Zendrera et al. BMC Bioinformatics (2019) 20:499
https://doi.org/10.1186/512859-019-3112-y

BMC Bioinformatics

RESEARCH ARTICLE Open Access

Robust structure measures of metabolic
networks that predict prokaryotic optimal

growth temperature

Adeéle Weber Zendrera®, Nataliya Sokolovska

Check for
updates

and Hédi A. Soula

Abstract

environmental conditions.

dependant on environmental factors.

Background: Metabolic networks reflect the relationships between metabolites (biomolecules) and the enzymes
(proteins), and are of particular interest since they describe all chemical reactions of an organism. The metabolic
networks are constructed from the genome sequence of an organism, and the graphs can be used to study fluxes
through the reactions, or to relate the graph structure to environmental characteristics and phenotypes. About ten
years ago, Takemoto et al. (2007) stated that the structure of prokaryotic metabolic networks represented as
undirected graphs, is correlated to their living environment. Although metabolic networks are naturally directed
graphs, they are still usually analysed as undirected graphs.

Results: We implemented a pipeline to reconstruct metabolic networks from genome data and confirmed some of
the results of Takemoto et al. (2007) with today data using up-to-date databases. However, Takemoto et al. (2007)
used only a fraction of all available enzymes from the genome and taking into account all the enzymes we fail to
reproduce the main results. Therefore, we introduce three robust measures on directed representations of graphs,
which lead to similar results regardless of the method of network reconstruction. We show that the size of the largest
strongly connected component, the flow hierarchy and the Laplacian spectrum are strongly correlated to the

Conclusions: We found a significant negative correlation between the size of the largest strongly connected
component (a cycle) and the optimal growth temperature of the considered prokaryotes. This relationship holds true
for the spectrum, high temperature being associated with lower eigenvalues. The hierarchy flow shows a negative
correlation with optimal growth temperature. This suggests that the dynamical properties of the network are
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Background

All living organisms rely on chemical reactions to exist,
and the set of these life-sustaining chemical transfor-
mations is defined as metabolism. Because these reac-
tions are mostly catalysed—accelerated—by enzymes, the
transformation of organic molecules (substrates) into
other chemicals (products) can directly be mapped by the
enzyme set.

*Correspondence: adela@nicoweb.com
Sorbonne University, INSERM, NutriOmics F75013, France, 91, blvd. de
I'Hopital, 75013 Paris, France

The development of metabolic databases such as
KEGG [1] linking enzymes to their reaction pair —
substrates/products— allows us to explore the structure
of metabolism in general, and to investigate the structures
of the metabolic graphs of particular organisms [2].

Flow is an inherent concept of metabolic reactions,
going from substrates to products which then become
substrates for other reactions. Directed graphs are there-
fore a natural way to model enzymes and chemical reac-
tions [3]. The metabolic network of an organism is defined
as the whole set of metabolic pathways. Since such a
network is a (directed) graph, the elements of graph the-
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ory can be applied to study its properties. Understanding
network topologies and their physical, chemical, and bio-
logical constraints is critical to decipher the function and
evolution of cellular networks [4].

We focus on a metabolite-centered representation
where the nodes of a graph are metabolites, and they
are connected if an enzymatic reaction converting one
metabolite into another exists. It is then simple to create
metabolic networks that describe all chemical reactions of
one or multiple organism(s) as a graph. Figure 1 provides
an example of the topology of a directed graph for a bac-
terium. In a directed graph, some nodes are end-points
(shown in blue), and some nodes are starting-points (in
yellow). To keep our flow analogy in play, starting points
compounds will be an input (e.g. from the medium)
whereas end points are final’ products of the complete
pathways.

Recent studies take two main directions in the anal-
ysis of metabolic networks. The first one heavily relies
on graph structural measures such as degree distribution,
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clustering coefficient, path length, and centrality [5-7].
The second venue of research is based on the analysis
of biomass dynamics inherent to metabolic networks, by
trying to predict steady-state flux distributions. Various
constraint-based techniques exist to solve this problem,
e.g., flux balance techniques (FBA) [8].

It was reported by several studies (e.g., [9-12]) that the
compounds of metabolic networks, the flow of substrates
and products, and the overall pathway organisation are
correlated to environmental variables and to phenotypical
traits. The aim of these studies was to discover similarities
and differences in the structural and functional properties
of various organisms. It was noticed [9] that evolutionary
changes in metabolic networks are mostly due to adap-
tation to changing conditions. So, Takemoto et al. [11]
made an attempt to explore correlations between several
structural properties of metabolic networks (such as edge
density, power law degree exponent, clustering coefficient,
and subgraph concentration) for 113 prokaryotes to their
optimal growth temperature.
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Fig. 1 Metabolic networks complexity. a Metabolic network of archaea Methanopyrus kandleri; b Zoom in the network of archaea Methanopyrus
kandleri: metabolites without predecessors are shown in yellow, and metabolites without successors are shown in blue. The code C followed by 5
digits are compound codes in the KEGG database
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Ideally, metabolic networks require complex represen-
tations such as hypergraphs, since reactions in metabolic
networks convert multiple reaction inputs into multi-
ple outputs using other components [13, 14]. However,
a reduced representation and algorithms on graphs can
facilitate the analysis by addressing the fundamental bio-
logical concepts.

A number of graph theory approaches were proposed
to study relations between the structure of metabolic
networks and the environment. So, Borenstein et al.
[10] stated that species whose environment are highly-
predictable tend to have smaller sets of compounds that
are exogenously acquired than those who live in variable
conditions.

The network topology determines network functions
[15], and the topology of a metabolic network is important
in predicting the viability of mutant strains.

Metabolic networks are known to be extremely hetero-
geneous, and two networks of two different organisms
are quite different [16]. At the same time, the metabolic
networks were shown to be robust in the sense that
elimination of several central nodes does not modify the
functions of the networks [16]. A graph-based method to
identify all minimal reaction sets in a metabolic network
was considered in [17].

Our main motivation is to explore the structure of
directed metabolic graphs of bacteria, and to relate it to
phenotypes. In our experiments, we consider prokary-
otic optimal growth temperature as a phenotype. In this
article, our contribution is:

® We reconstruct metabolic networks for species
considered by [11] in addition to several species that
will increase the number of species in the growth
temperature classes which were represented by too
few species.

e e build and explore undirected and directed
metabolic graphs; including all KEGG enzymes for
the species or only those found in the so-called
KEGG pathways.

e We propose to apply robust measures on directed
complex graphs, namely largest strongly connected
component, flux hierarchy and Laplacian spectrum,
and we relate these measures to the environmental
conditions.

¢ In our experiments, we have confirmed the results of
[11], and we discuss the newly introduced metrics.

Results

Confirmation of the state-of-the art results of Takemoto
etal. (2007)

In the study conducted by [11], undirected sub-
strate graphs were constructed using KEGG metabolic
pathways for 113 prokaryotes from four different growth
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temperature classes (hyperthermophiles, thermophiles,
mesophiles, and psychrophiles). They considered several
properties of undirected graphs, and analysed the cor-
relation between the graph properties and the optimal
growth temperatures of the organisms. We implemented
and tested three measures from their study: edge density,
maximum likelihood estimate of degree exponent, and
average clustering coefficient.

Since more than ten years have gone by, the databases
have evolved significantly. We focused on directed graphs,
and we reconstructed the metabolic networks without
using pathways directly (see Methods). We obtained
graphs for 100 out of the 113 species, filtering out nodes in
such a way that we had metabolic reactions from known
pathways only. We also added 128 additional species.

There are two main differences between our experi-
ments and the ones from [11]. We use more species in our
experiments, and we consider directed graphs. We still
confirm most of the results from [11].

We apply a linear regression to estimate relation
between the number of nodes in a metabolic network
and the optimal growth temperature and deduce Pear-
son’s correlation. We consider a correlation between the
number of nodes and the optimal growth temperature,
a correlation between edge density and optimal growth
temperature, a correlation between degree exponent and
optimal growth temperature, and a correlation of average
clustering coefficient and optimal growth temperature. All
these measures are applied to undirected substrate graphs
without ubiquitous metabolites, to be as close to [11] as
possible. As we can see from Fig. 2 (green lines), there
is a significant negative correlation between the number
of nodes and the temperature shown on Fig. 2a, and a
negative correlation between edge density and the tem-
perature illustrated on Fig. 2b. As shown on Fig. 2¢ and
d, we find a significant positive correlation for the degree
exponent estimate, and significant negative correlation for
the average clustering coefficient with the optimal growth
temperature of the species.

In general, we discovered the same tendencies as [11].

Undirected graphs reconstructed from all enzymes and the
impacts on graph properties

Here we compare the influence of taking all KEGG
enzymes for a species with enzymes in known KEGG
pathways only. Our method to build the metabolic graphs
is different from [11] in that we consider all reactions
that can be deduced from the species genes, and not only
enzymes involved in known pathways. We have, therefore,
found additional enzymes for all species.

On Fig. 2a, we notice a strong bias related to the number
of nodes in respect to the growth temperature. Hence, ide-
ally, graph properties are to be normalised by the number
of nodes.



Zendrera et al. BMIC Bioinformatics (2019) 20:499

Page4of 13

® All enzymes

1400 4 e Pathway enzymes

1200 4

1000 +

800

Number of nodes

600

400

200

Temperature (°C)

(a) r = -0.40, p-value < 107 for the graph with all enzymes,
r = -0.41, p-value < 107'° for the graph with only enzymes in
known pathways

2301 g Allenzymes °
e Pathway enzymes °
2.254 L4
2.201
o
€
[
c
& 2.15 4
22
o
o
L
22101
o
2.054
2.004

Temperature (°C)

(¢) r = -0.24, p-value < 1072 for all enzymes, r = 0.35, p-value
< 1077 for enzymes in known pathways

Fig. 2 Impact of additional enzymes: a the Pearson’s correlation between the number of nodes and the optimal growth temperature; b the
correlation between the edge density and the optimal growth temperature; ¢ the correlation between the degree exponent and the optimal
growth temperature; and d the correlation of the average clustering coefficient and the optimal growth temperature. All these measures are

applied on undirected substrate graphs without ubiquitous metabolites
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We wish to analyse the impact of the additional reac-
tions. We observe a complete loss of the tendencies, what
is shown in blue on Fig. 2b, c and d. All the correlations are
inverted, albeit with lower correlations except for the aver-
age clustering coefficient, which has a stronger correlation
than what [11] found.

We found a significant positive correlation between the
proportion of enzymes that are not in a pathway and
optimal growth temperature (Pearson’s r = 0.26, data not
shown), meaning that more new enzymes—edges—are
added for thermophiles than non-thermophiles, adding
more edges and therefore likely causing the correlation
inversions.

When removing up to 40% of random nodes in the
graphs with all enzymes, the trends stay significantly

correlated. This means that the pathway enzymes are
specific and greatly modify the graph structure.

These differences could be due to a bias in KEGG path-
ways for hyperthermophiles, that could have less anno-
tated and curated pathways than its more well-studied
counterparts, and thus more enzymes not associated to
pathways. Another hypothesis is that this difference could
be explained by noise, since the number of nodes for
hyperthermophiles is the smallest.

Robust directed measures to analyse cycles of metabolic
networks

We focus on directed metabolic networks, and we are
interested in finding relevant measures on directed graphs
that can explain correlation with environmental variables
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such as optimal growth temperature. We propose robust
measures to analyse substrate graphs.

We considered two measures to study cycles in net-
works, the size of the largest strongly connected compo-
nent which corresponds to the biggest cycle in a graph,
and the flow hierarchy (see Methods). The flow hierarchy
is defined as the number of nodes in a component that is
not a part of the largest strongly connected component.
So, the two explored measures are closely related.

As shown in Fig. 3, we found a significant nega-
tive Pearson’s correlation between the size of the largest
strongly connected component, normalised by the num-
ber of nodes, and the optimal growth temperature. We
have also observed a significant positive Pearson’s corre-
lation between the node normalised flow hierarchy and
the optimal growth temperature. These tendencies have
been found for substrate graphs built with all enzymes
and for substrate graphs with enzymes in known path-
ways: these measures are consistent in both cases, with
similar correlations thus becoming robust measures to
analyse correlation between metabolic network struc-
ture and environmental conditions. We consider that
these measures are potentially more relevant to describe
metabolic networks as they reflect directed graphs
properties.

Metabolic network Laplacian eigenvalues

We tested another directed network structural property to
study connectivity. A temperature class network yields dif-
ferent graph structural properties related to connectivity,
but the underlying description of these graphs is a com-
pound flow. These properties are associated to the speed’
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of reactions and can be assessed using the spectrum of the
network [18].

More precisely, for each species’ graph we computed
the adjacency matrix containing all recorded compounds
among all species yielding a matrix A of dimensions
3194 x 3194. We compute the Laplacian matrix £ and
extract its spectra (the ordered from high to low list of
eigenvalues of £). These values must be comprised within
the interval [0,2]. For example, for a star graph with #
vertices, the eigenvalues are 0, 1 (with multiplicity n — 2)
and 2, and for the cycle on # vertices the eigenvalues are

l—cos(z%k) for0 <k < n.

We computed this spectrum for each species, and esti-
mated the average within the same temperature group
(see values in Additional file 2). The results are shown
on Fig. 4. The results illustrate clearly that for a tempera-
ture class structuration, a higher temperature is associated
with lower eigenvalues.

In Fig. 4 we can see steps that can be observed at value
1 and 0. Eigenvalues of 0 have a multiplicity equal to the
number of connected components in the graph, but also
since we computed the adjacency matrices as the union of
all compounds for all species, eigenvalues of 0 also reflect
nodes that do not actually exist in a given graph but exist
in another (Fig. 2a shows that the largest networks have
a maximum of around 1500 nodes whilst Fig. 4 shows
3200 eigenvalues). These non-existent nodes are therefore
considered as isolated nodes and counted as a connected
component, having an eigenvalue of 0.

On the other hand, eigenvalues of value 1 with eigen-
vectors summing to 0 correspond to a particular network
pattern :
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Discussion

We have observed that prokaryotic metabolic network
properties can correlate with environmental phenotypes,
namely with the optimal growth temperature in our study.

First of all, we confirmed the results of [11] that
dates more than ten years back: a negative correla-
tion between edge density and optimal growth tem-
perature and between average clustering coefficient and
optimal growth temperature, and a positive correlation
between maximum likelihood estimate of degree expo-
nent and optimal growth temperature. This clearly shows
the robustness of the data from the KEGG database, even
though some data has been modified, and some new data
has been added. On another hand, the results of our exper-
iments also illustrate the validity of the results of [11].
Although the amount of species in our experiments is
doubled compared to the number of prokaryotic species
in [11], the trends are still the same.

These results hold for a particular subset of known
metabolic data of the species. We consider important to
take all available data (enzymes) into account. However,
in the case where all enzymes associated to the species in
KEGG are taken into account, these results do not hold
anymore: they change sign of the correlation. The origins

of these inversions are still unclear, but we believe that
it could be due to biases in KEGG for non-mesophilic
species (especially for thermophilic species).

We believe a directed network representation is more
appropriate to model metabolism, so we looked for
directed topological properties that were robust for the
different reconstruction protocols. We tested directed
graph structural properties related to cycles (largest
strongly connected component and flow hierarchy) and to
connectivity and flow (Laplacian spectrum).

We found that when there are less nodes involved in
the largest strongly connected component (cycle), it is
linked to higher optimal growth temperatures, and there
are more nodes outside of the cycle that are still part
of the weakly connected component, which is the mea-
sure of hierarchy flow. When more nodes are involved
in the largest strongly connected component, it is linked
to lower optimal growth temperatures, and there are
less nodes outside the cycle that are still part of the
weakly connected component. This is valid no matter if all
enzymes are considered or only pathway enzymes.

We explored the most common nodes of the largest
strongly connected components, and we found several
metabolites such as L-glutamate and L-glutamine (found
in 213 out of 228 species), pyruvate (found in 213 from
228 species), phosphoenolpyruvate (209/228), carbamate
(208/228) and some others which are molecules involved
in the most basic cell metabolism, and that may imply the
primordial and basic functions of these metabolic cycles.

Amino acid substitutions are reported to be more dele-
terious for thermophiles than non-thermophiles [19],
implying less variability in enzymes, thus less enzymes,
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explaining the negative correlation between the number
of nodes in our graphs and optimal growth temperature
(Fig. 2a). We can hypothesize that for this very reason, the
set of core enzymes and metabolites of the metabolism,
which could be represented by the largest strongly con-
nected component, also represents a smaller fraction of
nodes because of the greater evolutionary pressure given
by temperature. Consequently, as the fraction of nodes in
the largest strongly connected component is smaller for
thermophiles, the fraction of nodes for the flow hierarchy
is larger.

On another hand, we see that Laplacian eigenvalues are
higher for prokaryotes that preferentially grow in colder
environments, showing more particular patterns of con-
nectivity and flow in their networks.

Other directed graph topological properties were tested,
with some having significant correlations with optimal
growth temperature for both reconstructions, such as
the fraction of nodes with an in-degree of 0 (starting-
point nodes, input metabolites) or the fraction with an
out-degree of 0 (end-point nodes, output metabolites),
having both positive correlations with temperature (data
not shown), or also the number of some of the triads
among the 16 possible triads in a directed network also
show significant correlations, positive and negative (data
not shown). All of this shows the clear link between the
immediate environment and the metabolism of a given
species, and can be looked into in different contexts and
environments.

To integrate directed graphs and bring it a step further,
an interesting future research avenue would be to study
the differences, or complementarities between commu-
nity graphs and single organism graphs, as well as differ-
ences in their largest strongly connected components and
other directed structural properties.

An important point has to however be made on the
direction of chemical reactions. In this work, we fixed the
directions of reactions as found in the KEGG database.
However, there might be some chemical reactions hap-
pening in the opposite direction than the one fixed in
KEGG. We believe that it may be interesting to infer
directionality of reactions, since homeostasis is extremely
important for organisms, and it is regulated, e.g., by
enzymes. There is a need to study this problem, for exam-
ple through thermodynamics, and it would be promising
to study the flux of our graphs, in particular from obser-
vational data to investigate the dynamics of the biomass.

Conclusions

We have reproduced the results of [11], and we state
that the results mostly hold even with the evolution of
the KEGG database, and even while significantly increas-
ing the number of species in the data set. We have
found a positive correlation between the degree exponent
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estimate and optimal growth temperature, and a negative
correlation between the edge density and the tempera-
ture and between average clustering coefficient and the
temperature.

We have noticed that when we include all KEGG
enzymes we could find for a species into metabolic net-
works, and not only the enzymes from KEGG pathways,
the results do not hold anymore.

We propose three directed graph measures, namely, the
size of the largest strongly connected component, the flow
hierarchy, and the Laplacian spectrum. We have shown
that these measures are robust for all considered graphs,
and they correlate respectively negatively, positively and
negatively to the optimal growth temperature. In all our
experiments, we have observed strong links between envi-
ronmental phenotypes and graph structure.

We have also developed a pipeline to reconstruct
metabolic networks taking into account all enzymes. We
compared the results of our pipeline to the state-of-the-
art results of [11], and we can state that our pipeline yields
very reasonable results.

We are currently investigating how robust the metabolic
networks are against structural modifications. Find-
ing causal directions from purely observational data is
another open challenge.

Methods

Prokaryotic species

Our data set contains 228 prokaryotic species where 100
species are from the databased used by [11]. We decided
to increase the number of species in our experiments,
since the number of bacteria in three growth temper-
ature classes was too small (1 psychrophile, 9 hyper-
thermophiles, and 9 thermophiles). We added 52 species
from the Bacterial Diversity metadatabase (BacDive) [20],
chosen according to their growth temperature class.
We also added 76 mesophilic species from the Human
Pan-Microbe Communities (HPMC) database [21]. We
obtained the following distribution over four growth tem-
perature classes (from hot to cold): 19 hyperthermophiles
(HT), 35 thermophiles (T), 158 mesophiles (M), and 16
psychrophiles (P). Mesophiles are the most well-studied
species, thus biasing databases towards these species and
explaining the temperature distribution of our species.
Hyperthermophilic species are species whose optimal
temperature is above 80°C, thermophilic species are ones
with the optimal temperature between 50°C and 70°C,
mesophilic species live in the range between 20°C and
45°C, and psychrophilic species prefer an environment
between —20°C and 10°C.

Metabolic network reconstruction
There exist a number of ways to produce metabolic
networks from chemical reactions. The nodes of such
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a metabolic reconstruction can be metabolites (small
molecules, substrates, and products of the enzymes),
or enzymes. We have built directed and undirected
substrate graphs which are metabolite-centered graphs
where each substrate is a node and is linked to each
product of a metabolic reaction for a given species.
Therefore, edges are enzymatic reactions linking sub-
strates to products. Figure 5 sketches a metabolic reac-
tion, a directed graph, and an undirected metabolic
network.

To build the metabolic graphs, we downloaded Ensembl
or GenBank ¢DNA FASTA files for the 228 species.
Figure 6 shows the reconstruction procedure. We
retrieved gene labels from the FASTA files, see Fig. 6a.
We then consulted the Kyoto Encyclopedia of Genes and
Genomes (KEGG, [22]) database. With the KEGG code
for a species and the gene labels, we found the species
gene entries, and we extracted all enzyme commission
codes (ECs) if the codes were found in complete form,
i.e,, no hyphen was present in the code. This step is
shown on Fig. 6b. We then extracted all substrates and
products from the KEGG enzyme entries (Fig. 6¢), and
we built directed and undirected substrate graphs, which
is illustrated by Fig. 6d and e. We excluded 13 species
out of the 113 species from [11] because we could not
find gene names in the cDNA FASTA files, or the gene
names did not match to the KEGG species code, or the
species entry (and code) in KEGG simply did not exist
anymore.

A common practice in metabolic network reconstruc-
tion is to exclude ubiquitous metabolites to make the net-
work more relevant biologically, and because of the great
impact on network structure. There is no strict consensus
on ubiquitous metabolites, however, the metabolites used
as carriers for transferring electrons and common func-
tional groups are regarded as ubiquitous metabolites [23].
Similarly to [11], we defined 13 ubiquitous metabolites:

(a) S1+82 —» P1+P2
Enzyme

(b) (c)

O ONO O

Fig. 5 Metabolic network representation: a enzymatic reaction, S1
and S2 the substrates, and P1 and P2 the products; b a directed graph
representation; ¢ an undirected graph representation
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H,O, ATP, ADP, NAD*, NADH, NADPH, CO;, ammo-
nia, sulfate, thioredoxin, phosphate, pyrophosphate (PP;),
and H*. We also consider NADP* to be a ubiquitous
metabolite. All these metabolites do not appear in our
graphs.

Note that in [11] they directly downloaded the
metabolic pathways of the prokaryotes from the KEGG
which are curated networks and are, therefore, different
from the networks found with the full enzyme set of the
prokaryotes. In order to replicate as accurately as possi-
ble their results, we also built graphs without enzymes
that do not have an associated KEGG pathway (without
PATHWAY field in the KEGG enzyme entry).

Indeed, our main objective is to assess bacterial
metabolic systems without any a priori knowledge, and
therefore keep as much information as possible, which is
why we keep all enzymes that can be deduced from the
genome. This means that we have kept most inorganic
compounds and generic reactions. We therefore may have
less metabolic information regarding some nodes when
considering generic reactions, but also more informa-
tion as more data from the database is considered and
as all substrates and products are included (pathways
sometimes only show the main reactants and not all
of them).

For the directed reconstructed graphs, the default direc-
tion of the KEGG reaction was used, which is the direction
of the catalytic reaction (substrates and products are spec-
ified). It is the direction in which the flow of biomass is
expected.

Our networks were reconstructed on April 2019, a
description of the species and the networks can be found
in Additional file 1.

Optimal growth temperatures

For the species also considered by [11], we got the optimal
growth temperatures from the supplementary material
provided with their article. The data originally came from
the Prokaryotic Growth Temperature Database (PGTdb)
[24]. The access to the PGTdb was not available since
we started performing our experiments and later, so, the
optimal growth temperature and the growth tempera-
ture classes for the rest of the species were taken from
the BacDive database [20]. For the species whose optimal
growth temperature was given as an interval in the Bac-
Dive database, we used the average value of the interval.
For the species from the Human Pan-Microbe Commu-
nities (HPMC) database, the optimal growth temperature
was fixed to 37°C.

Measures on directed and undirected graphs

Edge density for undirected graphs

Here we use the definition provided in [11] for the edge
density for an undirected graph:
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cDNA fasta file

(a) Step 1: From cDNA fasta file, get gene labels.

[Xfpg  ewormefiias]

Hop
Moo cvomiornd =
Entry Ec 2.7.2.4 Enzyme
Name aspartate kinase;
laspartokinase;
AK;
beta-aspartokinase;
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Gene name |thraA
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KEGG gene entries

(b) Step 2: From KEGG gene entries, get EC(c) Step 3: From KEGG enzyme entries, get

KEGG enzyme entries

substrates and products.

[ L-aspartate ]—)[ 4-phospho-L-aspartate ]

(d) Step 4: Build graph and filter ubiqui-
tous metabolites. Ubiquitous metabolites :
H20, ATP, ADP, NAD+, NADH, NADPH,
NADP+, CO2, ammonia, sulfate, thiore-
doxin, phosphate, PPi, H+.

(e) Final graph.

Fig. 6 Our network reconstruction procedure. a Step 1: From cDNA fasta file, get gene labels, b Step 2: From KEGG gene entries, get EC codes, €
Step 3: From KEGG enzyme entries, get substrates and products, d Step 4: Build graph and filter ubiquitous metabolites. Ubiquitous metabolites :
H20, ATP, ADP, NAD+, NADH, NADPH, NADP+, CO2, ammonia, sulfate, thioredoxin, phosphate, PPi, H+, e Final graph
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Fig. 7 Visualization of the largest strongly connected component and weakly connected component for Desulfurococcus amylolyticus 1221n. a
Weakly connected component containing the largest strongly connected component (nodes in green, edges in blue), b Largest strongly
connected component, € Zoom of local area containing the largest strongly connected component
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E
Edge density = N 1)

where E is the total number of edges, and N is the total
number of nodes.

Maximum likelihood estimate of degree exponent

We follow the definition given by [11]. We assume that
the degree distribution P(k) of our graph follows a power
law k7. The number of connections k of a node is called
degree of a node, and the degree distribution is the degrees
of nodes over the whole graph. An estimate via maximum
likelihood of the degree exponent y is as follows:

N & -1
y:1+Nx|:Zlnkl'i| : (2)
i=1 min

where N is the number of nodes in the network, k; is the
degree of node i and kpin is the smallest degree in the
metabolic network. We do not take into account nodes
with null degrees for this measure.

Average clustering coefficient

Here we have used an approximation of the average clus-
tering coefficient. The local clustering coefficient of a
node i in an undirected graph G is defined as:

=, )
Mpossible

where M; is the number of triangles formed by a node and
two of its neighbours, and Mpsiple is the number of all
possible triangles that could be formed with this node’s
neighbourhood. The average clustering coefficient corre-
sponds to an average value of local clustering coefficients
over all nodes. The approximation we have applied is the
one proposed by [25] where the action of choosing a node
at random and checking whether its two random neigh-
bours are connected is repeated n times (we have taken
n = 1000).
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The average clustering coefficient C then becomes:

C= M, (4)
n

where M is the number of triangles found, and # is the
number of trials.

Node-normalised size of the largest strongly connected
component

The largest strongly connected component corresponds
to the largest partition of path equivalent nodes in a
directed graph. Path equivalence is the property of having
a path from node v to node w, and a path from w to v in
a given graph G [26]. Therefore, the node-normalised size
of the largest strongly connected component is the num-
ber of nodes of the largest strongly connected component
divided by the number of nodes. Note that applying this
definition, the strongly connected components are cycles.
An example of the largest strongly connected component
for Desulfurococcus amylolyticus 1221n is shown on Fig. 7.
The number of nodes in the largest strongly connected
component might be small compared to the number of all
nodes in a graph (in the example it is 6 out of 340 nodes).

Node-normalised hierarchy flow

A weakly connected component is also a property of
directed graphs. It is defined as a group of nodes where
each node v and w are connected via an undirected path.
We have defined the concept of flow hierarchy as the num-
ber of nodes that do not participate in the largest strongly
connected component. Hierarchy flow can therefore be
deduced from the subtraction of the strongly connected
component from the weakly connected component. To be
precise, we take the largest strongly connected compo-
nent and the weakly connected component containing it,
and we then divide the remainder nodes by the number
of nodes in the graph (normalization). This procedure is

Strongly connected components: group of nodes
that can access all of the others in the group
through directed edges (arrows) .

0&®

Weakly connected components:

group of nodes that can access all of the others in

the group through undirected edges (lines) .
®+0 & @+0

Fig. 8 The largest strongly connected component and the weakly connected component of a graph: an intuition behind the measures

#O>#@

Node normalised size of largest strongly
connected component:

9) -~
#O+#@+4#@+#0

Node normalised flow hierarchy:

) (#O+#@)-#O

#O+#@ +#@ +# 0O
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drafted on Fig. 8, and can be observed in the example of
Desulfurococcus amylolyticus 1221n in Fig. 7.

Laplacian matrix and spectrum

We collected the set of all compounds described in the
different graphs to create a standardized adjacency matrix
A for each species indexed by these vertices Ay, = 1ifa
directed edge exists from x to y. By construction, A is not
usually symmetric. We compute the Laplacian matrix £
also indexed by the vertices whose sum over the columns
are equal to zero and Ly, = —A,y if x # y. We com-
puted the spectrum —the list of eigenvalues— of £ and
ordered it by highest to lowest. We computed the average
of this sorted vector for all species within a temperature
class.
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