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Abstract

Background: High-throughput sequencing experiments, which can determine allele origins, have been used to
assess genome-wide allele-specific expression. Despite the amount of data generated from high-throughput
experiments, statistical methods are often too simplistic to understand the complexity of gene expression. Specifically,
existing methods do not test allele-specific expression (ASE) of a gene as a whole and variation in ASE within a gene
across exons separately and simultaneously.

Results: We propose a generalized linear mixed model to close these gaps, incorporating variations due to genes,
single nucleotide polymorphisms (SNPs), and biological replicates. To improve reliability of statistical inferences, we
assign priors on each effect in the model so that information is shared across genes in the entire genome. We utilize
Bayesian model selection to test the hypothesis of ASE for each gene and variations across SNPs within a gene. We
apply our method to four tissue types in a bovine study to de novo detect ASE genes in the bovine genome, and
uncover intriguing predictions of regulatory ASEs across gene exons and across tissue types. We compared our
method to competing approaches through simulation studies that mimicked the real datasets. The R package,
BLMRM, that implements our proposed algorithm, is publicly available for download at https://github.com/
JingXieMIZZOU/BLMRM.

Conclusions: We will show that the proposed method exhibits improved control of the false discovery rate and
improved power over existing methods when SNP variation and biological variation are present. Besides, our method
also maintains low computational requirements that allows for whole genome analysis.

Keywords: Allelic imbalance, Hierarchical generalized linear mixed model, High-throughput sequencing
experiments, Single nucleotide polymorphism

Background
In a diploid cell, the two alleles of a gene inherited from
maternal and paternal parents express roughly equally for
most genes. However, research has uncovered a group of
genes in the genome where two copies of a gene express
substantially differently, a phenomenon known as allelic
imbalance. One such example involves imprinted genes
whose allele expression is based on the parent of origin
[1, 2]; that is, imprinted genes are mainly or completely
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expressed from either the maternally or paternally inher-
ited allele but not both, so the total expression from
genomic copies is the appropriate amount for healthy and
viable organisms [3]. Another prominent example is X-
chromosome inactivation in mammals [4, 5], where one
copy of the X chromosome is inactivated in female cells to
maintain the same dosage of X-linked genes compared to
male cells. The choice of which X chromosome is silenced
is random initially, but once chosen, the same X chro-
mosome remains inactive in subsequent cell divisions. In
a third and rather random case, allelic imbalance occurs
when there are mutations in cis-regulatory regions of one
allele, leading to differential expression of two alleles [6, 7].
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Allelic imbalance affects approximately 5-10% of genes
in the mammalian genome [5], but it is not biologically
clear what series of mechanisms a cell employs to precisely
initiate allele-specific expression (ASE) during fetal devel-
opment and consistently maintain it through a lifetime.
Several common congenital human disorders are caused
by mutations or deletions within these ASE regions, such
as Beckwith-Wiedemann syndrome (BWS) [8, 9], which
characterizes an array of congenital overgrowth pheno-
types; Angelman syndrome [10], which characterizes ner-
vous system disorders; and Prader-Willi syndrome, in
which infants suffer from hyperphagia and obesity.
To understand the molecular mechanisms underlying

ASEs and human developmental defects due to misreg-
ulated ASE regions, a powerful and accurate computa-
tional algorithm to detect genome-wide ASEs is urgently
needed. The binomial exact test, employed in AlleleSeq
[11], is one of the most widely used methods to test
ASEs due to its simplicity. [12] uses analysis of variance
(ANOVA) in their proposed pipeline Allim. [13] fits a
mixture of folded Skellam distributions to the absolute
values of read differences between two alleles. However,
these abovementioned statistical methods draw conclu-
sions based on observations produced from one gene;
due to the expensive cost of acquiring tissue samples
and sequencing experiments, most laboratories can only
afford three or four biological replicates. Depending on
sequencing depth, genes may also have low read counts,
limiting the power of the aforementioned methods.
In searching for more powerful and reliable ASE detec-

tion methods, several groups have proposed Bayesian
approaches to share information across genes and thus
improve gene-related inferences on average. For instance,
the MBASED method [14] and the QuASAR method [15]
all assume the read counts follow binomial distributions
with a beta prior on the probability parameter. In their sta-
tistical models, they assume that ASE of a gene or a region
is constant across SNPs. However, ASE is known to vary
within a gene due to alternative splicing [16, 17], which is
essentially universal in humanmulti-exon genes that com-
prise 94% of genes overall [17, 18]. Therefore, a highly
desirable feature of ASE detection methods is identifica-
tion of ASE genes and ASE variations within genes across
multiple exons. [19] developed a flexible statistical frame-
work that satisfied this requirement. It assumes a binomial
distribution with a beta prior. Additionally, it places a two-
component mixture prior on the parameters of the beta-
binomial model. A Markov chain Monte Carlo (MCMC)
method was adopted to compute posterior probabilities
for inferences of genes and SNPs. However, due to the
extensive computational power required in the MCMC
calculation for one gene and the large number of genes
in the entire genome, this method is not empirically
appealing. Other relevant methods include the EAGLE

method [20] that detects associations between environ-
mental variables and ASEs, the WASP method [21] that
addresses incorrect genotype calls, and the RASQUAL
method [22] that detects gene regulatory effects.
In this paper, we propose a new statistical method

that addresses the abovementioned challenges. Specifi-
cally, our proposed approach can detect ASE genes and
ASE variations within genes simultaneously while main-
taining a low computational requirement. Coupled with
exon and RNA transcript information, our statistical pre-
dictions produce detailed, biologically relevant, intriguing
results that enable researchers to examine the molecular
mechanisms of ASE regulation in detail.
Particularly, we model the logistic transformation of the

probability parameter in the binomial model as a linear
combination of the gene effect, single nucleotide polymor-
phism (SNP) effect, and biological replicate effect. The
random SNP effect permits ASE to vary within a gene;
the random replicate effect accounts for extra dispersion
among biological replicates beyond binomial variation. To
overcome the low number of biological replicates and/or
low number of read counts of a gene, we propose a hier-
archical model with a Gaussian prior on the fixed gene
effect and inverse gamma priors, respectively, on the vari-
ance components of the random SNP and replicate effects.
We test hypotheses via Bayesian model selection method
based on model posterior probabilities. To compute pos-
terior probabilities, we propose combining the empirical
Bayes method and Laplace approach to approximate inte-
grations, leading to substantially reduced computational
power requirements compared to MCMC. We illustrate
the utility of our proposed method by applying it to
the bovine genome in [23], which motivated our study;
findings reveal for the first time highly detailed infor-
mation regarding the testing results for whole-genome
ASEs, unveiling inspiring ASE variations across exons and
across tissue types. To compare our method with exist-
ing approaches, we simulate data that mimic real datasets
to ensure that the comparison results can be reproduced
in practice. The proposed method outperforms existing
methods in false discovery rate (FDR) control of detect-
ing ASEs and variations therein across SNPs. We call our
method the Bayesian Logistic Mixed Regression Model
(BLMRM) method. The R package, BLMRM, for the pro-
posedmethod is publicly available for download at https://
github.com/JingXieMIZZOU/BLMRM.

Results
Application for the de novo identification of ASE and
imprinted genes in bovine
Most of the imprinted genes identified to date have
been in the mouse [24]. Original work, identified the
non-equivalency of the parental alleles by generat-
ing embryos which only had maternal chromosomes
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(gynogenotes and parthenogenotes) or paternal chromo-
somes (androgenotes) [25, 26]. By doing this, investigators
identified which genes are expressed exclusively from each
chromosome. Other studies used mice which had various
types of genetic rearrangements including translocations,
duplications and deletions and noticed that the direc-
tion in which the allele was inherited (either through the
mother or the father) mattered for the successful devel-
opment and wellbeing of the offspring [27]. Subsequent
work turned to genetic manipulations to identify the func-
tion of imprinted genes in mice. More recent, with the
advent of genome wide approaches, investigators have
generated large datasets from F1 individuals generated
from the breeding of two inbred (homozygous) strains of
mice [28]. An advantage of using mice to do this type
of work is that most strains have been sequenced and
all animals within a strain will have the same maternal
and paternal DNA sequence. While useful, the mouse
model does not always faithfully represent other mam-
mals [29]. In addition, most laboratory mice are inbred
(homozygous) while other mammals are heterozygous
which incorporates complexity to the analysis of iden-
tifying parental alleles. As imprinted gene expression is
species-specific, tissue-specific, and developmental stage
specific [24], investigators would have to do monetary and
animal expensive studies to identify novel imprinted genes
and their potential function in health and disease.
A current limitation for investigators working in the

area of genomic imprinting in heterozygote animals such
as bovine, is the difficulty to assess whether a gene or
a region in a gene has ASE for the entire genome. For
example, in the case in which 4 fetuses are obtained
from the breeding of one cow and one bull, each of the
fetuses may have a specific combination of alleles (pen-
itentially 4 combinations), making the identification of
imprinted gene expression a daunting task, not tomention
extremely expensive. Therefore, new computational tools
and analyses must be devised in order to provide inves-
tigators knowledge of allelic imbalances in the transcrip-
tome which may then be used to do locus-specific wet
bench work to determine the accuracy of the predictions.
Specifically, [23] measured gene expressions of four nor-

mal female F1 conceptuses (fetus and placenta) generated
from the mating of Bos taurus (mother) and Bos taurus
indicus (father). Tissues were retrieved from the brain,
kidney, liver, skeletal muscle, and placenta of these four
conceptuses. RNA-seq experiments were conducted on
each tissue type for each replicate.
Aligning RNA-seq reads to a non-identical reference

genome has been shown to introduce alignment bias [30,
31]. To address the mapping bias problem, [23] com-
bined the reference genome (i.e., the B. t. taurus refer-
ence genome UMD3.1 build) and the pseudo B. t. indicus
genome to create a custom diploid genome. Specifically,

the sire’s DNA was subjected to next generation sequenc-
ing (DNA-seq) to identify all SNPs between his genome
and the B. t. taurus reference genome. Then Genome
Analysis Toolkit (GATK) [32] and SAMtools [33] pipelines
were applied for SNP calling and only SNPs identified
by both pipelines were used to generate a pseudo B. t.
indicus genome. At last, RNA-seq reads from the B. t. indi-
cus × B. t. taurus F1 conceptuses were mapped to the
diploid genome using both the HISAT2 [34] and BWA
[35] pipelines and only variants identified by both meth-
ods were retained tominimize the potential effects of false
positives. The resulting datasets are publicly available at
the Gene Expression Omnibus database under accession
number GSE63509.
We used the BLMRM method to separately analyze

liver, kidney, muscle, and brain tissue data from [23].Miss-
ing values are not uncommon in real datasets, especially
when dealing with heterozygous species (for example, cat-
tle and humans), as not all replicates share the same set
of SNPs among parental alleles. We first filtered out genes
containing only one SNP or for which all SNPs were not
represented by at least two individuals. We also removed
genes for which the observed maternal and paternal
expression percentages were constant across all replicates
and all SNPs as statistical inferences are straightforward in
such a scenario. In total, 9,748 genes remained for analy-
sis, amongwhichmany had low numbers of total RNA-seq
read counts.
We then applied the proposed BLMRMmethod to these

9,748 genes. Hyperparameters were estimated using the
method described in the “Method” section. For example,
for liver tissue, we have μ̂ = 0.43, σ̂ 2= 4.62, âs = 2.35,
̂bs = 1.37, âr = 2.03, and̂br = 0.09.
We identified several examples containing varied and

informative patterns of tissue-specific and/or exon-
specific ASEs. Here, we present four genes: AOX1,
HACL1, TMEM50B, and IGF2R. Aldehyde oxidase 1
(AOX1; XLOC_003018) is a cytosolic enzyme expressed
at high levels in the liver, lung, and spleen but at a much
lower level inmany other organs since this gene plays a key
role in metabolizing drugs containing aromatic azahete-
rocyclic substituents [36, 37]. By controlling FDR at 0.05,
the BLMRM method identified gene AOX1 as exhibiting
ASE at the gene level in the brain, kidney, and muscle,
and biallelically expressed in the liver (top panel in Fig. 1).
The vertical axis in Fig. 1 indicates the observed sample
average percentage of gene expression from the maternal
allele. The bar around each sample average denotes the
95% confidence interval at each SNP. SNPs are drawn with
ascending genomic locations in a chromosome. The bot-
tom of each panel in Fig. 1 shows the distribution of SNPs
in exons from annotated RefSeq transcripts of this gene.
Conclusions from our BLMRM method coincide with
AOX1 gene functional analysis. Using the binomial exact



Xie et al. BMC Bioinformatics          (2019) 20:530 Page 4 of 13

Fig. 1 Percentage of gene expression from maternal allele in brain, liver, kidney, and muscle, respectively. The top panel shows gene AOX1. The
second panel shows gene HACL1. The third panel shows gene TMEM50B, and the bottom panel shows gene IGF2r. SNPs are drawn with ascending
genomic locations. The bottom of each panel shows distribution of SNPs in exons from all RefSeq annotated transcripts of this gene. Rectangles
represent exons (only those with SNPs are shown) with exon numbers indicated under each rectangle. Lengths of exons are not drawn to scale

test, [23] only found that AOX1 had preferential paternal
expression in bovine muscle and failed to detect ASE in
the brain and kidney. Our proposed method also suggests
significant ASE variations across SNPs in the liver, kid-
ney, and muscle with FDR at the 0.05 level. Interestingly,
regions in the liver showing ASE variations corresponded

to the 16th, 17th, and 18th exons housing the 5-7th
and 14-16th SNPs. Given this exon- and tissue-specific
information, biologists can examine the ASE regulatory
mechanism in detail.
2-hydroxyacyl-CoA lyase (HACL1; XLOC_001524) is

involved in perixosomal branched fatty acids oxidation
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and primarily expressed in the liver [38]. Our proposed
method identified HACL1 as exhibiting significant ASE
at the gene level and its variations across SNPs. Figure 1
Panel 2 visualizes our observations and shows a clear
maternal preference of expression for the first 15 SNPs,
whereas the remaining six suggest biallelic expression
of this gene. This surprising finding spurred further
investigation, upon which we identified that the first
15 SNPs belong to exon 17 of alternative splice variant
XM_010801748.2 while the last SNPs are shared between
two or three splice isoforms (i.e. NM_001098949.1,
XM_015474169.1, and XM_010801748.2). No further
information is available regarding the ASE mechanism
of this gene, as this is the first time we have retrieved
such detailed statistical results for each gene in an entire
genome within a short computational window. Future
work will identify whether this ASE gene is a novel
imprinted gene and if, in fact, this gene shows variant-
specific imprinted expression as has been documented for
other genes [39].
Transmembrane protein 50B (TMEM50B;

XLOC_000329) is a ubiquitously expressed housekeeping
gene. Our method identified this gene to be bialleli-
cally expressed in all analyzed tissues (Fig. 1, Panel 3)
as expected for a housekeeping gene. Interestingly, our
proposed method also predicted significant variations
across SNPs in each of these four tissue types. Upon
investigating detailed activity of this gene, Fig. 1 indicates
that a portion of the 3’ UTR of this transcript appears to
have maternal preference. The consistent pattern across
tissues motivated us to understand the importance of this
SNP variation. We hypothesize that this corresponds to
a specific RNA variant required for maintaining cellular
function.
Finally, insulin-like growth factor 2 receptor (IGF2r;

XLOC_018398) is a well-known maternally expressed
mannose receptor that targets IGF2 for degradation [40].
This gene is imprinted in the liver, kidney, and muscle
(Fig. 1, Panel 4) but has biallelic expression in the brain
of mice and cattle [41, 42]. In addition, IGF2r is lowly
expressed in the cattle brain [42]. Prediction results from
our proposed method coincide with the literature.
By controlling FDR at 0.05, Fig. 2 summarizes the num-

bers of detected ASE genes, numbers of genes with ASE
variations across SNPs, and numbers of genes exhibiting
ASE at the gene level and ASE variations across SNPs
simultaneously, respectively, among the four tissues. We
conducted some further analysis on these detected genes.
For instance, in the top Venn diagram, among the 37
detected ASE genes shared by all four tissue types, 11 of
them cannot be mapped to the set of annotated genes
using the UMD 3.1 build. Among the rest of 26 annotated
and detected ASE genes, we found that three of them had
been documented as imprinted genes across all or most

of these four tissue types. These three imprinted genes
are (1) GSTK1 that is maternally expressed in human pla-
centa but unknown in other human tissues [43], paternally
expressed in mouse kidney, liver, muscle, and maternally
expressed in mouse brain [44], maternally expressed in
bovine oocyte and unknown in other bovine tissues [45];
(2) PLAGL1 that is paternally expressed in human kidney,
muscle, and unknown in other human tissues [46], pater-
nally expressed in mouse muscle, kidney, and brain [44],
and paternally expressed in bovine brain, kidney, muscle,
and liver [47]; (3) BEGAIN, which is unknown in human
genome, preferentially expressed from the paternal allele
in mouse neonatal brain [48], paternally expressed in
bovine kidney and muscle with strong statistical evidence
though no biological verification yet [42], and found to
be paternally expressed in sheep kidney, liver, muscle, and
brain (all four) tissue types [49]. Excluding these three
documented imprinted genes, the other 23 annotated
ASE genes detected by our BLMRM method are de novo
detected ASE genes and their biological relevance await
experimental verification.
Collecting all ASE genes from the first Venn diagram

in Fig. 2, we summarized the number of detected ASE
genes on each chromosome (see Additional file 1: Table
S1). We found several interesting patterns. For instance,
chromosomes 11 and 21 tend to have more ASE genes
than other chromosomes for all tissue types. Besides,
the X chromosome has more ASE genes in brain tis-
sue than other tissue types. Additional file 1: Figure S1
plots distributions of these ASE genes in each chromo-
some, revealing several ASE clusters. Among all detected
ASE genes, most ASE genes show preference of the
maternal allele than the paternal allele. Specifically, 79%,
74%, 68%, and 71% ASE genes show maternal pref-
erence in the brain, liver, kidney, and muscle tissues,
respectively.
At this stage, we are not able to statistically distinguish

imprinted genes from other type of ASE genes as further
experiment data are required to separate imprinting from
other ASE molecular mechanisms. However, collecting all
the detected ASE genes from all three Venn diagrams in
Fig. 2, we found that seven de novo detected ASE genes
are highly likely to be imprinted in the bovine genome but
they have not been documented in any bovine study. They
are: (1)GATM, SNX14, andNT5E, which are imprinted in
mouse [50, 51]; (2) IGF1R and RCL1, which are imprinted
in human [52, 53]; and (3) KLHDC10 and SLC22A18,
which are imprinted in both human and mouse [54, 55].
These genes are involved in varied physiological func-
tions. For example, GATM encodes an arginine glycine
amidinotransferase (AGAT) which is involved in crea-
tine synthesis [56, 57]. NT5E encodes the protein CD73
(cluster of differentiation 73), a cell surface anchored
molecule with ectoenzymatic activity that catalyzes the
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Fig. 2 Venn Diagram of detected ASEs across tissue types. Number of significant genes (estimated FDR=0.05) across four tissue types when testing
ASE at the gene level, testing ASE variations across SNPs, and testing ASE gene and ASE variations within a gene simultaneously

hydrolysis of AMP into adenosine and phosphate and
has been shown to mediate the invasive and metastatic
properties of cancers [58, 59]. SNX14 is a protein coding
gene involved in maintaining normal neuronal excitabil-
ity and synaptic transmission [51] and may be involved in
intracellular trafficking [60]. IGF1R is a receptor tyrosine
kinase that mediates the actions of insulin-like growth
factor 1 (IGF1). IGF1R is involved in cell growth and sur-
vival and has a crucial role in tumor transformation and
survival of malignant cells [61, 62]. RCL1 is a protein-

coding gene with roles in 18 S rRNA biogenesis and in the
assembly of the 40 S ribosomal subunit [63, 64]. The Kelch
repeat protein KLHDC10 activates the apoptosis signal-
regulating kinase 1 (ASK1) through the suppression of
protein phophatase 5 [65] and activation of the ASK1 con-
tributes in oxidative stress-mediated cell death through
the activation of the JNK and p38 MAPK pathways [66].
SLC22A18 plays a role in lipid metabolism [67] and also
acts as a tumor suppressor [68]. Visualization of signifi-
cant expression pattern of these seven genes are plotted in
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Additional file 1: Figure S2 along with its significance level
assessed by FDR.

Study on simulated data

Simulation design
Simulation studies based on real datasets can best evaluate
empirical usage and performance. In this subsection, we
introduce our approach to simulate data based on the real
dataset in [23]. In the next subsection, we will compare
the BLMRM method with the binomial test, ANOVA,
MBASED, generalized linear mixed model (GLMM), and
the BLMRMmethod with pure Laplace approximation.
In each simulation, we simulated 4000 genes in total

with 1000 genes for each of the four models inM. To base
our simulation upon real datasets, we randomly selected
4000 genes from liver tissue in the real dataset and used
the numbers of SNPs of these genes as the numbers of
SNPs for the 4000 simulated genes. To ensure consistency
with the real dataset, we set the number of biological
replicates to be four.
Real data from liver tissue in [23] indicates a linear

relationship between the logarithm of average total read
counts and that of the sample standard deviation of total
read counts within a gene across SNPs. Real data also indi-
cates a roughly linear relationship between the logarithm
of average total read counts and that of the sample stan-
dard deviation of total read counts within a SNP across
four replicates. To simulate ngjk , we utilized these two lin-
ear relationships. Specifically, let n̄g denote the sample
average of the total read count of gene g across SNPs; that
is, n̄g = ∑Jg

j=1(n̄gj)/Jg where n̄gj = ∑K
k=1 ngjk/K. For the

liver tissue in real data, by regressing logS(n̄g) on log(n̄g)
with a simple linear model where S(·) denotes the sam-
ple standard deviation, we obtained fitted intercept α̂1 =
−0.36 and slope α̂2 = 0.97. Hence, for each simulated
gene, we independently sampled log n̄g1, . . . , log n̄gJg ∼
N (μ = log n̄g , and σ = α̂1 + α̂2log n̄g), where n̄g ’s
were computed from the 4,000 genes randomly selected
from the real dataset. Next, we fit a linear regression
model between logS(n̄gj) and log(n̄gj), which yielded an
estimated intercept α̂3 = −0.53 and slope α̂4 = 0.77. Sim-
ilarly, we simulated ngj1, . . . , ngj4 ∼ N (μ = log n̄gj, σ =
α̂3+α̂4log n̄gj).We rounded the simulated values to ensure
ngjk ’s were integers.
Given the simulated ngjk ’s, to simulate ygjk ’s, we

needed to simulate pgjk ’s. We simulated gene effect βg
uniformly from {−4.39,−1.20,−0.41, 0.41, 1.20, 4.39} for
genes where βg �= 0. 0.41, 1.20, and 4.39 are the 10th,
50th, and 90th percentiles of absolute values of ̂βg ’s,
respectively, when significant gene ASEs are reported
by the GLMM in (1). We simulated σ 2

sg
iid∼ IG (̂as,̂bs),

Sgj
iid∼ N (0, σ 2

sg), and simulated σ 2
rg

iid∼ IG (̂ar ,̂br), Rgk
iid∼

N (0, σ 2
rg), where âs, ̂bs, âr , and ̂br are hyperparameter

estimates from the liver tissue whose values are given in
real data analysis section. pgjk was computed as exp(βg +
Sgj + Rgk)/(1+ exp(βg + Sgj + Rgk)). At last, we simulated
ygjk ∼ Binomial(ngjk , pgjk). We repeated such simulation
10 times to assess variations in performance.

Simulation results
We compared our BLMRM method with the binomial
test, ANOVA test in [12], MBASED method in [14], and
GLMM in (1) without Bayesian priors. The binomial
test and ANOVA test only detect the gene effect; the
MBASED method can detect gene ASE and SNP varia-
tion separately but not simultaneously; and the GLMM
and BLMRM methods can detect the gene effect, SNP
variation, and gene ASE and SNP variation simultane-
ously. For the binomial, ANOVA, MBASED, and GLMM
methods, we applied Storey’s method [69] to estimate and
control FDR. The FDR control for our BLMRM method
was described in the “Method” section.
For the proposed BLMRM method, the hyperparame-

ter estimation is accurate and stable across 10 simulations.
The mean of absolute biases across 10 simulations are
0.61, 0.12, 0.08, and 0.06, respectively, for âs,̂bs, âr , and̂br ;
and the standard deviations of these 10 absolute biases are
0.17, 0.08, 0.04, and 0.00.
Table 1 summarizes the average true FDR and average

true positive rate (TPr) across 10 simulations when we
control the estimated FDR at 0.05. Numbers in paren-
theses are sample standard deviations. Results suggested
that among all methods under investigation, only our pro-
posed method controlled FDR at the nominal level. The
BLMRM method with pure Laplace approximation did
not control FDR for simultaneous test on both gene effect

Table 1 Assess of FDR control and TPr when controlling
estimated FDR at 0.05

Method
True FDR TPr(%)

gene SNP gene-SNP gene SNP gene-SNP

BLMRM
0.053 0.028 0.059 66.37 60.82 17.51

(0.006) (0.004) (0.014) (0.87) (1.80) (1.65)

BLMRM 0.060 0.030 0.094 68.87 56.82 17.50

(pure Laplace) (0.006) (0.002) (0.008) (0.29) (1.19) (0.91)

GLMM
0.073 0.006 0.625 68.66 57.20 86.72

(0.010) (0.002) (0.004) (1.52) (1.49) (0.86)

MBASED
0.358 0.032 - 91.34 64.32 -

(0.006) (0.005) - (0.54) (1.51) -

ANOVA
0.194 - - 82.02 - -

(0.007) - - (1.04) - -

Binomial
0.314 - - 88.26 - -

(0.003) - - (0.80) - -
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and SNP variation. In addition, the proposed BLMRM
method also had slightly higher TPr than the pure
Laplace approximation approach in testing SNP variation.
This suggested that the combined method of empirical
Bayes and Laplace approximation provided more accu-
rate results than three layers of Laplace approximation.
The GLMM method was slightly liberal in testing gene
ASE, overly conservative in testing the random SNP effect,
and overly liberal in testing simultaneous gene ASE and
SNP variation. The MBASED and binomial test methods
did not control FDR when testing the gene effect. The
MBASED method can not test gene ASE and ASE vari-
ation across SNPs simultaneously. Thus, under our sim-
ulation scenario, the MBASED method did not correctly
separate observed variations among multiple sources of
variations; i.e., gene ASE, SNP variation, biological varia-
tion, and error variation.
We plotted the box plots of true FDRs across 10 simu-

lations in the left panel of Fig. 3, respectively, on testing
the gene effect, SNP effect, and gene and SNP effects

simultaneously when controlling the estimated FDR at
0.05, which represents same conclusions on FDR control
in Table 1. The right panel in Fig. 3 displays the ROC
curves when the false positive rate (FPr) was between
0 and 0.3. Compared to the other competing methods,
the BLMRM method showed greater partial area under
the ROC curves (AUCs) in testing gene ASE, SNP varia-
tion in ASE, and gene and SNP variation simultaneously.
The GLMM and BLMRM methods were competitive for
gene ranking when testing gene and SNP variation; how-
ever, the BLMRMmethod substantially outperformed the
GLMM method in gene ranking when detecting simulta-
neous ASE gene effect and ASE variation within a gene.

Discussion
So far, no existing statistical methods can provide simul-
taneous inferences at both gene and exon (SNPs) levels
for the entire genome in a short computational window,
like the de novo detection for the bovine genome shown
here. We are able to achieve this goal because we model

Fig. 3 FDR and ROC comparison. Top row shows results for testing the gene effect; middle row shows results for testing SNP variation within a gene;
bottom row shows results for simultaneously testing gene ASE and SNP variation. Left panel shows box plots of true FDR across 10 simulations
when controlling estimated FDR = 0.05; right panel presents ROC curves
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multiple sources of variations (i.e., genes, SNPs, biologi-
cal replicates, error variation) in one statistical model and
adopt an efficient estimation method (i.e., a combination
of empirical Bayes and Laplace approximation) for model
selection, that is designed for whole genome analysis.

Conclusions
We have proposed a newmethod, BLMRM, to detect ASE
for any RNA-seq experiment. Specifically, we propose a
Bayesian logistic mixed regression model that accounts
for variations from genes, SNPs, and biological repli-
cates. To improve the reliability of inferences on ASE,
we assign hyperpriors on genes, SNPs, and replicates,
respectively. The hyperprior parameters are empirically
estimated using observations from all genes in an entire
genome. We then develop a Bayesian model selection
method to test the ASE hypothesis on genes and varia-
tions of SNPs within a gene. To select a fittingmodel based
on Bayes factors, we adopt a combination of the empirical
Bayesian method and Laplace approximation method to
substantially accelerate computation. To illustrate the util-
ity of our method, we have applied the proposed approach
to the bovine study that motivated our research; findings
reveal the potential of our proposed method for appli-
cation to real data analysis. We also conduct simulation
studies that mimic the real data structure. Our data appli-
cation and simulation study demonstrate the improved
power, accuracy, and empirical utility of our proposed
method compared to existing approaches. The R package,
BLMRM, based on our method is available to down-
load via Github at https://github.com/JingXieMIZZOU/
BLMRM.

Method
Bayesian generalized linear mixedmodel
Let ngjk denote the total number of read counts for the
kth biological replicate of gene g at its jth SNP, where
g = 1, 2, . . . ,G, j = 1, 2, . . . , Jg , andk = 1, 2, . . . ,K . Let
ygjk denote the number of read counts from the maternal
allele of replicate k. We model ygjk ∼ Binomial(ngjk , pgjk),
where pgjk denotes the proportion of gene expression from
the maternal allele for gene g at SNP j of replicate k. It is
known that using the RNA-seq approach to detect ASEs
can produce bias during mapping because reads from the
reference allele are more likely to be mapped due to fewer
number of mismatches compared to reads from alterna-
tive alleles [30]. Potential solutions have been proposed in
[23, 30, 70] to correct mapping bias. Here and throughout
the paper, ngjk ’s and ygjk ’s denote the read counts after bias
correction.
The objective of our study is to detect genes and regions

within a gene whose expression is significantly different
between the maternal and paternal alleles. Most exist-
ing methods assumed equal gene expression across all

SNPs of a given gene; however, research discoveries have
disproven this assumption for several reasons [71, 72],
including alternative splicing and RNA variants. Thus, we
model ygjk as

ygjk ∼ Binomial(ngjk , pgjk), and

log
pgjk

1 − pgjk
= βg + Sgj + Rgk , (1)

where βg is the fixed gene effect; Sgj is the random SNP

effect and Sgj
iid∼ N(0, σ 2

sg); Rgk is the random replicate

effect and Rgk
iid∼ N(0, σ 2

rg). We also assume Sgj’s and Rgk ’s
are mutually independent. Therefore, the null hypothesis
H0 : βg = 0 is to test whether gene g exhibits imbalanced
allelic expression. Furthermore, H0 : σ 2

sg = 0 is to exam-
ine whether maternal (and/or paternal) gene expression
percentage is the same across all SNPs of a gene.
Due to the expense of sample collection and sequenc-

ing experiments, most laboratories can only afford a few
biological replicates, such as K = 3 or 4. In addition,
the number of available SNPs in a gene also depends
on the diversity between parental alleles. Often, only a
small number of genes contain a large number of SNPs.
Thus, for most genes, the estimates of βg , σ 2

sg , and σ 2
rg are

not robust, leading to unreliable statistical inferences. To
improve estimation accuracy, we assume hierarchical pri-
ors on βg , σ 2

sg , and σ 2
rg to share information across all genes

in the genome. Specifically, we assume σ 2
sg

iid∼ IG(as, bs),

σ 2
rg

iid∼ IG(ar , br), and a Gaussian prior on the gene effect

βg
iid∼ N(μ, σ 2). The hyperparameters as, bs, ar , br , μ, and

σ 2 no longer have the subscript g because they are esti-
mated by pooling observations from all genes. Given that
there are tens of thousands of genes in the genome, the
estimates of these prior hyperparameters are accurate.

Detection of imbalanced allelic gene expression through
Bayesian model selection
Next, we describe our Bayesianmodel selectionmethod to
detect ASE at the gene level and corresponding variations
across SNPs. Based on model (1), there are four models,
indexed bym ∈ {1, 2, 3, 4}, in model spaceM, where βg =
0 and σ 2

sg = 0 in Model 1; βg �= 0 and σ 2
sg = 0 in Model 2;

βg = 0 and σ 2
sg �= 0 in Model 3; and βg �= 0 and σ 2

sg �= 0 in
Model 4. For each gene g, we select modelm inM, which
has the largest posterior probability defined as

P(m|yg ,ng) = P(m)P(yg |m,ng)
∑4

m=1 P(m)P(yg |m,ng)
∝ P(m)P(yg |m,ng), (2)

where yg = (yg11, . . . , ygJgK )′ and ng = (ng11, . . . , ygJgK )′.
P(m) denotes the prior probability of model m. Without
prior information, we assume a uniform prior on space

https://github.com/JingXieMIZZOU/BLMRM
https://github.com/JingXieMIZZOU/BLMRM
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M. Thus, our objective is to select a model m in M that
maximizes the marginal likelihood P(yg |m,ng), which,
when comparing two models, is equivalent to choosing
the model m using the Bayes factor. Let bg denote all
random effects; that is, bg = (Sg1, . . . , SgJg ,Rg1, . . . ,RgK )′.
Hence,

P(yg |m,ng) =
∫∫∫∫

P(yg |βg ,bg ,ng ,m)P(βg)×
P(bg |σ 2

sg , σ 2
rg)P(σ 2

sg , σ 2
rg)×

dβg dbg dσ 2
sg dσ 2

rg . (3)

A direct integration of (3) is difficult because an analyti-
cal result of the density is not a closed form. An alternative
approach is to use Laplace approximation to iteratively
approximate each integral; however, in our experience,
this leads to error accumulated through each layer of
integration and thus affects the accuracy of results. To
overcome this problem, we propose a combination of
empirical Bayes estimation and Laplace approximation.
Inspired by the approach in [73], we obtain the following
empirical Bayes estimators.

˜βg = E(βg |̂βg) ≈
̂Var(βg)μ̂ + σ̂ 2

̂βg

̂Var(βg) + σ̂ 2
, (4)

σ̃ 2
sg = E(σ 2

sg |̂σ 2
sg) ≈ dsg σ̂ 2

sg + 2̂bs
dsg + 2̂as

, and (5)

σ̃ 2
rg = E(σ 2

rg |̂σ 2
rg) ≈ drg σ̂ 2

rg + 2̂br
drg + 2̂ar

, (6)

where ˜βg , σ̃ 2
sg , and σ̃ 2

rg denote the empirical Bayes esti-
mates of βg , σ 2

sg , and σ 2
rg , respectively. ̂βg , ̂Var(βg), σ̂ 2

sg ,
and σ̂ 2

rg are maximum likelihood estimates from model
(1). μ̂, σ̂ 2, âr , ̂br , âs, and ̂bs are estimated hyperparame-
ters whose estimation method will be introduced in detail
later in this section. drg and dsg are degrees of freedom
of the random SNP and random replicate effect, respec-
tively, with dsg = Jg − 1 and drg = K − 1. We enter these
empirical Bayes estimates directly into (3), obtaining the
approximation:

P(yg |m,ng) ≈
∫

P(yg |˜βg ,bg ,m,ng)×
P(bg |̃σ 2

sg , σ̃ 2
rg) dbg . (7)

Accordingly, (3) is reduced to (7), which requires only
one step of Laplace approximation. Our objective in com-
bining empirical Bayes estimates and Laplace approxi-
mation is to develop a method with improved power
and accuracy while maintaining affordable computational
power that allows for empirical application. In our sim-
ulation study, we compared our proposed approach with
the method using pure Laplace approximation. We found
that our proposed method is superior than purely using

Laplace approximation with respect to FDR control and
true positive rate (see “Simulation results” section). This
approach also greatly decreases computational require-
ments compared to MCMC, considering there are tens of
thousands of genes in an entire genome [74]. For instance,
themethod in [19] employs anMCMC algorithm for iden-
tifying ASE. With the default setting, their approach took
approximately 1.5 hours to analyze 50 genes, whereas our
method took approximately 3 minutes.
We still need to estimate hyperparameters μ, σ 2, as, bs,

ar , and br . To avoid extreme values that produce unstable
estimates, we first let y∗

gjk = ygjk + 1 and n∗
gjk = ngjk + 2.

Then, based on y∗
gjk ’s and n∗

gjk ’s, μ and σ 2 are estimated
by the method of moments using significant ̂βg via likeli-
hood ratio tests when controlling FDR at 0.05. as, bs, ar ,
and br are estimated based on y∗

gjk ’s and n∗
gjk ’s by the max-

imum likelihood method, where as and bs are based on
significant estimates of σ̂ 2

sg ’s via likelihood ratio tests and
controlling FDR at 0.05, and as and bs are based on σ̂ 2

rg ’s
from all genes.
Finally, we test H0 : βg = 0 and H0 : σ 2

sg = 0 for gene
g by choosing Model m, where m = argmax

γ∈{1,2,3,4}
P(γ |yg ,ng)

for g = 1, . . . ,G. Let P(g ∈ {m}|yg ,ng) denote the pos-
terior probability of gene g being sampled from Model m.
The posterior probability of a gene exhibiting an ASE gene
effect is P(g ∈ {2, 4}|yg ,ng). Similarly, the posterior prob-
ability of a gene exhibiting ASE variations across SNPs is
P(g ∈ {3, 4}|yg ,ng). Finally, the posterior probability of
a gene exhibiting an ASE gene effect and ASE variations
across SNPs simultaneously is P(g ∈ {4}|yg ,ng). We adopt
the following method to control FDR that have been used
in [74, 75]. To control the FDR when testing the ASE gene
effect, we order P(g ∈ {2, 4}|yg ,ng), g = 1, . . . ,G, from
largest to smallest. Let g(1), . . . , g(G) be the ordered genes;
then, we find the largest l such that

∑l
i=1(1 − P(g(i) ∈

{2, 4}|yg(i) ,ng(i) ))/l ≤ α, where α is a pre-defined FDR
threshold. We declare the first l genes are significant for
testing H0 : βg = 0 when FDR is controlled at α level. The
same strategy is used to control FDR for testing ASE vari-
ations among SNPs and gene and SNP variation effects
simultaneously.
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