16]. α-MoRF-PredII is an improved
method for α-MoRF-Pred I, which is limited to predict
α-MoRFs. ANCHOR and MoRFpred are the most used
comparison methods in recent years. ANCHOR is a web
based method, which predicts protein binding regions
that are disordered in isolation but can undergo
disorder-to-order transition upon binding by using the
energy estimation approach of IUPred [17]. MoRFpred is
also a web based method, which is a comprehensive
method. It calculates a MoRF propensity score using a
linear kernel support vector machine (SVM) based on
nine sets of features: physicochemical properties in
Amino Acid Index [18], Position Specific Scoring Matri-
ces (PSSM), predicted relative solvent accessibility [19],
predicted B-factors [20] and the results of five different
intrinsic disorder predictors. Then, using PSI-BLAST
[21] to align the input sequence with the training se-
quence to gain an alignment e-value, which is used to
adjust the calculated MoRF propensity score.
MSPSSMpred using a radial basis function (RBF) kernel
SVM model to predict MoRFs based on calculated
conservation scores. This method does not use predicted
results from other predictors as input, and the perform-
ance in AUC is approximate to MoRFpred. MoRFCHiBi

uses two SVM models to predict MoRFs based on physi-
cochemical properties of amino acids. The first model
use a sigmoid kernel SVM to predict MoRF propensities,
which target direct similarities between MoRF sequences.
The second model focus on the general contrast of amino
acid composition of MoRFs, Flanks and the general pro-
tein population using a RBF Gaussian kernel SVM. Finally,
join the results of the two SVM models and compute the
propensity score using Bayes rule. MoRFCHiBi is a very
good MoRF predictor that does not rely on other
predictors.
In this paper, we propose a novel sequence-based

method, MoRFMPM, for predicting MoRFs. First, simu-
lated annealing algorithm is utilized for selecting candi-
date feature sets from Amino Acid Index (AA Index)
[18]. Then, five structural features from our previous
study [22] about IDPs prediction are put into candidate
sets for further selection, which contain Shannon en-
tropy and topological entropy calculated directly from
protein sequences, as well as three amino acid propen-
sities from GlobPlot NAR paper [23]. Finally, we select
16 features and 3 different windows to preprocess the
protein sequences and use MPM [24] which is a linear
classification algorithm to predict MoRFs. The simula-
tion results show that even though MoRFMPM just uses

16 features, 3 different windows and a linear classifica-
tion, it obtains higher AUC and TPR than ANCHOR,
MoRFpred and MoRFCHiBi.

Results
Datasets
In order to compare our method with ANCHOR,
MoRFpred and MoRFCHiBi, we use the datasets collected
by Disfani et al. [14], which are also used to train and
test MoRFpred and MoRFCHiBi. Disfani et al. collected a
lot of protein complexes concerning interactions of
protein-peptide from Protein Data Bank (PDB) [25] of
March 2008 and filtered them on several principles to
identify peptide regions of 5 to 25 residues which were
presumed to be MoRFs. The obtained 840 protein se-
quences are divided into a training set (TRAINING) and
a test set (TEST). There are 181 helical, 34 strand, 595
coil and 30 complex MoRF regions on the two sets.
TRAINING contains 421 sequences which consists of
245,984 residues with 5396 MoRF residues. TEST
contains 419 sequences which consists of 258,829 resi-
dues with 5153 MoRF residues. Besides, using the same
protocol [26, 27], they also collected TESTNEW set
from PDB entries deposited between January 1 and
March 11, 2012. TEST2012 contains 45 sequences which
consists of 37,533 residues with 626 MoRF residues. In
addition, we use the EXP53 collected by Malhis et al.
[28] as the third test set. The test set contains 53 non-
redundant sequences possessing MoRFs, which are
collected from four publicly available experimentally val-
idated sets. EXP53 includes 2432 MoRF residues which
consist of 729 residues from short MoRF regions (up to
30 residues) and 1703 residues from long MoRF regions
(longer than 30 residues). For more intuitive description
of the four datasets, Table 1 lists their specific
information.

Performance evaluation
We use AUC to evaluate the performance of different
candidate feature sets and different windows. It is also
utilized to compare our method with other methods.
AUC is the area under the ROC curve, which can pro-
vide an overall assessment about the prediction. In order
to compare the performance of each method in detail,
we also calculate ACC and FPR at different TPR. ACC

Table 1 Datasets used in this paper

TRAINING TEST TESTNEW EXP53

Number of Sequences 421 419 45 53

Number of MoRFs Residues 5396 5153 626 2432

Number of non-MoRFs Residues 240,588 253,676 36,907 22,754

Total Residues 245,984 258,829 37,533 25,186

The detail information of four datasets
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describes the total number of residues that are correctly
predicted, FPR is the false positive rate and TPR is the
true positive rate. They are defined as:

ACC ¼ TP þ TN
NMoRF þ Nnon

; FPR ¼ TN
Nnon

; TPR

¼ TP
NMoRF

; ð1Þ

Where TP and TN are the numbers of accurately pre-
dicted MoRFs residues and non-MoRFs residues, NMoRF

and Nnon are the total numbers of MoRFs residues and
non-MoRFs residues, respectively.

Selecting the optimal feature set
Firstly, we use simulated annealing algorithm to select
several candidate sets of different feature number
based on the TRAINING from 544 amino acid index.
Then, we use MPM [24, 29] to predict MoRFs based
on these candidate feature sets, and select the feature
set with the best performance. Figure 1 shows the
predictive results on TRAINING and TEST with dif-
ferent candidate feature sets. The blue line represents
the AUC values on TRAINING, the red line repre-
sents the AUC values on TEST. The distances be-
tween AUC values on the two sets reflect the over-
fitting situation of each candidate set, and the shorter
the distance, the more robust the predictive perform-
ance. Because MPM is a linear classification algo-
rithm, the over-fitting is not serious in all of these
candidate sets. However, it is obvious that when the
feature number in the candidate set is 12 or 13, the

predictor gains more robust performance and better
AUC value on TEST at the same time.
When the feature number of candidate set is 12 or 13,

the predictive performance is approximate. Thus, to fur-
ther compare their performance, the ROC curves are
shown on Fig. 2. The left one shows the full ROC curves
of them, which almost overlap. Since we are more
concerned about the predictive performance at low FPR,
the right figure shows the ROC curves at FPR < 0.1. Ob-
viously, in this area, predictive performance on 13 is
much better. Thus, we select the candidate set with 13
features as the final candidate feature set from AA
Index, which is listed with the AA Index accession num-
bers in Table 2.
After that, we put the five structural properties

which selected by our previous study [22] about IDPs
prediction into the candidate feature set. Then, we
change the number of structural properties in the
candidate feature set and use MPM to predict MoRFs.
Since there are only five structural features in total,
we use the enumeration method to select structural
properties for each candidate feature set with different
number of structural properties. Figure 3 shows the
best AUC values with different numbers of structural
properties. Obviously, when the number is between 2
and 4, the performance is similar and obviously better
than other cases. To further compare their perform-
ance, the ROC curves are shown on Fig. 4. Though
the full ROC curves of them almost overlap as shown
in the left figure, 3 and 4 obtain better performance
at FPR < 0.1 as shown in the right figure. Considering
that the AUC value of 3 is slightly higher than that
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Fig. 1 Predictive performance with different number of properties from AA Index. The blue line is the AUC values on TRAINING set, and the red
line is the AUC values on TEST set

He et al. BMC Bioinformatics          (2019) 20:529 Page 3 of 11



of 4 on TEST set, we finally select the three structural
properties which contain topological entropy calculated
directly from protein sequences, as well as the Remark
465 and Deleage/Roux propensities from GlobPlot NAR
paper [23].

Selecting the appropriate windows sizes
We select three windows to preprocess protein se-
quences. Based on each window, we calculate the 16
selected features. Thus, each residue can obtain a 48
dimensional feature vector. Then, we change the sizes
of three windows, and use MPM to predict MoRFs.
The appropriate size of three windows are set by
comparing their predictive performance on TRAIN-
ING and TEST. Figure 5 shows the predictive per-
formance with different windows sizes. The middle
window is always set to the half size of the long win-
dow. In the left figure, we fix the size of the long and
middle window to 90 and 45, and change the size of
the short window from 5 to 11. Obviously, when the
short window is set to 10, the AUC is better on
TEST set.
Then, we fix the short window to 10 and change the

size of the long and middle windows as shown in the
right figure of Fig. 4. The long window size is varied
from 50 to 110, and the middle window size is changed

following the long window. At the beginning, as the
long window size increases, the AUC of both data
sets increases, and the distance between them de-
creases. But when the size is larger than 80, the AUC
of the two data sets grows slowly, and the distance
between them increases. Moreover, when the size is
larger than 90, the AUC of TEST tends to be stable.
Figure 6 shows the ROC curves on TEST set with the
long window size between 90 and 110. In the left fig-
ure, the ROC curves of the three sizes almost overlap.
However, the ROC curve of 90 is better at low FPR
as shown in the right figure. Considering that the
proportion of MoRF residues is only about 2% in the
TRAINING and TEST sets, we pay more attention to
the predictive performance at low FPR. Thus, the
long and middle windows are eventually set to 90
and 45.
Considering that researchers may require different

precision depending on the applications, we do not
set a standard threshold value. However, if one
needs a binary categorical prediction, Table 3 pro-
vides three threshold values and their predictive
results for reference, according to the FPRs on
TRAINGING set. The threshold value can be se-
lected in (− 0.5, 0.5), and the larger the value is, the
larger the FPR.

Comparing with other prediction methods
In this part, we compare our method MoRFMPM with
ANCHOR, MoRFpred and MoRFCHiBi for three test sets
TEST, TESTNEW and EXP53. The results of other
methods on these three sets are adopted from [16, 28].
Table 4 shows the AUC values for the four methods on
TEST and TESTNEW sets. Obviously, MoRFMPM
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Fig. 2 ROC curves when the feature numbers in candidate sets are 12 and 13. The left figure is the full ROV curves. The right figure is the ROC
curves at low FPR

Table 2 AA Index accession numbers of selected features

CIDH920101 ROBB760101 CORJ870103 MIYS990104

EISD860103 ROBB760108 CORJ870106 –

NISK860101 ROBB760112 CORJ870107 –

QIAN880105 ROBB760113 CORJ870108 –

These 13 features are collected by simulated annealing algorithm from
AA Index
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achieves higher AUC than ANCHOR, MoRFpred and
MoRFCHiB on both TEST and TESTNEW sets.
On TEST set, we also compare ACC and FPR at differ-

ent TPR with other methods, as shown in Table 5.
MoRFMPM achieves the lower FPRs and higher ACCs on
the three TPRs compared with ANCHOR, MoRFpred
and MoRFCHiBi. In other words, MoRFMPM can obtain
higher TPR at low FPR.
In addition, Table 6 shows the AUC results of these

four methods on EXP53 set. In EXP53_short set, only
MoRF regions with up to 30 residues are considered,

while longer MoRF regions are masked out. In
EXP53_long set, only MoRF regions longer than 30
residues are considered, while shorter MoRF regions
are masked out [28]. From Table 6, MoRFMPM also
obtains higher AUC on EXP53_all, EXP53_short and
EXP53_long sets.

Discussion
We propose a new method, MoRFMPM, to predict
MoRFs within protein sequences. It uses MPM to
train the predictor based on 16 features and 3
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Fig. 3 Predictive performance with different number of structural properties. The blue line is the AUC values on TRAINING set, and the red line is
the AUC values on TEST set
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Fig. 4 ROC curves with different number of structural properties. The left figure is the full ROV curves. The right figure is the ROC curves at low FPR
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different windows. The feature set contains 13 physi-
cochemical properties selected from Amino Acid
Index and 3 structural properties selected from our
previous study [22] about IDPs prediction including
topological entropy and two amino acid propensities
in GlobPlot NAR paper [23]. We compare MoRFMPM

with ANCHOR, MoRFpred and MoRFCHiBi on three
different test sets: TEST, TESTNEW and EXP53. The
results show that MoRFMPM obtains better perform-
ance on these test sets.
To further illustrate the predictive performance of

MoRFMPM, the protein p53 is predicted as an ex-
ample, as shown in Fig. 7. The protein p53 is a mas-
ter protein in tumor regulation, which is one of the
most extensively studied IDPs [30, 31]. The N-
terminal and C-terminal regions of this protein are
confirmed to contain MoRFs [32–34] which are enclosed
by the red lines in Fig. 7. The blue line is the predictive re-
sults of MoRFMPM for each residue. From Fig. 7,

MoRFMPM can effectively identify MoRFs of the protein
p53.
The following points enable MoRFMPM to achieve such

good performance. First, the appropriate preprocessing
highlights the relationship between the residue and its
surrounding residues. Second, the feature set used in
MoRFMPM is highly effective for predicting MoRFs, espe-
cially after preprocessing. Third, instead of considering
the properties of Flanks with fix length, MoRFMPM uses
a long window of 90 to describe the influence of adja-
cent areas on MoRFs, and uses a short window of 10 to
highlight the properties of MoRFs. Though the long
window may contain much non-MoRFs information
when calculating the feature vector of MoRF residues,
MoRFMPM uses a middle window of 45 to reduce the
noise brought by the long window. Finally, although
MPM is a linear classification algorithm, it is efficient
and robust, especially when there are not too many
features used.
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Fig. 5 Predictive performance with different windows sizes. The left figure is the AUC values with different short windows. The right figure is the
AUC values with different long and middle windows. The size of the middle window is always the half size of the long window
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Conclusions
In this paper, a new sequence-based method, named as
MoRFMPM, is proposed to predict MoRFs. MoRFMPM

calculate 16 features for each residue through prepro-
cessing with 3 different windows, and use MPM to
predict MoRFs. MoRFMPM does not depend on results
of other predictors. Comparing with ANCHOR,
MoRFpred and MoRFCHiBi on three different test sets:
TEST, TESTNEW and EXP53, MoRFMPM obtains the
best AUC on these test sets. In addition, on TEST set,
MoRFMPM achieves lower FPR and higher ACC when
TPR is set to 0.222, 0.254 and 0.389. The predicting
code of MoRFMPM are available at https://github.com/
HHJHgithub/MoRFs_MPM, where we also provide an
example with the protein p53.

Methods
Preprocessing
To highlight the interrelation between residues, the pro-
tein sequences are preprocessed. For a general protein
sequence w with length L, we select a window with the
length of N(N < L) and fill N0 = ⌊(N − 1)/2⌋ zeros at the
beginning and end of the sequence. Then we slide the
window to intercept regions of length N successively
with step of length 1. At this point, the sequence length
becomes L0 = L + 2N0, and the intercepted region can be
denoted as:

wi ¼ w0 ið Þ⋯w0 iþ N−1ð Þ; 1≤ i≤L0−N þ 1 ; ð2Þ

where w0 represents the sequence after zero-padding.
For each wi, the values corresponding to the selected
features are calculated as following:

vi ¼ M1 wið Þ M2 wið Þ⋯ Mk wið Þ⋯½ �T ; 1≤ i≤L0−N
þ 1:

ð3Þ

Mk(wi) denotes the value of k-th feature calculated on
wi. For one amino acid property, Mk(wi) denotes the
average value of wi mapped by the scale of the property.
For Shannon entropy or topological entropy, Mk(wi) de-
notes the value calculated on wi by their respective for-
mulas [22]. After that, we assign vi to each residue in wi.
For each residue, add up all vi of them and divide by
their respective cumulative number. The feature vector
xj (1 ≤ j ≤ L) of each residue can be expressed as:

x j ¼

1
jþ N0

XjþN0

i¼1

vi ; 1≤ j≤N0

1
N

XjþN0

i¼ jþN0−Nþ1

vi ; N0 < j≤L−N0

1
L0− j−N0 þ 1

XL0−Nþ1

i¼ jþN0−Nþ1

vi ; L−N0 < j≤L

8>>>>>>>>>><
>>>>>>>>>>:

ð4Þ

Feature selection
As mentioned, our feature set contains two parts: prop-
erties from AA Index [18] and structural properties. We
first select properties from AA Index using simulated
annealing algorithm, as shown in Fig. 8.
The detailed steps are as follows:

Table 4 AUC on TEST and TESTNEW sets

MoRFMPM MoRFCHiBi MoRFpred ANCHOR

TEST 0.777 0.746 0.673 0.600

TESTNEW 0.790 0.770 0.697 0.638

The AUC values of four methods on TEST and TESTNEW sets

Table 5 ACC and FPR at different TPR on TEST set

TPR = 0.222 TPR = 0.254 TPR = 0.389

FPR ACC FPR ACC FPR ACC

MoRFMPM 0.030 0.955 0.038 0.948 0.072 0.917

MoRFCHiBi 0.035 0.951 0.045 0.942 0.098 0.893

MoRFpred 0.037 0.948 0.049 0.937 0.137 0.854

ANCHOR 0.092 0.894 0.125 0.863 0.253 0.740

FPR and ACC as functions of TPR are calculated on TEST set

Table 6 AUC on EXP53 set

MoRFMPM MoRFCHiBi MoRFpred ANCHOR

EXP53_all 0.761 0.714 0.620 0.615

EXP53_short 0.814 0.790 0.673 0.683

EXP53_long 0.739 0.681 0.598 0.586

The AUC values of four methods on EXP53_all, EXP53_short and
EXP53_long sets

Table 3 Three threshold values and their predictive results

TRAINING_FPRs FPR = 0.05 FPR = 0.1 FPR = 0.15

Thresholds −0.12 − 0.0735 −0.0438

TPR FPR TPR FPR TPR FPR

TEST 0.313 0.052 0.458 0.098 0.535 0.141

TESTNEW 0.300 0.037 0.401 0.074 0.470 0.116

The thresholds are calculated by the fixed FPR values on TRAINING set. The
default value of the threshold is 0
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Fig. 8 The process of feature selection by simulated annealing algorithm. Using simulated annealing algorithm, we select properties from AA Index
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(1) According to the section of preprocessing, the
sequences in TRAINING set are preprocessed
based on the 544 amino acid scales from AA Index.
Then, each residue can obtain a 544 dimensional
feature vector.

(2) Set the number of selected features Nfea.
(3) Set the initial temperature T = Tmax, the lower limit

temperature Tmin and the annealing rate r.
(4) Nfea features are selected randomly from 544 scales

as the initial state S. Then, the distance between
MoRF residues and non-MoRF residues is denoted
as Jd and calculated using the selected Nfea feature
vector. Jd can be expressed by Jd = tr(Sw + Sb), where
Sb denotes the between-class scatter matrix

Sb ¼
P2

i¼1 Piðmi−mÞðmi−mÞT and Sw is the within-
class scatter matrix

Sw ¼ P2
i¼1 Pi

1
Ni

PNi
j¼1; x j∈Xi

ðx j−miÞðx j−miÞT . Be-
sides, mi represents the mean vector of the i-th
class and m represents the total mean vector. Thus,
the larger Jd is, the more separable the two types of
samples are.

(5) Randomly select a feature that does not belong to
state S from 544 scales, and make it replace any one
of S to form a new state Snew. Calculate the distance

J
0
d in the new state.

(6) If J
0
d > Jd , go to (7). Otherwise, calculate

p ¼ expð−j Jd− J 0dj=TÞ, then go to (7) with
probability p and go to (8) with probability 1 − p.

(7) Set S = Snew, Jd ¼ J
0
d .

(8) If T > Tmin, set T = T ∙ r and go to (5). Otherwise,
stop iteration.

In this paper, we set Tmax = 1, Tmin = 0.0001, r =
0.9995. The parameter Nfea is set from 10 to 20, and
thus we obtain 11 candidate feature sets. Then, we use
the 11 candidate feature sets to train MPM respectively,
and select the feature set with the best prediction
performance.
In addition, we select structure properties from five

features used by our previous research [22] about IDPs
prediction which contain Shannon entropy, topological
entropy and three propensities from GlobPlot NAR
paper [23] (http://globplot.embl.de/html/propensities.html)
including the Deleage/Roux, Remark 465 and Bfactor
(2STD) propensities. From [22], it has been shown that
these five features can effectively predict IDPs. In addition,
MoRFs generally locate within longer IDRs. Thus, we add
these five features to the feature set obtained from AA
index for further selection.
Since MoRFs generally locate within longer IDRs,

the protein sequences with MoRFs usually contain
three types of residues: MoRF residues, residues flank-
ing (Flanks) the MoRFs and general non-MoRF

residues. In other words, the Flanks represent other
disordered residues on both sides of MoRFs, and
general non-MoRF residues represent the ordered res-
idues in the sequence. The properties of the three
types of residues are different from each other. Thus
MSPSSMpred and MoRFCHiBi calculate the properties
of Flanks separately, and select 5 and 8 residues on
both sides of MoRFs as Flanks respectively. However,
the number of Flank residues in each MoRF region is
different, and even the number on both sides of one
MoRF region is also different. Therefore, instead of
calculating the properties of Flanks separately, we
consider the impact of Flanks by choosing three
different windows. The first window is shorter to
highlight the properties of MoRFs, and the second
window is longer to highlight the influence of Flanks.
The third window is between them to reduce the
noise generated by the longer window. The short win-
dow is selected from 5 to 11. Meanwhile, since
MoRFs generally locate within longer IDRs, we select
the long window no less than 50. If the long window
is very long, it may contain much non-MoRFs infor-
mation when calculating the feature vectors of MoRF
residues. These non-MoRFs information will reduce
the predictive accuracy of MoRFs at low FPR that we
are most concerned about, even if we have used a
short window. Therefore, we select a middle window
half the length of the long window to improve the
performance at low FPR.
For selecting the optimum features from 544 amino

acid indexes, we just use the short window and set
the length to 10, firstly. Through preprocessing the
TRAINING set, each residue gets a 544 × 1 feature
vector. Then, using simulated annealing algorithm, we
select several feature sets with different feature num-
bers as candidate feature sets. After that, we put the
five structural properties into them, and predict
MoRFs based on MPM algorithm with the short win-
dow of 10 and the long window of 50 to select the
best feature set. Finally, we change the number of
structural properties to further optimize the feature
set.

MPM prediction model
MPM is a machine learning method of statistical
learning proposed by Lanckriet et al. [24]. The main
idea is to analyze the upper bound of classification
error rate and make it as small as possible. Given a
feature matrix to be classified X ¼ ½x1; x2;⋯; xNs � ,
where Ns denotes the number of samples and xj(1 ≤
j ≤Ns) denotes the feature vector of the j-th sample.
Suppose that these samples are divided into two
groups X1, X2 ∈X, and X1~(μ1, R1), X2~(μ2, R2). MPM
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is expected to build a classification surface WTX = b,
which make the upper bound of the classification
error rate as small as possible. Make an assumption
that the correct classification satisfies WTX1 > b for
the first group and WTX2 < b for the second group.
The classification error rate is P{WTX1 ≤ b} for the
first group and P{WTX2 ≥ b} for the second group.
Then the classification surface constructed by MPM
should satisfy the following requirements:

min Sup P WTX1≤b
� �� �

and min Sup P WTX2≥b
� �� �

: ð5Þ

Through a series of solutions, the optimization prob-
lem becomes:

max
W;b

κ

s:t:
1
κ
≥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WTR1W

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WTR2W

p� �
; WT μ1−μ2ð Þ

¼ 1:

ð6Þ

Since κ is only an intermediate variable, the
optimization problem can be expressed as:

min
W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WTR1W

p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WTR2W

p
s:t: WT μ1−μ2ð Þ

¼ 1: ð7Þ

The classification surface of MPM is finally reduced to
solution formula Eq.7. It is a second order cone program
problem, which can be solved by iterative least square
method and interior point method. In this paper, we use
the iterative least square method given in the reference
[29]. Assuming that W∗ is the calculated optimal value,
then the optimal κ and b can calculated by:

κ� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W�TR1W�

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W�TR2W�

p� � ; ð8Þ

b� ¼ W�Tμ2 þ κ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W�TR2W�

p

¼ W�Tμ1−κ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W�TR1W�

p
: ð9Þ

Prediction process
For a protein sequence to be predicted, the specific pre-
diction process is shown in the Fig. 9. First, the sequence
is preprocessed by the selected feature set with three
different windows. Then, the calculated feature matrix is
input into the trained MPM, and the predicted result is
obtained.

Fig. 9 Specific prediction process. Based on the selected feature set, the protein sequence is preprocessed by three different windows, and then
is predicted by MPM
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