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Abstract

Background: Pathway enrichment analysis is extensively used in the analysis of Omics data for gaining biological
insights into the functional roles of pre-defined subsets of genes, proteins and metabolites. A large number of
methods have been proposed in the literature for this task. The vast majority of these methods use as input
expression levels of the biomolecules under study together with their membership in pathways of interest. The latest
generation of pathway enrichment methods also leverages information on the topology of the underlying pathways,
which as evidence from their evaluation reveals, lead to improved sensitivity and specificity. Nevertheless, a systematic
empirical comparison of such methods is still lacking, making selection of the most suitable method for a specific
experimental setting challenging. This comparative study of nine network-based methods for pathway enrichment
analysis aims to provide a systematic evaluation of their performance based on three real data sets with different
number of features (genes/metabolites) and number of samples.

Results: The findings highlight both methodological and empirical differences across the nine methods. In particular,
certain methods assess pathway enrichment due to differences both across expression levels and in the strength of
the interconnectedness of the members of the pathway, while others only leverage differential expression levels. In
the more challenging setting involving a metabolomics data set, the results show that methods that utilize both
pieces of information (with NetGSA being a prototypical one) exhibit superior statistical power in detecting pathway
enrichment.

Conclusion: The analysis reveals that a number of methods perform equally well when testing large size pathways,
which is the case with genomic data. On the other hand, NetGSA that takes into consideration both differential
expression of the biomolecules in the pathway, as well as changes in the topology exhibits a superior performance
when testing small size pathways, which is usually the case for metabolomics data.
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Background
Pathway enrichment has become a standard tool in the
analytic pipeline for Omics data, since it reduces the
complexity and provides a systems view of the biological
question under investigation [1–5]. Dozens of methods
have been proposed in the literature, ranging in model-
ing sophistication and effectiveness [6–19]. A number of
papers have provided comprehensive reviews of available
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methods [20–22] capturing the evolving technical land-
scape, as well as the range of data types and applications
(genes, proteins, etc.). In [20], existing methods have been
classified into three generations, the first two correspond-
ing respectively to over-representation analysis (ORA)
and functional class scoring (FCS) methods. FCSmethods
weremotivated by the fact that theremay be a coordinated
activity in functionally related sets of genes, even though
each one of them may not be deemed significantly differ-
ential by over-representation analysis. The current review
focuses on the third generation of pathway analysis meth-
ods, namely, topology-based pathway enrichment analysis
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methods, which utilize information about the intercon-
nections of genes (or other biomolecules) within the path-
ways, and offer improved performance over conventional
second generation methods [6, 7].
Despite the plethora of available methods, there has

been a scarcity of systematic comparisons of their per-
formance in controlled settings based on synthetic or
real data sets. In [23] and [24], several pathway analy-
sis methods were compared in case studies by assess-
ing the consistency of selected significant pathways. The
results confirm that nominated enriched pathways can
differ widely across methods, which coupled with absence
of a ground truth, makes it difficult to offer guidance
to practitioners. In [25], pathway enrichment methods
that do not use topology information were compared to
topology-based ones. The conclusion was that topology-
based methods exhibit superior performance when the
pathways under study do not overlap, but not otherwise.
However, the data sets examined correspond to small
scale studies with no more than 50 samples in total. More-
over, existing comparative studies have primarily focused
on methods developed for gene expression data, which
may not be suitable for studies involving metabolomics or
lipidomics data, where quantitation of all biomolecules in
the pathways under study may be incomplete.
Pathway enrichment methods aim to compare the

‘activity’ of pathways of interest across two or more
biological conditions or groups of specimens (patients,
cell lines, etc.). At the technical level, an important fea-
ture is the nature of the statistical null hypothesis being
tested. Most methods can be categorized to those test-
ing (I) self-contained and (II) competitive null hypotheses
[26]. A competitive null hypothesis compares the activ-
ity of each pathway with other biomolecules/pathways. In
contrast, a self-contained null hypothesis compares the
activity of each pathway across the biological conditions
(e.g. normal vs. disease samples), without comparing it
to the other biomolecules/pathways. This difference in
the objective results in differences in procedures used
for evaluating self-contained and competitive hypotheses
(including, e.g., permutation strategies), as well as inter-
pretations of results. In the discussion of methodological
issues concerning analysis of sets of biomolecules in [26],
the authors argued against the competitive null hypoth-
esis, since tests based on it consider biomolecules as the
sampling units which are clearly not independent.
In the current comparative study, we examine nine pop-

ular topology-based pathway analysis methods that inves-
tigate different null hypotheses. Methods considered in
this review have good user interface in R, and include
Pathway-Express [8], SPIA [9], NetGSA [10, 11], topol-
ogyGSA [12], DEGraph [13], CAMERA [14], CePa [15],
PRS [16] and PathNet [17]. Given the importance of avail-
ability of open-source software for conducting simulation

experiments, popular approaches with only web-based
interfaces, such as Ingenuity Pathway Analysis [27], are
not included in our comparison. We assess the perfor-
mance of the above nine methods by performing an
extensive numerical analysis using in silico experiments
that offer advantages over simulation experiments con-
ducted on purely synthetic data [25] or evaluation based
on publicly available data [23, 24]. On the one hand, unlike
commonly used simulation experiments, our experiments
maintain the complexity of real gene/metabolite expres-
sion data sets by generating simulated signals from three
data sets containing gene and metabolite expressions. On
the other hand, unlike comparisons based on publicly
available data, active genes/metabolites and pathways are
well-controlled in our experiments, allowing us to assess
false positive rates and statistical power of the nine path-
way analysis methods. Moreover, our review differs from
previous ones in that we base our comparisons both on
gene expression data and on metabolomic data. The two
gene expression data sets studied contain at least 100 sam-
ples per condition/group, which enable us to includemore
genes and pathways of potential relevance in the enrich-
ment analysis. Themetabolomic data set provides a differ-
ent perspective as enrichment analysis of metabolomics
data presents additional challenges due to the smaller
size of biochemical pathways, their high degrees of over-
lap, as well as their incomplete coverage by many mass
spectrometry acquired data sets.

Experimental design
To systematically evaluate the type I error and power of
the nine pathway enrichmentmethods, we consider a vari-
ety of settings using three different data sets, two from
cancer genomics and one based on metabolomics.

Pathway dysregulation
We analyzed primary metabolic pathways mapped from
KEGG in the metabolomic study, and KEGG pathways
that describe signaling and biochemical functions and
their interactions in the cancer genomic studies (see Addi-
tional file 1 for the complete lists of pathways analyzed).
To obtain synthetic, but realistic omics data, a subset
q < K out of a total K pathways were first randomly
selected as ‘dysregulated’. Next, a pre-specified proportion
of genes/metabolites within each dysregulated pathway
was chosen to be altered. This proportion, referred to as
detection call (DC), was set to be 20% for the metabolomic
study and 10% for the cancer genomic studies. Due to the
smaller pathway sizes and limited number of known inter-
actions within each pathway, affected metabolites were
selected randomly from each dysregulated pathway. Since
genetic pathways are typically larger in size and have
well documented interactions in the graphite package,
we considered three mechanisms to select affected genes
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within each dysregulated pathway following the practice
in [25].
Note that due to the overlap amongst pathways, a 10%

DC threshold may lead to some pathways with more than
10% affected genes/metabolites andmore than q pathways
with at least one affected gene/metabolite.

Betweenness The betweenness of a gene quantifies how
often the gene appears on the shortest path between two
other genes and effectively measures how important a
gene is in the pathway. To select affected genes under this
dysregulation design, pathway members are first ranked
by their degrees of betweenness. Affected genes are set to
be those whose betweenness is above a certain threshold,
which is chosen so that a 10% DC is reached.

Community Biological networks tend to contain mod-
ules (communities) that are densely connected inter-
nally and loosely connected in between. For a pre-
specified pathway with a given topology, we find
the communities within the pathway using a com-
munity detection algorithm, e.g., using the function
cluster_edge_betweenness from the igraph R
package [28]. We then search for a community that
approximately represents the 10% DC level.

Neighborhood Under the neighborhood dysregulation
design, members within a certain shortest path distance
of a randomly chosen gene are used to define the affected
genes. The distance parameter is optimized such that a
10% DC is reached after looping over all members within
the pathway.

Data generating model
The steps for generating simulated data are illustrated in
Fig. 1 and described below. We start with the original log-
transformed expression data from p genes/metabolites
and n samples (left heat map in Fig. 1). Each sample
is assumed to follow a distribution f with mean μ and
covariance �. More specifically, let

Y (i) ∼
{
f (μ1,�1) (i = 1, . . . , n1),
f (μ2,�2) (i = n1 + 1, . . . , n).

Here we do not assume f to be the multivariate normal
distribution not only because the distribution of real data
is far more complex but because we aim for an agnos-
tic mechanism for data generation that does not favor
any method. By assuming a general distribution f, we can
also assess whether the compared methods are sensitive
to normality assumptions.
The data were standardized so that each

gene/metabolite has mean zero and unit variance. This
corresponds to the middle heat map in Fig. 1 and the
model

Ỹ (i) ∼
{
f
(
0, �̃1

)
(i = 1, . . . , n1),

f
(
0, �̃2

)
(i = n1 + 1, . . . , n),

where �̃k (k = 1, 2) is the correlation matrix.
We considered both settings with and without sample

permutation.

(I) Sample labels are fixed to be the original case/control
status. We added mean signals varying from 0.1 to 0.5
to affected genes/metabolites selected according to
different pathway dysregulation designs. This
corresponds to the right heat map in Fig. 1 and the
model

Ỹ (i) ∼
{
f
(
0, �̃1

)
(i = 1, . . . , n1),

f
(
μ̃2, �̃2

)
(i = n1 + 1, . . . , n). (1)

(II) We permuted the sample labels first and added
varying mean signals to the same set of affected
genes/metabolites as in (I). This corresponds to the
model

˜̃Y (i) ∼
{
f
(
0, �̃

)
(i = π1, . . . ,πn1),

f
(
μ̃2, �̃

)
(i = πn1+1, . . . ,πn),

(2)

where �̃ is the common covariance matrix for both
populations, and π is a random permutation of the
sample index 1, . . . , n.

The main difference between models (1) and (2) is
whether sample labels are permuted. The intuition is that
the permutation version nullifies the difference in covari-
ances, thereby creating a situation where the assumption
of equal covariances is satisfied. The permutation ver-
sion can benefit certain methods, such as DEGraph, but is
not ideal for methods such as CAMERA that exploit dif-
ference in correlations. Theoretical justifications for how
permutation works are available in [29] and [30].
The above data generating mechanism relaxes the dis-

tributional assumptions and allows us to evaluate different
methods with respect to a ground truth. This is in con-
trast to most existing reviews in the literature based on
either publicly available data where the ground truth is
unknown [23, 24], or purely synthetic data from paramet-
ric distributions [25]. In practice, because there is only one
deterministic data matrix, for both (I) and (II) we added
independently and identically distributed Gaussian noise
to each entry in the data matrix to introduce randomness.
The complete set of test designs is summarized in Addi-

tional file 1.

Results
We present the results of our comparative study by assess-
ing the performance of the nine methods in terms of their
type I errors, followed by their statistical powers. A type I
error, also called a false positive, occurs when a true null
hypothesis is rejected, whereas the power quantifies the
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Fig. 1 Schematics of the simulation design. In each study, real expression data is used to carry out the simulations. From left to right, the original
expression data is first standardized such that each gene/metabolite has mean zero and unit variance. Varying mean signals are then added to
genes/metabolites in the selected pathways in each of the simulation replicates. The top bar indicates the sample labels, which are either the
original case/control status or a random permutation of the original case/control status

probability of a test correctly rejecting the null when the
alternative hypothesis is true. Of course, power compar-
ison is only meaningful if the tests all have valid type I
error control. Due to the large size of the two gene expres-
sion data sets, the type I errors and powers were calculated
as the proportion of null hypotheses rejected among 200
simulation replications, but they were evaluated over 1000
replications in the metabolomic data example.
Several methods require p-value thresholding. To this

end, we used univariate two-sample t-test assuming
unequal variances to calculate the p-value for each

gene/metabolite. These p-values were corrected for mul-
tiple comparisons using the Benjamini & Hochberg
procedure for controlling false discovery rate (FDR)
[31]. The FDR cutoff of 0.05 was used to identify DE
genes/metabolites.
In our analysis, multiple method-specific difficulties

made it impossible to compare all available pathways.
First, in the two gene expression data examples, SPIA
and Pathway-Express returned p-values primarily for sig-
naling pathways, which is expected given their testing
procedures. Second, topologyGSA only works for pathway

Fig. 2 Type I errors for the 11 KEGG (primarily signaling) pathways in the TCGA breast cancer study [33]. The x-axis shows the pathway size and the
y-axis indicates the type I error. Overlapping points were re-positioned by adding ± 1 to the x-axis and ± 0.01 to the y-axis. Thus the negative values
should be understood as being very close to zero. All methods control type I errors
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whose topology is a DAG and whose size is smaller
than the minimum number of samples in the two condi-
tions/groups. As a result, our comparisons in the two can-
cer genomic applications only include selected pathways
that were analyzed by all methods. Lastly, the network in
the metabolomics data example is not directed acyclic and
the pathways are smaller biochemical pathways that often
have incomplete coverage and high degrees of overlap.
Thus we excluded topologyGSA, Pathway-Express, SPIA
and PRS in the metabolomics data example.

Ranking empirical powers
In power comparisons, we summarize the relative perfor-
mance of all nine methods based on the ranking of each
pathway’s empirical power. Specifically, for each pathway,
we rank the empirical powers of all methods at each level
of mean change from low (indicating higher power) to
high (indicating lower power). Methods that produce ‘NA’
(e.g. ORA methods when there are too few DE genes) are
ranked the highest. For each pathway, the geometric mean
of all rankings across different mean changes is taken as
the final measure of relative performance. Spreadsheets
with disaggregated empirical powers for each pathway,
across all the experimental settings, are provided in [32].

Analysis of gene expression data
There are 11 KEGG pathways (primarily on signaling)
whose topologies satisfy the input requirement needed for

topologyGSA and Pathway-Express. We thus focused on
type I error and power comparisons on this subset of path-
ways under the betweenness dysregulation design. Details
on the pathways and more comparisons are available in
Additional file 1.
The scatter plot in Fig. 2 shows the type I error for each

of the 11 KEGG pathways using the TCGA breast can-
cer data [33]. Each point indicates the type I error rate
for one pathway. Overlapping points were re-positioned
by adding ± 1 to the x-axis and ± 0.01 to the y-axis, which
explains why some values are less than zero—these should
be understood as being close to zero. Because the number
of DE genes under the self-contained null is zero even with
liberal FDR cutoffs, ORA-type methods such as SPIA,
CePa, PRS and PE.Cut (Pathway-Express with p-value
cutoff ) can not assess the pathway significance. These
methods have thus been excluded from type I error com-
parison. On the other hand, PE.noCut does not require
p-value thresholding and is therefore included in Fig. 2.
Across the 11 pathways, all methods control the type I
error rate at 0.05 significance level. It is worth noting that
most of the type I error rates from PE.noCut and Path-
Net are close to the nominal level 0.05, whereas all other
methods seem to have conservative type I error rates.
Figure 3 presents the relative performance of differ-

ent methods in terms of average ranking of empirical
powers for the 11 pathways, both with and without sam-
ple label permutation. Lower rankings indicate better

Fig. 3 Average ranking of empirical powers on the 11 KEGG (primarily signaling) pathways using sample labels from the original study (a) and
shuffled sample labels (b) based on the betweenness dysregulation design for the TCGA breast cancer study [33]. The x-axis shows the pathway
size, and the y-axis indicates the average ranking of empirical power over different mean changes. Lower ranking indicates better performance.
Overlapping points were re-positioned by adding ± 1 to the x-axis and ± 0.1 to the y-axis. PathNet, CAMERA and PE.noCut perform the best when
using the original sample labels (a), whereas DEGraph, PE.noCut and topologyGSA yield the best performance with permuted sample labels (b)
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performance. Again we re-positioned overlapping points
by adding± 1 to the x-axis and± 0.1 to the y-axis for visu-
alization purpose, which explains why some rankings in
Fig. 3a are below 1. Among all methods, PathNet, CAM-
ERA and PE.noCut seem to perform the best when using
the original sample labels (Fig. 3a). NetGSA and DEGraph
have similar performance. On the other hand, when sam-
ple labels are permuted, DEGraph, PE.noCut and topol-
ogyGSA have the best performance (Fig. 3b). This is not
surprising because the permutation version nullifies the
difference in covariances asymptotically, thereby creating
a situation where the assumption of equal covariances
and shared graph structure is approximately satisfied.
DEGraph and topologyGSA thus performed better rela-
tive to the others, whereas the performance of CAMERA
deteriorated, especially for large pathways, because it can-
not leverage the difference in correlations. Sample permu-
tation does not affect PE.noCut because its significance
is evaluated based on gene permutation. All ORA-type
methods (SPIA, PE.Cut, CePa and PRS) have relatively
higher ranking and hence poorer performance because
they only work when the magnitude of mean changes
between conditions is large.
Similar figures for other dysregulation designs and other

pathways, including those for the prostate cancer study,
are available in Additional file 1. It is worth noting that
PathNet shows inflated type I error rates on several KEGG
metabolic pathways (Additional file 1: Figures S1 and S4),
which could be due to the inaccurate coverage in pathway

topology in graphite. Methods such as topologyGSA,
SPIA, Pathway-Express and PRS are not applicable to
those metabolic pathways due to constraints in their
topology. Among the methods compared, DEGraph has
the best overall performance.

Analysis of metabolomics data
The findings in the metabolomics data example differ
qualitatively from those in genomic examples. This differ-
ence can be attributed to the relatively small number of
edges in the metabolic network and small pathway sizes,
which are due to the incomplete coverage of metabolomic
assays. Note because SPIA, Pathway-Express and PRS
were proposed specifically for genetic pathways, and the
metabolic network is not directed acyclic, we only com-
pared NetGSA, DEGraph, CAMERA, CePa and PathNet
in this example. In addition, CePa requires the presence of
DEmetabolites, which only appear when themean change
is greater than 0.5. The mean signal in this example was
thus allowed to vary from 0.1 to 1.0. To run all 5 methods,
we filtered out 33 of the 65 KEGG pathways whose topolo-
gies are too sparse—fewer than two edges—and focused
on type I error and power comparisons on the remaining
32 pathways.
Figure 4 shows that all four methods control type I

errors, although NetGSA and CAMERA exhibit slightly
inflated type I errors for some pathways, which is likely
due to the small sample sizes available. This will be less
of an issue for NetGSA if more samples are available for

Fig. 4 Type I errors for KEGG metabolic pathways in the metabolomics data [39]. The x-axis shows the pathway size and the y-axis indicates the type
I error. Overlapping points were re-positioned by adding ± 1 to the x-axis and ± 0.01 to the y-axis. CAMERA, DEGraph and PathNet have controlled
type I errors, but NetGSA’s type I errors are slightly inflated for several pathways
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network estimation; such samples can be obtained from
other related studies. The conservative type I errors of
DEGraph is again due to its assumption that the net-
works for the two conditions are the same. Since there are
very few pathway interactions available in the metabolic
network, PathNet also exhibits conservative type I errors.
Figure 5 compares the relative performance of differ-

ent methods in ranking of empirical powers out of 1000
replications. It is evident that DEGraph and NetGSA per-
form the best (lowest rankings), regardless of whether
the sample labels are shuffled. DEGraph performs slightly
better than NetGSA, especially under permuted sample
labels (Fig. 5b), because the Hotelling’s T-squared test
works well for small pathways. In comparison, the lin-
ear mixed effects model underlying NetGSA considers
an additional random effects, resulting in slightly lower
power when samples are permuted. The other methods
CAMERA, CePa and PathNet have comparable perfor-
mances both with and without permuting sample labels.
The poor performance of PathNet and CePa is due to the
sparse metabolic network, whereas CAMERA does not
work well because there is high overlap among metabolic
pathways (Figure S7 in Additional file 1).

Discussion
The methods considered in this study exhibit differences
in terms of the network information that they incorporate.

For example, CePa, PathNet, Pathway-Express, PRS and
SPIA only account for the pathway topology. CAMERA
does not directly take into account the pathway topology,
but estimates the correlations among the biomolecules
from data. In contrast, NetGSA, DEGraph and topol-
ogyGSA assume the underlying networks come from a
known class of graphs, whose parameters are inferred
from data. NetGSA can also incorporate existing network
information from user-provided sources for improved
power. The downside with the more flexible version of
NetGSA that accounts for differences in networks is that
the type I errors may be slightly inflated, if too few samples
are available for the estimation of the network parameters,
corresponding to network edges. This was observed in the
metabolomics data example. This issue can be addressed
by aggregating data frommultiple related studies for more
accurate network estimation.
Taking a broader view point, NetGSA is capable of

assessing pathway enrichment due to changes both in the
mean levels of the biomolecules, as well as their con-
nectivity; it can thus be more suitable for studies involv-
ing comparisons across different disease states, where
a possible strong dysregulation of the interactome can
occur. It can also seamlessly accommodate more than
two conditions [34], as well as multiple types of Omics
data for integrated analysis of pathway enrichment [35].
Although fairly robust in the examples shown above, a

Fig. 5 Average ranking of empirical powers using sample labels from the original study (a) and shuffled sample labels (b) for the metabolomics data
[39]. The x-axis shows the pathway size, and the y-axis indicates the average ranking of empirical power over different mean changes. Lower ranking
indicates better performance. Overlapping points were re-positioned by adding ± 1 to the x-axis and ± 0.1 to the y-axis. DEGraph and NetGSA
perform the best regardless of sample permutation
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disadvantage of DEGraph is that it is not particularly
suitable in settings where one expects a strong dysreg-
ulation of the underlying interactome, since it assumes
the underlying networks in different conditions have
the same structure. Consider, e.g., the two networks in
Figure S8 of Additional file 1. The proportion of nodes
in pathways 8, 4 and 7 that have nonzero mean changes
is 0.2, 0.4 and 0.6, respectively. In contrast, pathways
3, 5, and 2 have not only the corresponding level of
mean changes, but also complete rewiring of the path-
way topology. In this simulated setting, NetGSA is able
to identify pathways 5, 3 and 7 as the most signifi-
cantly enriched pathways (with empirical power at least
0.9), followed by pathway 2 (0.89). DEGraph identi-
fies pathways 2, 3 and 5 as being enriched, but misses
pathway 7 (0.62).
Importantly, existing methods such as CAMERA, CePa,

DEGraph, PathNet, Pathway-Express, PRS, SPIA and
topologyGSA often analyze one pathway at a time
while ignoring the fact that pathways overlap with each
other. This practice is common because it is concep-
tually and computationally convenient, yet it may lead
to undesirable consequences as the interactions between
genes/metabolites that show up in multiple pathways
may be different when analyzing these pathways sepa-
rately. Separate analysis is particularly problematic for
metabolomic studies where the pathways are consider-
ably smaller in size and exhibit a high degree of overlap
(Additional file 1: Figure S7). In contrast to thesemethods,
NetGSA can combine all metabolites by inferring a joint
network, and is thusmore powerful for detecting enriched
pathways. However, simultaneous analysis of all pathways
using NetGSA could become computationally expensive,
if the study contains a very large number of biomolecules.

Conclusions
Significant progress has been made in developing
topology-based methods for pathway enrichment analy-
sis. In this study, we undertook a systematic comparison
of nine popular such methods using three data sets from
gene expression and metabolomics profiling. Compared
to existing reviews [23–25, 36], our comparison leverages
the large sample sizes in the two cancer genomic studies,
and, in particular, offers important insights for how the
nine competitors perform in metabolomics studies, where
the focus is on smaller biochemical pathways. Results in
Additional file 1: Figures S2, S3, S5 and S6 suggest simi-
lar findings as those observed in Fig. 3, and confirm the
overall robust performance of DEGraph. In general, when
the methods examined are used for pathway enrichment
purposes in studies based on genomic data and focus-
ing on large signaling pathways, most exhibit a satisfac-
tory overall performance, with DEGraph being the most
robust, followed by PathNet, Pathway-Express without p-

value cutoff (PE.noCut) and topologyGSA. In comparison,
ORA-typemethods (SPIA, PE.Cut, CePa and PRS) require
the presence of DE genes and perform well only in spe-
cific settings. Our experience with Pathway-Express is
that PE.noCut (without p-value cutoff ) seems to dominate
PE.Cut (with p-value cutoff ). Additionally, due to inaccu-
rate coverage and special features of topology informa-
tion on smaller metabolic pathways, only DEGraph shows
robust performance (Additional file 1: Figures S3 and S6).
On the other hand, in studies involvingmetabolomics data
and pathway enrichment of relatively small biochemical
pathways, NetGSA and DEGraph clearly outperform all
competitors.

Methods
In this section, we describe the three data sets used in
our comparative study and then provide an overview of
the nine topology-based pathway enrichment methods
analyzed.

Data sets
Our first comparison considers a breast cancer
gene expression study from The Cancer Genome
Atlas ([33], TCGA). We focused on 114 signaling
and metabolic pathways from the Kyoto Encyclo-
pedia of Genes and Genomes ([37], KEGG), and
expression data from 2784 genes that have matched
Entrez IDs. The data set consists of 520 samples in
total, 117 estrogen-receptor-negative (ER-) and 403
estrogen-receptor-positive (ER+).
Our second comparison is based on a TCGA gene

expression data on prostate cancer from [38]. The data
contained Affymetrix probe IDs, which were first mapped
to gene Entrez IDs. When multiple probes mapped
to a single gene (i.e., to the same gene Entrez ID),
their mean profile was used to avoid duplicated gene
IDs. To reduce the dimensionality, genes in 112 KEGG
signaling and metabolic pathways were considered for
the final analysis. The final data set contains expres-
sion levels of 2952 genes across 264 case and 160
control subjects.
The third and final data set comes from a metabolomics

study on non-obese diabetic mice, where the metabolic
profiles of 41 non-diabetic and 30 diabetic animals of
100 named metabolites were collected, with the goal of
identifying metabolic signatures of Type I diabetes pro-
gression [39].

Pathway enrichment methods
Pathway-express
The Pathway-Express method [8] for analyzing signaling
pathways is implemented in the ROntoTools Biocon-
ductor package [40]. Its null hypothesis is that the list of
DE genes on a given pathway is completely random; this
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hypothesis is tested by calculating an impact factor for
each pathway G defined as

IF(G) = log
(

1
PNDE

)
+

∑
j∈G |PF(gj)|

Nde(G) · |�E| . (3)

Here, PNDE in the first term on the right hand side of (3)
evaluates the significance of the pathway G as measured
by an over-representation analysis, whereas the second
term incorporates the DE genes in the data and the inter-
actions among genes inside the pathway. The perturbation
factor (PF) for each gene is defined as

PF(gi) = �E(gi) +
∑
j:j→i

βij
PF(gj)
Nds(gj)

. (4)

In Eq. 4, �E(gi) is the signed normalized expression
change of biomolecule gi. The denominator Nds(gj) repre-
sents the number of downstream biomolecules of gj and
the sum is only over biomolecules gj directly upstream of
gi. The interactions between gi and gj are encoded in the
coefficients βij, e.g. + 1 for activation, − 1 for inhibition.
Therefore, the second term on the right hand side of (3)
can be thought of as the total perturbation factor normal-
ized by (i) the number of DE genes in pathway G, which is
Nde(G), and (ii) the mean absolute fold changes among all
DE genes in the data, which is |�E|. Normalization with
respect to |�E| is to account for the potential differences
in estimating the fold changes among various technolo-
gies. The randomquantity IF(G) is shown to have a�(2, 1)
distribution, such that for any realization of IF(G) = f the
significance of a pathway can be calculated as

PG = {f + 1}e−f .

Pathway-Express is implemented in the R package
ROntoTools. The latest version of this package (2.10.0)
also permits a cutoff-free version which eliminates the
need to select DE genes [41]. In this version, Pathway-
Express does not calculate the ORA significance, but only
reports the significance from pathway perturbation.

SPIA
Signaling pathway impact analysis ([9], SPIA) tests the
same null hypothesis as Pathway-Express; it combines one
evidence based on PNDE with a second evidence, PPB, that
quantifies the amount of perturbation in each pathway. To
calculate the second type of evidence, the total net per-
turbation accumulation for a given pathway G is defined
as

tA(G) =
∑
i∈G

{PF(gi) − �E(gi)},

where the perturbation factor PF(gi) is defined in (4). A
bootstrap approach is used to obtain the perturbation p-
value PPB, which is the probability of observing a total

accumulated perturbation of a pathway more extreme
than tA(G) just by chance.
The overall significance of pathway G is calculated as

PG = PNDEPPB − PNDEPPB log{PNDEPPB}.
It is worth noting that Eq. 4 imposes an implicit con-

straint on the pathway topology, in that a pathway with a
singular matrix I − B for Bij = βij/Nds(gj) cannot be ana-
lyzed using Pathway-Express and SPIA. In addition, both
Pathway-Express and SPIA require the presence of DE
genes to define the impact of pathways. Hence pathways
that do not have any DE genes will not be analyzed. This
phenomenon was observed in [9, 36] and in our compar-
isons, where Pathway-Express and SPIA often only return
the significance of half of all pathways considered.

NetGSA
The NetGSA method [10, 11] employs as input directed
and/or undirected networks that define pathway inter-
connectedness. If the network information is incomplete,
it uses a probabilistic graphical model to complete the
pathway topology based on the available data, while using
the existing topology information as constraints. As a
result, not only can NetGSA estimate novel interactions,
but also validate existing network information. Next, we
present the statistical model used in NetGSA assuming
the underlying networks are undirected.
Given the adjacency matrix A of the network, Net-

GSA defines the propagated effect of genes on each other
through the influence matrix �, defined as ��′ = (I −
A)−1 with I denoting the identity matrix. It then decom-
poses the measurements in the ith sample, Y (i), into signal
X(i) and noise ε(i). The multivariate signal’s interactions
are captured through a Gaussian Markov random field
encoded by A. Formally, let γ (i) be the baseline expression
levels of all biomolecules and μ be their mean expression
levels. NetGSA decomposes X(i) = �γ (i) so that the sig-
nal for the jth gene, X(i)

j , combines both its baseline activ-
ity γ

(i)
j and those propagated from its neighbors. Given

data from K conditions, NetGSA allows for the K net-
works to be different and for each condition k considers a
linear mixed effects model

Y (i) = �kμk + �kγ
(i) + ε(i) (k = 1, . . . ,K),

where the random effects γ (i) ∼ N
(
0, σ 2

γ I
)
are indepen-

dent from noise ε(i).
Let β be the concatenated vector of the baseline means

μ1, . . . ,μK . To test for enrichment of any pathway G,
NetGSA uses a Wald test statistic,

TS(G) = 
β̂

s.e.(
β̂)
,
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for K = 2 or an F statistic for K ≥ 3 to test the null 
β =
0; here, β̂ denotes the estimate of β based on the data,
s.e.(
β̂) represents the standard error of 
β̂ , and 
 is a con-
trast vector optimally defined to allow for simultaneous
testing of differences in the mean structure across the K
conditions, as well as differences in interaction networks.
NetGSA can be computationally slow in the presence

of a large number of biomolecules, which is the case for
the two studies involving gene expression data. In those
instances, enrichment analysis is carried out separately for
each pathway. On the other hand, since the metabolomic
data set contains only 100 metabolites, enrichment analy-
sis of all pathways is performed simultaneously.

topologyGSA
The pathway topology information in the topologyGSA
method [12] is first converted into a directed acyclic graph
(DAG) and then to its moral graph, which represents
its corresponding Markov equivalence class [42]. Let the
data be organized such that the first n1 columns corre-
spond to samples from condition 1, and the last n − n1
columns from condition 2. Given the graph structure,
topologyGSA models each sample Y (i) using a probabilis-
tic graphical model approach:

Y (i) ∼
{
N(μ1,�1) (i = 1, . . . , n1),
N(μ2,�2) (i = n1 + 1, . . . , n), (5)

where μk is the mean expression level for condition k,
and �k is the corresponding covariance. Note �1 and
�2 are constrained to have the same structure as spec-
ified a priori. topologyGSA first tests the hypothesis of
equal variances �1 = �2 using a likelihood ratio test.
Depending on the conclusion from testing the equality
of variances, the test of differential expression μ1 = μ2
is performed through a multivariate analysis of variance
(MANOVA) [43] if �1 = �2, or based on the Behrens-
Fisher problem [44] if �1 �= �2. The method is designed
specifically for gene expression data.
topologyGSA has several limitations. First, it requires

the pathway topology to be organized as a DAG, which
may not be possible for, e.g., metabolomics studies. In
addition, topologyGSA relies on the likelihood ratio statis-
tic for testing equal covariances, which restricts its use to
relatively small pathways. For large pathways with more
members than the sample size—which are frequently
observed in studies involving gene expression data—
topologyGSA can become computationally very ineffi-
cient. Lastly, differential network and differential expres-
sion are tested separately in topologyGSA, which may also
limit the power of the test when the two populations differ
in both means and variances.
In our data examples, we implemented both test on dif-

ferential network using pathway.var.test and test
on differential expression using pathway.mean.test

from the R package topologyGSA. Since naive combina-
tion of the two tests (e.g. by taking the minimum p-value)
resulted in inflated type I errors in our numerical analy-
ses, we used the p-value for testing equality of means as
representing significance for pathway enrichment.

DEGraph
DEGraph was introduced in [13] to conduct a two-sample
test of means, while incorporating topology informa-
tion of the biomolecules. It considers a special case of
the model in (5) with �1 = �2 and tests the null
μ1 = μ2. The motivation underlying DEGraph is that
the classical Hotelling’s T2-test [45], which is known
to be uniformly most powerful against global mean-
shift alternatives for multivariate normal distributions
and may behave poorly in high dimensions. When the
graph G capturing interactions of the biomolecules in
the two conditions is known, [13] derived an equiva-
lent expression for Hotelling’s T2 statistic in the graph-
Fourier space [46]. It further proposed to approximate
Hotelling’s T2 by filtering out high frequencies of the
Fourier coefficients when the dimension is high. The
statistic after filtering is shown to yield a test that is
more powerful than testing in the original unfiltered
space.
Because DEGraph is a test in the graph-Fourier space,

it requires knowledge of a connected graph, which is
assumed to be the same between the two conditions
under consideration. If a pathway consists of more than
one connected component, DEGraph will test whether
the means are different for each connected subgraph,
and correct for multiple comparisons using a permuta-
tion procedure. In addition, if the input pathway topology
can not be immediately used in constructing a test in
the graph-Fourier space, DEGraph offers the function-
ality of subgraph discovery. In our implementation, we
supplied DEGraph with the pathway information from
KEGG and let the method decide whether to undertake
subgraph discovery.

CAMERA
Correlation Adjusted MEan RAnk gene set test ([14],
CAMERA) is a competitive biomolecule set testing proce-
dure and is available as a function in the limma package
[47]. CAMERA assumes that the log-expression value Yg
for biomolecule g is linear in the design variables spec-
ifying the conditions with coefficients αg . Enrichment
analysis of a given pathway G is done by testing the null

αg = 0, where 
 is a contrast vector specified by the
user. Denote by zg the biomolecule-level statistic for g.
Given m such statistics zG = (z1, . . . , zm) in pathway G,
CAMERA tests whether their mean expression z̄G inside
a pathway is significantly different from the mean expres-
sion of biomolecules outside the pathway. Let p be the
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total number of biomolecules, both inside and outside
the pathway, and z̄ be the mean of all biomolecule-level
statistics. CAMERA uses the statistic

TS(G) = δ

spool
√

VIF
m + 1

p−m

to test the competitive null hypothesis; here, δ = (z̄G −
z̄)p/(p − m) is the adjusted mean difference, spool is the
pooled residual standard deviation and VIF = 1 + (m −
1)ρ̄ denotes the variance inflation factor. The param-
eter ρ̄ is defined as the average correlation amongst
the biomolecule-level statistics inside the pathway and
is estimated from the data. Note that CAMERA incor-
porates the pathway membership information and does
not take interconnectedness inside the pathway into
account. However, it does account for correlation among
biomolecules in the pathway.

CePa
CePa is a centrality-based pathway enrichment analysis
method [15, 48]. CePa allows multiple centrality measures
to capture the topology of a given pathway from differ-
ent aspects. It also maps genes to pathway nodes and
considers the node as the basic pathway unit, which is par-
ticularly useful for enrichment analysis of complexes or
protein families.
For a given pathway with m nodes, the CePa score is

defined as

s =
m∑
i=1

widi, (6)

where di = 1 if the ith node is differentially expressed
and di = 0 otherwise, and wi corresponds to the ith
node’s weight defined based on various centrality mea-
sures. A small offset of 0.01 is added to each wi to ensure
positive weights. CePa allows equal weights and weights
defined from centrality measures such as node degree,
betweenness [49] and the largest reach. The degree cen-
trality measures the number of neighbors a node has,
betweenness quantifies how often a node appears on the
shortest path between two other nodes, and the largest
reach centrality defines how far a node can send or receive
information within the pathway.
CePa uses gene permutation to test whether genes

inside the pathway are at most as differentially expressed
as those outside the pathway given its score. In our numer-
ical results, we took theminimumof the p-values obtained
using different weights as representing significance for
pathway enrichment. The score definition in (6) is a vari-
ant of ORA, but can also be extended to incorporate
gene-level statistics as in FCS methods [15, 50].

PRS
The Pathway Regulation Score ([16], PRS) enrichment
method was developed in parallel to CePa and the two
share some similarities. Specifically, PRS assigns a value vi
and weight wi to each node i, which may contain one or
more genes. The node value vi is 0 if the corresponding
gene(s) are not expressed, 1 if they are expressed but not
differential, or the maximum fold-change value if one or
more genes in node i are differential. If vi > 1, node i is
then assigned a weight wi, which is the number of down-
stream DE nodes (either directly or via other significant
nodes, including the starting node itself ). The score for a
pathway withm nodes is defined as

PRS =
m∑
i=1

si, (7)

where node score si = wivi if node value vi > 1 and 0 oth-
erwise. The pathway score PRS is then normalized with
respect to pathway size by multiplying the proportion of
DE genes over the total number of expressed genes.
PRS assesses the significance of each pathway using

gene permutation. The raw and permuted scores, calcu-
lated respectively from the original data and permuted
data, are first standardized with respect to the permuted
scores in order to derive the empirical null distribution.
The p-value of each pathway is determined as the propor-
tion of normalized permuted scores greater than or equal
to the normalized raw scores.

PathNet
PathNet [17] combines all pathways under consideration
into a pooled pathway, defined as the union of all path-
ways. The interactions among genes in the pooled path-
way are represented by an adjacency matrix A, which is
a binary matrix with 1 and 0 indicating the presence and
absence of an interaction. Given the network A, PathNet
calculates the biomolecule-level significance pCi by com-
bining the direct evidence pDi with the indirect one pIi
based on Fisher’s method. It then uses a hypergeomet-
ric test to evaluate the significance of a given pathway.
While the direct evidence pDi accounts for the differential
expression of each biomolecule gi, the indirect evidence pIi
incorporates the effects on gi from its neighbors. Specif-
ically, PathNet defines the indirect evidence score for gi
as

SIi =
∑
j:j �=i

Aij ∗
{
− log10

(
pDj

)}
,

where the sum is over all biomolecules in the pooled path-
way. The significance of the indirect evidence pIi is then
determined by testing if the observed SIi is greater than
expected by chance. Similar to SPIA, PathNet accounts
for biomolecule interactions only through the topology
information available in the database, e.g., KEGG.
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Methodological considerations
Table 1 provides an overview of all methods in terms
of their null hypotheses and input requirements. These
methods differ in two main aspects.
The first distinction is in the type of null hypothesis.

CAMERA and PathNet test a competitive null hypothe-
sis of whether the genes in a given pathway are at most
as differentially expressed as those outside the pathway.
Pathway-Express, SPIA, CePa and PRS test the competi-
tive null by comparing the pathway of interest to a random
pathway (while holding the sample labels fixed). In con-
trast, NetGSA, topologyGSA and DEGraph consider the
self-contained null hypothesis by testing a pathway against
itself. Although the competitive null hypothesis can have
an appealing interpretation, assessing the significance of
the competitive null is challenging, as it corresponds to a
gene sampling framework which treats genes as indepen-
dent (see discussion in [26]).
Another major difference among these methods is

whether the method takes as input expression data or
thresholded gene p-values. With the exception of CAM-
ERA, all methods based on testing the competitive null
need to determine DE genes based on a pre-specified
threshold of corrected p-values. While the thresholding
may seem intuitive, the resulting enrichment results may
be sensitive to the p-value cutoff. The emphasis on p-value
thresholding also implies that thesemethods will not work
in settings where there are too few DE genes, i.e. when
gene-wise expression change is too small, as illustrated in
the “Results” section. All self-contained tests directly use
expression data and thus avoid making subjective choices
about DE genes.

Network information
In evaluating these methods, we also make the distinc-
tion between pathway topology and pathwaymembership,
where the former refers to both pathway membership and
the interactions amongst pathway members.

Importantly, the pathway topology information
required by different methods can be quite different,
which may affect the user experience. CAMERA only uses
pathway membership and requires the least effort. The
R package graphite provides functionality to retrieve
the list of KEGG pathways, and the resulting topology
information can be readily passed to Pathway-Express,
SPIA, topologyGSA, DEGraph and PRS (as implemented
in ToPASeq).
In comparison, NetGSA, CePa and PathNet require

additional steps of processing before graphite path-
ways can be analyzed. However, this additional step also
implies flexibility in the sense that the user can spec-
ify desired network information. For example, NetGSA
requires a weighted network, where the weights reflect
the interactions between genes/metabolites. This can be
either available network connectivity information from a
database, or estimated from data based on partial cor-
relations complemented with connectivity information
from a database. In the gene expression data exam-
ples, we used gene-gene interactions available in BioGrid
3.5.170 [52] compiled on February 25, 2019 as known
structural constraints and estimated the weights from
data. In the metabolomic data example, we took the
metabolic network from KEGGmetabolic reactions using
the KEGGgraph R package (version 1.38.0).
Finally, although NetGSA allows condition-specific net-

works, we implemented NetGSA assuming equal net-
works to ensure fair comparisons with topologyGSA and
DEGraph.

Implementation and availability
Allmethods tested have well-maintainedR packages avail-
able on CRAN or Bioconductor. Input genes are named
by Entrez IDs in all methods with the exception of
topologyGSA and CePa, which use instead gene sym-
bols. Pathway topology information was obtained from
the KEGG database [37], extracted using the R package

Table 1 Overview of tested pathway enrichment methods

Method Null hypothesis Gene p-value thresholding Expression data Pathway R/Bioconductor Reference

Pathway-Express Competitive Optional No Topology ROntoTools 2.10.0 [8]

SPIA Competitive Yes No Topology graphite 1.28.2 [9]

NetGSA Self-contained No Yes Topology netgsa 3.1.0 [10, 11]

topologyGSA Self-contained No Yes Topology topologyGSA 1.4.6 [12]

DEGraph Self-contained No Yes Topology DEGraph 1.34.0 [13]

CAMERA Competitive No Yes Membership limma 3.38.3 [14]

CePa Competitive Yes No Topology CePa 0.6 [15, 48]

PRS Competitive Yes No Topology ToPASeq 1.16.1 [16, 51]

PathNet Competitive Yes No Topology PathNet 1.22.0 [17]

All methods return the p-values before and/or after correcting for multiple comparisons
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graphite on November 28, 2018 for cancer genomic
studies, and from KEGG metabolic interactions using the
KEGGgraph R package in the metabolomic study.

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s12859-019-3146-1.

Additional file 1: Supplementary materials. Supplementary Materials
include details on test design, additional simulation results on the two
gene expression data and analysis of a synthetic data set as well as
information on data and code availability. (pdf)
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