
RESEARCH Open Access

Prioritizing candidate diseases-related
metabolites based on literature and
functional similarity
Yongtian Wang1, Liran Juan2, Jiajie Peng3, Tianyi Zang1* and Yadong Wang1*

From Biological Ontologies and Knowledge bases workshop at IEEE BIBM 2018
Madrid, Spain. 3-6 December 2018

Abstract

Background: As the terminal products of cellular regulatory process, functional related metabolites have a close
relationship with complex diseases, and are often associated with the same or similar diseases. Therefore,
identification of disease related metabolites play a critical role in understanding comprehensively pathogenesis of
disease, aiming at improving the clinical medicine. Considering that a large number of metabolic markers of
diseases need to be explored, we propose a computational model to identify potential disease-related metabolites
based on functional relationships and scores of referred literatures between metabolites. First, obtaining
associations between metabolites and diseases from the Human Metabolome database, we calculate the similarities
of metabolites based on modified recommendation strategy of collaborative filtering utilizing the similarities
between diseases. Next, a disease-associated metabolite network (DMN) is built with similarities between
metabolites as weight. To improve the ability of identifying disease-related metabolites, we introduce scores of text
mining from the existing database of chemicals and proteins into DMN and build a new disease-associated
metabolite network (FLDMN) by fusing functional associations and scores of literatures. Finally, we utilize random
walking with restart (RWR) in this network to predict candidate metabolites related to diseases.

Results: We construct the disease-associated metabolite network and its improved network (FLDMN) with 245
diseases, 587 metabolites and 28,715 disease-metabolite associations. Subsequently, we extract training sets and
testing sets from two different versions of the Human Metabolome database and assess the performance of DMN
and FLDMN on 19 diseases, respectively. As a result, the average AUC (area under the receiver operating
characteristic curve) of DMN is 64.35%. As a further improved network, FLDMN is proven to be successful in
predicting potential metabolic signatures for 19 diseases with an average AUC value of 76.03%.

Conclusion: In this paper, a computational model is proposed for exploring metabolite-disease pairs and has good
performance in predicting potential metabolites related to diseases through adequate validation. This result
suggests that integrating literature and functional associations can be an effective way to construct disease
associated metabolite network for prioritizing candidate diseases-related metabolites.

Keywords: Metabolite network, Collaborative filtering, Similarity of metabolites, Random walking with restart

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: tianyi.zang@hit.edu.cn; ydwang@hit.edu.cn
1School of Computer Science and Technology, Harbin Institute of
Technology, Harbin 150001, People’s Republic of China
Full list of author information is available at the end of the article

Wang et al. BMC Bioinformatics 2019, 20(Suppl 18):574
https://doi.org/10.1186/s12859-019-3127-4

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-019-3127-4&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:tianyi.zang@hit.edu.cn
mailto:ydwang@hit.edu.cn


Background
While a gene-based approach has contributed to our
knowledge on the genomic space of possible genes and
proteins [1–4], it is increasingly understood that such an
approach is far from sufficient because most cellular com-
ponents work intricate networks of regulatory, metabolic,
and protein interactions [5–8]. As the end products of cel-
lular regulatory processes, metabolites can be considered
as the ultimate response of biological systems to genetic
or environmental changes [9]. In biological systems, meta-
bolomics, which is an emerging area of research, can not
only contribute to the discovery of metabolic signatures
for disease diagnosis, but is very helpful to illustrate the
underlying molecular disease-causing mechanisms [9–12].
Furthermore, metabolites are easier to be analyzed for rec-
ognizing diseases at the molecular level compared to
genes, mRNA transcripts and proteins related to diseases,
among which there are large quantities of intricate inter-
actions. Therefore, metabolisms, as the final products of
cellular regulatory processes, can be a significant factor to
illustrate the disease-causing mechanisms.
Nowadays, the advanced technology is really helpful to

researchers for studying diseases in the molecular level
[13–17]. And more researchers have devoted their work to
metabolomics for revealing more information about dis-
eases. Breitling, R et al. [18] utilized Fourier transform
mass spectrometry data to make prediction of metabolic
networks. In 2010, Gao, J et al. [19] developed a plugin for
visualizing and interpreting metabolomic data in human
metabolic networks. Considering the global importance of
metabolites and the unique character of metabolomic pro-
file, Li Feng et al. [20] proposed a network-based method
for metabolite pathway identification. In 2016, Sergushi-
chev, AA et al. [21] presented a web-service for integrated
transcriptional and metabolic network analysis, focusing
on identification of the most changing metabolic subnet-
works between two conditions of interest. Wang et al. [22]
identified potential urinary biomarkers for early colorectal
cancer detection utilizing NMR-based metabolomic tech-
niques. Recently, Ohtana, Yuki et al. [23] made analysis of
drug-endogenous human metabolite similarities and 3D-
Structure similarity based network of Secondary Metabo-
lites [24]. To figure out whether metabolite networks are
reproducible across different populations, Iqbal, Khalid
et al. [25] investigated similarity of metabolite networks in
four German population-based studies (EPIC-Potsdam,
EPIC-Heidelberg, KORA and CARLA). From the above it
can be seen that researchers are paying more attention to
metabolite research and metabolomics has developed
rapidly.
As the link between genotypes and phenotypes, one me-

tabolite is not always related to a sole disease, and the im-
pact of certain disease spreads among functionally related
metabolites in a network [26]. Thus, adjacent metabolites

with functional associations in this network tend to relate
to the same diseases or similar ones [6]. This suggests that
the functional associations between metabolites can be
measured by the similarities of diseases. Therefore, we
aimed to identify more disease-related metabolites by ana-
lysis the metabolite and disease data.
Now there have been many methods to calculate

medical terminology similarity [27–30]. But to our
knowledge, no methods had been proposed to compute
metabolite similarity based on collaborative filtering
(CF) [31] with the functional similarities between dis-
eases as weight. CF can effectively utilize associations
among other similar members and discover potential
but not yet found interests. It is able to finish personal-
ized recommendation with high degree of automation.
Thus, a disease associated metabolite network (DMN)
can be built based on modified collaborative filtering,
which takes advantage of the entire interaction net-
work. However, relying entirely on metabolite-related
diseases greatly limits the utility of the method because
many metabolites still have very few or no associated
diseases. To overcome this limitation, a new disease-
associated metabolite network (FLDMN) is built by fus-
ing functional associations and scores of literatures
from STITCH database [32]. Finally, FLDMN is utilized
to identify potential disease-related metabolites based
on network random walk.

Materials and methods
To clarify the research that we do, the workflow of the
computational model is shown in Fig. 1. First, we integrate
information from Human Disease Ontology (DO) [33],
Merged Disease vocabulary (MEDIC) [34] and Human
Metabolome Database (HMDB) [35] to establish mapping
between DO terms and metabolites. Next, we define a fea-
ture vector for each metabolite to calculate the similarities
between metabolites. Given the associations between me-
tabolites and diseases, disease functional similarities are
calculated by FNSemSim [29] and added to the dimen-
sions of this vector as relevance scores between diseases
and metabolites. Based on functional associations between
metabolites, a disease-related metabolite network (DMN)
is built. Subsequently, extracting scores of literatures from
STITCH, we build a new network of disease related me-
tabolites (FLDMN). Random Walking with Restart (RWR)
is applied in this new network to output the ranking of
candidate disease-related metabolites. Therefore, the po-
tential relationships between diseases and metabolites can
be identified.

Data collection
Disease database
Merged Disease vocabulary (MEDIC) [34] from Compara-
tive Toxicogenomics Database (CTD) [36] is a modified
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subset of descriptors from “Diseases” category of Medical
Subject Headings (MeSH) [37]. MEDIC is used to curate
gene–disease and chemical–disease associations in CTD.
In this study, we will use the “Synonyms” field and the
“DiseaseName” field of MEDIC as a part of a combined
vocabulary for mapping.
The Human Disease Ontology (DO) [33] is a commu-

nity driven standards-based ontology that is focused on
representing common and rare disease concept, which
provides researchers with an open source ontology for
the integration of biomedical data that is associated with
human disease. The content of each disease in DO is a
node, which has a parent-child relationship with others.
All of these nodes are organized in a directed acyclic
graph (DAG) with an ‘IS_A’ relationship. In this study,
terms of DO will also be utilized as a part of a combined
vocabulary. Finally, we use this combined vocabulary to
annotate DO with metabolite-related diseases.

Human metabolome database
The Human Metabolome Database (HMDB) [35] is a
freely metabolome database with detailed information
about small molecule metabolites in the human body.
Currently, HMDB involves 11,400 metabolites, which
contains 835 disease associated metabolites with 825 dis-
eases. In this study, we will use two different versions of
HMDB, which released in Dec. 2017 and Apr. 2018, for
constructing the metabolite network and extracting test-
ing sets, respectively.

STITCH [32] is a database of known and predicted in-
teractions between chemicals and proteins, which inter-
actions includes direct and indirect associations.
Currently, STITCH database contains 9,643,763 proteins
from 2031 organisms. In this study, eligible interactions
from STITCH are involved in the reconstruction of
metabolic network.

Methods of the metabolite network construction
Mappings between diseases and metabolites
The xml file which contains information about metabo-
lites can be found in HMDB web site. However, we find
that these diseases in HMDB don’t have any mapping
with DO terms when this file is parsed. Therefore, we
build mappings between DO terms and diseases in
HMDB. As comprehensive disease corpuses, MEDIC
and DO both contain abundant disease terms. First, we
parse the HMDB file to get disease-related metabolites.
Then we annotate DO entries with the terms from
MEDIC and create a combined vocabulary of disease
terms. Finally, mappings between DO terms and dis-
eases in HMDB are built reference to this combined
vocabulary.

Metabolite similarity calculation based on modified
collaborative filtering
As one of the most successful technologies for recom-
mender systems [38], collaborative filtering has been de-
veloped and improved over the past decade. In this

Fig. 1 The flow chart of building FLDMN to identify potential disease-related metabolites
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study, we define associations between metabolites based
on modified collaborative filtering. In order to achieve
this, each metabolite can be seen as a vector, which di-
mension is defined as the number of diseases. Through
mapping diseases to metabolites, we obtain a set of ini-
tial vectors. Disease similarities are employed to predict
the score of one dimension in a vector when there is no
score in this dimension. Finally, we calculate similarities
between vectors by cosine measure. The workflow for
calculating metabolite similarity is shown in Fig. 2.

Metabolite-related diseases similarity After obtaining
metabolite-related diseases, we calculate similarities be-
tween these diseases as inputs of further predicting rele-
vance scores. In this paper, the method named
FNSemSim [29], which we previously developed, is uti-
lized to calculate disease similarities. This method mea-
sures the similarity of diseases by a fused gene functional
network of HumanNet [39] and FunCoup [40]. Through
assessment the method has good performance for calcu-
lating similarities between diseases.
Let a pair of gene sets Ga = {ga1, ga2, …} and Gb = {

gb1, gb2, …} be related to disease da and db, respect-
ively. The similarity between disease da and db is de-
fined as follows:

DiseaseFunSim Ga;Gbð Þ ¼

X
1≤ i≤num Gað Þ

RGb gai
� �þ X

1≤ j≤num Gbð Þ
RGa gbj

� �

Gaj j þ Gbj j

gai∈Ga; gbj∈Gb

ð1Þ
where |Ga| and |Gb| respectively represents the num-

bers of genes related to disease da and db; and RG(g) rep-
resents the connection weights in the fused functional
association network (see details in [29]). Finally, FNSem-
Sim could be defined as follows:

FNSemSim da; dbð Þ ¼ DiseaseFunSim Ga;Gbð Þ� Gaj j Gbj j
GMICAj j GMICAj j

ð2Þ
where |Ga| and |Gb| represent the size of two gene

sets, Ga and Gb, related to disease da and db in Disease
Ontology, respectively; |GMICA| represents the number
of genes related to the most informative common ances-
tor of da and db. Finally, we normalize similarities be-
tween pair-wised diseases associated with metabolites.

Relevance scores between diseases and metabolites
We utilize the similarities between diseases associated
with metabolites to predict the relevance score of a

Fig. 2 The workflow of calculating metabolite similarity
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disease that is not directly related to one metabolite. We
define M and D as the set of metabolites and the set of
related diseases, respectively. DRm is defined as the set
of diseases directly related to metabolite m. The pre-
dicted association score between disease d and metabol-
ite m is defined as follows:

PA d;mð Þ ¼ MAX FNSemSim di; dð Þð Þ
1

di∈DRm and d∉DRm
d∈DRm

�

ð3Þ

where m ∈M, d ∈D, DRm ⊆D and 1 ≤ i ≤ |DRm|; here,
|DRm| represents the number of diseases in the set of
DRm. We define a vector of each metabolite with |D| di-
mension, respectively. |D| represents the size of the dis-
ease set D. For each metabolite we can define its vector
m! as follows:

m!¼ PA d1;mð Þ ; ⋯⋯; PA dk;mð Þð Þ
m∈M; 1≤k≤ Dj j ð4Þ

where |D| represents the size of the disease set D; m!
represents the score vector of metabolite m; and PA(dk,
m) is the score between disease dk and metabolite m.
Now, we can obtain |M| vectors of metabolites related
to diseases.

Metabolite similarity Because each metabolite can be
depicted by a multi-dimensional vector, we can find as-
sociations between metabolites in multi-dimensional
space that is composed of metabolite-related diseases.
Thus, we use cosine measure to calculate the similarity
between any two vectors of metabolites. The association
between metabolite m1 and metabolite m2 is defined as
follows:

DMN m1;m2ð Þ ¼
Pn

1 PA1;i � PA2;i
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
1PA

2
1;i

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
1PA

2
2;i

q ð5Þ

where PAk,i represents the association score between
metabolite mk and disease di in the i-th dimension of
the vector m!k . The range of DMN(m1, m2) is 0 to 1 be-
cause these values in all dimensions are positive num-
bers. Finally, we obtain all associations of pair-wised
metabolites related to diseases and build a disease-
associated metabolite network (DMN).

Metabolite network reconstruction In DMN, there
exist only functional associations between disease-
related metabolites, because all the links in this network
are created by taking special phenotype as a measure. In
view of this, we take metabolite related literatures as
weight and extract text mining scores from STITCH to
improve associations between metabolites in DMN. The

combined weight of metabolite m1 and metabolite m2 is
defined in Eq. 6.

FLDMN m1;m2ð Þ ¼ 1‐ 1‐DMN m1;m2ð Þð Þ 1‐ST m1;m2ð Þð Þ
ð6Þ

where ST(m1, m2) represents the text mining score of
metabolite m1 and metabolite m2 in STITCH. The
ranges of ST(m1, m2) and DMN(m1, m2) are both 0 to 1.
Finally, we utilize the new associations between metabo-
lites to reconstruct the network FLDMN.

Identifying novel candidate disease-related metabolites
The associations between a metabolite and its first
neighbours are shown in FLMDN, but those between it
and all the others in this network are ignored. To iden-
tify novel candidate disease-related metabolites by fully
exploiting the global functional similarities of metabo-
lites in this metabolite network, we employ RWR [41] to
make relationship mining between any two metabolites
in this network.
As a global optimization method, RWR can output

more information about one metabolite and all the
others in the network. In a network, the random walker
starts from the root node and migrate to neighbouring
nodes with the probabilities from that node to the
others. After several iterations, the probabilities from the
root node to all the other nodes in this network will be-
come stable. Because RWR is a popular method based
on graph structure, we do not repeat it here (see [41] for
RWR details). Finally, we can obtain a rank for each me-
tabolite in this network by RWR.

Results
Metabolites and diseases
We extracted 8704 disease terms from Disease Ontology
(released in Nov. 2017) and calculated similarities between
them. Those pair-wised diseases whose similarities are
zero removed, there remain 3,801,586 associations among
4703 disease terms. Meanwhile, we found 1406 relation-
ships between diseases and metabolites when DO terms
are mapped to the diseases in HMDB (released in Dec.
2017) referring to the combined vocabulary of DO and
MEDIC. Two hundred forty-eight diseases and 600 me-
tabolites are totally contained.
We calculated 197,700 similarities among these 600

metabolites, and found that there were a large num-
ber of very weak associations and 25,709 irrelevant
pair-wised metabolites in these results. To reduce the
influence of noise on the network, we analyzed the
distribution of metabolite associations with different
similarities as thresholds. As we can see in Fig. 3, the
number of associations is declining while the thresh-
old is increasing. And when the threshold approaches
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0.01, the alternation in the number of associations
levels off. Therefore, we filtered out 153,455 associa-
tions with 0.01 as a threshold. Finally, we built the
network DMN with 18,536 associations among 587
metabolites that are associated with 245 diseases.
To improve associations between metabolites in

DMN, we extracted text mining scores of pair-wised
metabolites from STITCH. We obtained a network
named ST_SUBNET composed of 28,292 associations
among 485 metabolites from STITCH. Finally, FLDMN
is built and contains 28,715 associations among 587
metabolites associated with 245 diseases.

Performance
To assess the performance of DMN and FLDMN, we
performed a validation with 78 known disease metabo-
lites associated with 19 diseases obtained from HMDB
(released in Apr. 2018). But these known disease-related
metabolites had no association with these 19 diseases in

HMDB (released in Dec. 2017). The detailed statistics
for evaluating disease-related metabolite networks are
given in Table 1. For each disease, all of tested metabo-
lites, which exist in the version of both 2017 and 2018
like other metabolites involving in the performance
evaluation, only have associations with this disease in
the version of 2018.
As a result, the average AUC (area under the receiver

operating characteristic curve) of DMN for 19 diseases
reached 64.35%. And FLDMN was proved to be suc-
cessful in predicting novel metabolic signatures for 19
diseases with an average AUC value of 76.03%. Mean-
while, we also assessed ST_SUBNET to figure out
whether the excellent performance of FLDMN is only
due to ST_SUBNET. As shown in Fig. 4, the average
AUC of ST_SUBNET reached 62.3% that was a little
lower than DMN. This illustrates that the performance
of FLDMN is the combined effect of DMN and ST_
SUBNET. But AUC of ST_SUBNET doesn’t mean that

Fig. 3 The quantities distribution of metabolite associations with different similarities
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Table 1 Statistics for evaluating disease-related metabolite network

Disease name Disease Ontology Test node Positive group Version 2017 Version 2018

L-2-hydroxyglutaric aciduria DOID:0050574 2 4 2 4

medium chain acyl-CoA dehydrogenase deficiency DOID:0080153 1 16 15 16

short chain acyl-CoA dehydrogenase deficiency DOID:0080154 1 4 3 4

Crohn’s colitis DOID:0060192 5 8 3 16

cerebrotendinous xanthomatosis DOID:4810 5 7 2 9

maple syrup urine disease DOID:9269 6 23 17 24

abetalipoproteinemia DOID:1386 3 4 1 4

celiac disease DOID:10608 11 22 11 82

methylmalonic acidemia DOID:14749 1 2 1 2

irritable bowel syndrome DOID:9778 5 7 2 15

Fanconi syndrome DOID:1062 1 2 1 5

citrullinemia DOID:9273 6 8 2 8

inflammatory bowel disease 1 DOID:0110892 5 8 3 16

isovaleric acidemia DOID:14753 2 11 9 12

type 2 diabetes mellitus DOID:9352 1 27 27 27

aromatic L-amino acid decarboxylase deficiency DOID:0090123 2 9 7 12

cholesterol ester storage disease DOID:14502 1 2 1 2

congenital adrenal hyperplasia DOID:0050811 15 18 3 28

Crohn’s disease DOID:8778 5 8 3 16

Fig. 4 Average AUC of three metabolite networks. The average AUC of FLDMN reaches 76.03%, while the average AUC of ST_SUBNET is 62.3%
and DMN has an average AUC value of 76.03%
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STITCH has an average performance because ST_SUB-
NET is only a small part of its.
We found that our method had outstanding perform-

ance on some diseases. For example, short chain acyl-
CoA dehydrogenase deficiency (DOID:0080154) had an
AUC of 97.68% in DMN, and there were 9 diseases
whose AUC were more than 80% in FLDMN, as shown
in Fig. 5. Among these 19 diseases, AUC of celiac disease
(DOID:10608) in DMN was 48.1% while it reached
59.4% in FLDMN. As we can see in Table 1, the number
of metabolites associated with celiac disease in HMDB
(2018) was 71 more than that in 2017 version, while
there were 22 positive samples for 11 test nodes. It im-
plies that the relatively small number of positive samples
could affect the result of predicting candidate metabo-
lites related with celiac disease. In addition, the AUC of
medium chain acyl-CoA dehydrogenase deficiency
(DOID:0080153) was smaller in FLDMN than in DMN.
Part of it may be the fact that some noise is introduced
by ST_SUBNET. But in general, the performance of
FLDMN is outstanding in predicting candidate disease-
related metabolites.

Case study
We used Alzheimer’s disease (DOID:10652) as one of case
studies to further evaluate the performance of our compu-
tational model in predicting potential disease-related me-
tabolites. First, we utilized the metabolite data from HMDB
(released in Apr. 2018) to build FLDMN. We employed
RWR and found that S-Adenosylhomocysteine
(HMDB0000939) had a high score of 0.91 for Alzheimer’s
disease, which was ranked in top 3%. But the relationship
between S-Adenosylhomocysteine and Alzheimer’s disease
was not included in HMDB (released in Apr. 2018). S-
Adenosylhomocysteine has been demonstrated to be
related to Alzheimer’s disease [42]. L-Cysteine
(HMDB0000574) was ranked in top 5% for Alzheimer’s
disease, which was a naturally occurring, sulfur-
containingamino acid. It has been reported as a poten-
tially metabolic intermediary of Alzheimer’s disease
[43]. Substance P (HMDB0001897), an 11-amino acid
neuropeptide, was ranked in top 10% for Alzheimer’s
disease. Rosler, N et al. [44] have found that AD pa-
tients with late disease onset showed significantly
higher values of Substance P than early onset patients.

Fig. 5 Performances of three metabolite networks to predict candidate metabolites related with a given disease. ST_SUBNET, DMN and FLDMN
are utilized to predict candidate metabolites for each of these 19 diseases, respectively. For a given disease, the three bars with different colours
represent average AUC of the three metabolite networks, correspondingly
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Fig. 6 ROC of L-Threonine based on FLDMN

Fig. 7 Average AUC of DMN with different thresholds
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We also found potential metabolites related to
leukemia (DOID:1240). Putrescine (HMDB0001414),
N8-Acetylspermidine (HMDB0002189) and N1-
Acetylspermidine (HMDB0001276) were ranked in top
5% for leukemia, which were well documented to be as-
sociated with leukemia [45]. Type 1 diabetes mellitus
(DOID:9744) is characterized by loss of the insulin-
producing beta cells of the pancreatic islets, leading to
insulin deficiency. We also applied this method to type
1 diabetes mellitus to find potential some metabolites.
Pyruvic acid (HMDB0000243), 3-Hydroxyisovaleric acid
(HMDB0000754), Dimethylamine (HMDB0000087) and
Citric acid (HMDB0000094) were ranked in top 20%
for type 1 diabetes mellitus, and these metabolites were
reported in the study of type 1 diabetes mellitus [46].

Discussion
We identified candidate metabolites related with a certain
disease in FLDMN and used AUC to measure its perform-
ance. We can also use FLDMN to prioritizing candidate
disease-related metabolites for a certain metabolite. The
AUC will be better. Because most of metabolites often as-
sociate with more than one diseases, positive samples will
get more for a certain metabolite. Therefore, they can be
tested first in the rank for this metabolite in FLDMN.
Take L-Threonine (HMDB0000167) as an example. There
are totally seven metabolites that have disease-related as-
sociations with it. As we can see in Fig. 6, its AUC was
98.44%. Subsequently, we used these above-mentioned
test nodes as a target node respectively to rank candidate
disease-related metabolites. The average AUC was 89.88%.
When DMN was built, the threshold was set as 0.01 to

filter weak links. We did some experiments later to
figure out whether the threshold was reasonable. There
were seven networks with different thresholds to be con-
structed, respectively. As shown in Fig. 7, the average
AUC of DMN with 0.01 as a threshold was outstanding.
Therefore, there will be better results to use 0.01 as a
threshold.

Conclusions
As the link between genotypes and phenotypes, metabo-
lites can be used to explain the underlying molecular
disease-causing mechanisms. For this purpose, we pro-
posed a computational model to build a disease-related
metabolite network and identified candidate metabolites
related to diseases.
First, we used FNSemSim to calculate similarities of

pair-wised diseases. Subsequently, we defined associa-
tions between metabolites by modified collaborative
filtering and built a disease associated metabolite net-
work (DMN). To improve these associations, a new
disease associated metabolite network by fusing func-
tional associations and scores of literatures (FLDMN)

was constructed. Finally, we used RWR to prioritize
candidate disease-related metabolites.
The results showed that our method was proved to be

successful in predicting novel metabolic signatures for
19 diseases with an average AUC value of 76.03%. And it
will be helpful for researchers in metabolomics. Take
Alzheimer’s disease and leukemia as examples, we found
some unknown metabolites that were mapped to these
diseases through our network.
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