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Detection of biological switches using the
method of Gröebner bases
Yaman Arkun

Abstract

Background: Bistability and ability to switch between two stable states is the hallmark of cellular responses. Cellular
signaling pathways often contain bistable switches that regulate the transmission of the extracellular information to
the nucleus where important biological functions are executed.

Results: In this work we show how the method of Gröebner bases can be used to detect bistability and
output switchability. The method of Gröebner bases can be seen as a multivariate, non-linear generalization
of the Gaussian elimination for linear systems which conveniently seperates the variables and drastically
simplifies the simultaneous solution of polynomial equations. A necessary condition for fixed-point state
bistability is for the Gröbner basis to have three distinct solutions for the state. A sufficient condition is
provided by the eigenvalues of the local Jacobians. We also introduce the concept of output switchability
which is defined as the ability of an output of a bistable system to switch between two different stable
steady-state values. It is shown that bistability does not necessarily guarantee switchability of every state
variable of the system. We further show that, for a bistable system, the necessary conditions for output
switchability can be derived using the Gröebner basis. The theoretical results are incorporated into an analysis
procedure and applied to several systems including the AKT (Protein kinase B), RAS (Rat Sarcoma) and MAPK
(Mitogen-activated protein kinase) signal transduction pathways. Results demonstrate that the Gröebner bases
can be conveniently used to analyze biological switches by simultaneously detecting bistability and output
switchability.

Conclusion: The Gröebner bases provides a novel methodology to analyze bistability. Results clarify the
distinction between bistability and output switchability which is lacking in the literature. We have shown that
theoretically, it is possible to have an output subspace of an n-dimensional bistable system where certain
variables cannot switch. It is possible to construct such systems as we have done with two reaction networks.

Keywords: Bistability, Output switchability, The Gröebner bases, Univariate basis polynomial, Steady-state
solutions, Bifurcation, Polynomial equations, Biomolecular reactions

Background
Bistable dynamical systems are frequently encountered
in cellular processes. Information processing within
cells is carried out by a complex network of switches
and oscillators [1]. A bistable system is a system with
two attractors. The system can switch between two
distinct stable states without resting in intermediate
states. Switch-like bistable responses have been ob-
served in many applications including signal transduc-
tion [2–6], cell cycle control [7–13], learning and

memory [14], growing bacterial biofilms [15], epileptic
spike-wave discharges [16], neurons [17] and synaptic
transmission [18]. Bistable switches have been de-
signed synthetically as well. A genetic toggle switch in
Escherichia coli has been constructed in [19]. The bi-
stable switch forms an addressable cellular memory
unit and has implications for biotechnology, biocom-
puting and gene therapy.
Considering its biological importance, significant re-

search has been devoted to explaining the physical ori-
gin of bistability, to develop necessary conditions for its
existence and to construct algorithms for its detection.
In particular positive feedback and ultrasensitivity have
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been proposed as two necessary conditions for the
physical appearance of bistability [20]. It is also well
known that adding negative feedback to positive feed-
back can turn bistability into oscillations [21]. The the-
ory of chemical reaction network (CRN) [22] proposes
conditions for bistability by making use of the proper-
ties of a species-reaction graph. Angeli et al. [23] pre-
sented a graphical method to detect bistability for
biological positive-feedback systems. Under some mild
assumptions, if the open-loop response (when the posi-
tive feedback loop is opened) is monotone and has a
sigmoidal shape, the system is guaranteed to be bistable
for some values of the feedback gains. Finally, Wilhelm
[24] proposed a smallest chemical reaction system with
bistability. Two reactions constitute a positive feedback
loop; a third reaction filters out small stimuli, and a
fourth reaction prevents explosions. Analysis is based
on the method of Instability Causing Structure Analysis
(ICSA) which is based on the Jacobian of the reaction
network. Recently a new method was proposed to study
multistationarity and bistability of chemical reaction
networks with few chemical complexes. The method
uses polynomial systems with few distinct monomials
and Gale duality [25].
The method of Gröebner bases was introduced by Buch-

berger in [26, 27] as a powerful computational tool to ad-
dress fundamental questions in commutative algebra
(polynomial ideal theory, algebraic geometry). Since its ori-
ginal inception, the method of Gröebner bases was applied
to simplify the algorithmic solution of many difficult prob-
lems expressed in terms of multivariate polynomials. These
include [28]: solving polynomial equations, coding theory,
integer programming, partial differential equations, sym-
bolic summation, graph theory and statistics. Today explor-
ing its applicability to many diverse fields such as
computational biology [29], chemical kinetics [30–32] and
systems theory [33–35] is an active area of research.
The objective of this work is to explore the method of

Gröebner bases to analyze the bistability and output
switchability of biological signaling systems. The utility
of the method is demonstrated using several examples
from the cellular signaling systems literature. Next we
give working definitions and examples of bistability and
output switchability.

Bistability
Consider the dynamical system Sf expressed as DAE
(Differential Algebraic Equations):

x: ¼ h x; yð Þ x∈Rn ð1Þ
0 ¼ yþ g xð Þ y∈Rm ð2Þ

where Eq. (1) represents the dynamic mass balances with
the nonnegative concentrations of species x and y. Eq.

(2) is a set of algebraic constraints due to the species
conservation laws. Substituting y from Eq. (2) into Eq.
(1), one gets:

x: ¼ f xð Þ x∈Rn ð3Þ

The steady-states of Sf are the solutions of 0 = f(x).
A bistable system is a system with two attractors.

In general, a plethora of interesting possibilities with
different attractors and separatrices can result in dif-
ferent types of bistabilities which coexist in the par-
ameter space of interest. Some of the popular
bistabilities are between two stable fixed points [10,
11, 14], between a stable fixed point and a limit-cycle
oscillator [15–17]; or between two stable periodic or-
bits [36, 37]. In this paper, we adopt the following
definition for bistability:
Definition 1: The dynamical system Sf is state bistable

if it has three nonnegative distinct real steady-states (ss)
for the state x, two of which are stable ( x1;Sss and x3;Sss Þ
and one is unstable x2;Uss where the superscript S and U
denote stable and unstable, respectively.
We refer to such bistability as fixed-point bistability to

distinguish it from other types of bistabilities mentioned
above. Each stable steady-state (or fixed-point) has its
own basin of attraction (i.e. the set of initial conditions
that asymptotically converge to that steady-state). These
basins are separated with a boundary defined by a separ-
atrix. Most often, the separatrix contains a steady-state
that is an unstable saddle-point [11]. Upon perturbations
in the medium reflected by the parameter changes in the
model, other types of attractors like limit cycles can be
born from these fixed points via Hopf bifurcation [36].
For example, it was shown in [38] that bistability is a ne-
cessary condition for the emergence of oscillations in
the MAPK cascade signaling.
Throughout the paper bistability will mean fixed-point

state bistability.

A one-dimensional example
Figure 1 shows a bistable system resulting from a one-
dimensional ordinary differential equation dx

dt ¼ −x3 þ 6
x2−11xþ 6: There are three positive fixed points at x =
1, 2 and 3 . The unstable fixed point at x= 2 separates
the basins of attraction of the stable fixed points. The
trajectories starting from the initial conditions to the left
of 2 approach the stable fixed point x = 1, and the trajec-
tories starting from the initial conditions to the right of
2 approach the stable fixed point at x = 3.

A two-dimensional example
In [24] a smallest chemical reaction system with
bistability was proposed. The model consists of the
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following two-component mass-action kinetic ODE
system:

dx
dt

¼ 16y−x2−xy−1:5x ð4Þ

dy
dt

¼ x2−8y ð5Þ

The system has three steady-states, two of which are
stable at (0, 0), (6, 4.5) and an unstable steady-state
which is a saddle-point at (2, 0.5). Figure 2 shows the
phase plane with trajectories emanating from different
initial conditions. Due to the saddle-point, the phase
plane is divided into two basins of attraction which

contain the trajectories approaching the two stable
steady-states.
Bistability exits in models with higher dimensions

n > 2 as well. For example, in [11] existence of a sad-
dle point and two stable fixed points are highlighted
with an apoptosis model that consists of 8 states. The
authors present a local analysis to identify the saddle
point that helps to understand the global properties
of biological switches.

Output switchability
Many biological events are binary with certain variables
switching on and off between active and inactive states
to perform important biological functions. For a bistable
dynamical system Sf, one is often interested in the
switching response of the concentration of some species.
Therefore, we include an output variable y in the model
and the analysis. In general output y is taken to be any
of the system states xi i = 1 :m. Without loss of general-
ity, the concentration of the first species, or the first
state variable x1, is defined as the output. The new dy-
namical system with output x1 is denoted by S f ;x1 and
expressed as:

˙x: ¼ f xð Þ x ¼ x1x2…::xn½ �T

y ¼ x1

Next, we introduce the following definition:
Definition 2: A bistable dynamical system S f ;x1 is

called output switchable if the steady-state output values
x1, ss are different at the two stable steady-states of the
state x i.e. at (x1;Sss and x3;Sss Þ.

Fig. 1 Bistability of a one-dimensional system. Two stable fixed
points (red circles) separated by an unstable saddle-point
(green circle)

Fig. 2 Phase-plane of a two-dimensional bistable system. The system has two stable fixed points (red circles) and an unstable saddle-point (green
circle). Trajectories are separated into two basins of attraction of the stable steady-states
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Differentiation between state bistability (Definition
1) and output switchability (Definition 2) is not made
in the literature. For a one-dimensional system with a
single output, bistability implies output switchability.
However, for higher dimensional systems, bistability
does not necessarily guarantee switchability for every
output variable or state variable xi i = 1 :m. Theoretic-
ally, it is possible to have an output subspace contain-
ing certain variables that do not switch.

Results
The method of Gröebner bases (see Methods section) is
applied to several systems to detect biological switches.

a. Bistable systems with switchable outputs.

Example 1. In [24] a smallest bistable system is given
that consists of the following four reactions:

S þ Y →
k1 2X:

2X→
k2 X þ Y

X þ Y →
k3 Y þ P

X→
k4 P

The system is described by a two-component mass-
action ODE system:

x: ¼ f 1 x; yð Þ ¼ 2k1y−k2x
2−k3xy−k4x ð6Þ

y: ¼ f 2 x; yð Þ ¼ k2x
2−k1y ð7Þ

with k1 = 8, k2 = k3 = 1, k4 = 1.5.
Since the steady-states are determined by the solutions

f1(x, y) = 0 and f2(x, y) = 0, the Gröbner basis is computed
for these two polynomials using the reduced Gröebner
basis program gbasis available in the Symbolic Math
Toolbox of MATLAB:

g1 xð Þ ¼ 8x2−x3−12x ð8Þ

g2 x; yð Þ ¼ x2−8y ð9Þ
Solving this triangular system and checking the eigen-

values of the Jacobians confirms that the system is bi-
stable with three steady states:

x1;Sss ; x
2;U
ss ; x3;Sss

� � ¼ 0
0

� �
;

2
0:5

� �
;

6
4:5

� �

Considering x as the output, the system is output
switchable since g1(x) satisfies the necessary and suffi-
cient conditions (Eqs. 59–61) for switchable outputs

given in the Methods section. Plot of g1(x) with its three
distinct roots is given in Fig. 3.
Note that the inverse problem of given a “desirable”

univariate basis polynomial such as (8), reconstruction
of a corresponding reaction network is possible although
this network is not unique in general. The cubic deple-
tion term −x3 suggests a bilinear term (−xy) where y is
proportional to x2 so that (−xy) = − x3 . This can be real-
ized by the following set of reactions:

S þ Y →
k1 2X

2X→
k2 X þ Y

X þ Y →
k3 Y þ P

Steady-state mass balance for y gives y ¼ ðk2k1Þx2 ¼ x2
8 :

The third reaction provides the cubic depletion rate −k3

xy ¼ −k3ðk2k1Þx3 ¼ − x3
8 . Without this reaction the system

can not have three steady-states and bistability is not
possible. The first two reactions also provide the quad-
ratic production term x2 for the species x. Finally, a first
order reaction:

X→
k4 P

gives the linear depletion rate −1.5x. Summing up all
the terms yields

g1(x) = x2− x3
8 −1:5x which has the same solutions as

the targeted univariate basis (8). Note that in [24] the
above smallest bistable system is constructed in a similar
way but without introducing the Gröebner basis.
In order to check if the output y is switchable, we

change the lexicographic monomial order of the un-
known variables (x, y) and recompute the Gröebner basis
where the univariate polynomial is now a function of y:

g1 yð Þ ¼ −2:25yþ 5:y2−1:y3 ð10Þ

g2 x; yð Þ ¼ x−4:33yþ 0:66y2 ð11Þ

Since g1(y) satisfies the conditions for switchable out-
puts (Eqs. (59–61)), the system is switchable in the out-
put y as well.
Example 2. Consider the Edelstein reaction scheme

analyzed in [29] and given in Fig. 4.
The system is described by the following DAEs:

x1
: ¼ k1x1−k2x

2
1−k1x1x2 þ k4x3 ð12Þ

x2
: ¼ k4x3 þ k5x3−k3x1x2−k6x2 ð13Þ
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x2 þ x3 ¼ c ¼ 30: ð14Þ
Substituting the parameter values (see Fig. 4) and

eliminating x3, one gets:

x1
: ¼ 8:5x1−x21−x1x2−x2 þ 30 ð15Þ
x2
: ¼ −x1x2 þ 60−2:2x2 ð16Þ

The Gröbner basis is calculated as

g1 x1ð Þ ¼ 6:3x21 þ 6−11:3x1−x31 ð17Þ
g2 x1; x2ð Þ ¼ −x2 þ 0:833x21−7:0883x1 þ 25 ð18Þ

The system is bistable with three steady states for the
state x:

x1;Sss ; x
2;U
ss ; x3;Sss

� � ¼ 1
18:75

� �
;

1:63
15:62

� �
;

3:66
10:23

� �

In the Methods section we derive that for a bistable sys-
tem to have a switchable output, the rate of generation of
the output must consist of a quadratic and a constant
term, and the rate of depletion must consist of a cubic
and a linear term. Considering x1 as the output in the
current example, the system is output switchable since
g1(x1) has quadratic and constant generation, and linear
plus cubic depletion terms (see (17)), and it satisfies the
necessary and sufficient conditions (Eqs. 59–61). The dy-
namic output responses of the original system (x1, f) and
the univariate basis polynomial dynamical system (x1;g1 )
are compared in Fig. 5 for one initial condition. Trajector-
ies converge to the same stable steady-state.

b. Bistable systems with unswitchable outputs.

It is difficult to find physical examples in the literature
for bistable systems with unswitchable output(s). There
are several reasons for this seemingly lacking data. First,
only the switching variables are analyzed to show bist-
ability; therefore, even if there are some outputs (or
states) that do not switch, they are not reported. Second,
it is possible that some outputs lose their switchability
under abnormal conditions only (e.g. disease states due
to mutations etc.) that create the right conditions for the
emergence of unswitchable output(s). As a result, no dis-
tinction is made in the literature between bistability and
output switchability. However, as we have presented
above, the two concepts are not the same. In addition, at
a practical level, for a complex system with many states,
it is plausible for some output(s) of a bistable sytem to
keep the same steady-state values as the system state
switches from one stable steady-state to another. These
special outputs can be acting as chaperons that change
their values in transient only in order to help the other

Fig. 3 The univariate basis polynomial for Example 1. Two stable
fixed points (red circles) separated by an unstable saddle-point
(green circle)

Fig. 4 Edelstein Chemical Reaction Network [27]. Parameters: k1 = 8.5, k2 = k3 = k4 = k5 = 1, k6 = 0.2
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outputs to switch, and when they complete their tasks
they return to their steady-states.
Example 3. The smallest bistable system whose output

is not switchable is given by a two dimensional system:
z: ¼ f ðz; yÞ

y: ¼ h zð Þ−y

which satisfies the following conditions at steady-state:

f z; h zð Þð Þ ¼ 0 has three distinct nonnegative solutions for z and

y ¼ h zð Þ has two repeated solutions both of which belong to the stable subspace:

For example, the following ODEs meet the above
conditions:

Z
: ¼ f 1 Z;Yð Þ ¼ −Z3 þ 6Z2−11Z þ 6 ð19Þ

Y
: ¼ f 2 Z;Yð Þ ¼ −Y−Z2 þ 4Z þ 6 ð20Þ

In this example we construct a reaction network that
satisfies (19) and (20). Consider the reaction network
shown in Fig. 6.
The conservation equations with mass action kinetics

are given by two ODEs and one algebraic equation:

Z
: ¼ −k1XZ þ k2X−k4Z3 þ k5XZ

2−k6YZ−k7Z þ k8XZ

ð21Þ
Y
: ¼ k1XZ þ k2X−k3Y ð22Þ
X þ Z ¼ c ð23Þ

Using the values for the rate constants given in Table 1
and eliminating X via (23) gives:

Z
: ¼ f 1 Z;Yð Þ ¼ −Z3 þ 6Z2−11Z þ 6 ð24Þ
Y
: ¼ f 2 Z;Yð Þ ¼ −Y−Z2 þ 4Z þ 6 ð25Þ

The Gröebner basis G of (f1, f2) is calculated using the

GroebnerBasis program under Polynomial Algebra of

MATHEMATICA and the triangular system of basis

polyniomials is given by (compare with Eq. 58):

g1 Yð Þ ¼ 90−19Y þ Y 2 ð26Þ
g2 Y ;Zð Þ ¼ 18−9Z−2Y þ ZY ð27Þ
g3 Y ;Zð Þ ¼ −6−4Z þ Z2 þ Y ð28Þ

Solving this triangular system of equations yields

three distinct steady-state solutions for the state x

Fig. 5 Comparison of the output responses of the original system
(x1, f) and the univariate dynamical system (x1;g1 ). Responses start
from an initial condition and converge to one of the stable
fixed points

Fig. 6 Example 3. X + Z = c (constant) is the conserved moiety
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¼ Y
Z

� �
=

9
1

� �
;

10
2

� �
;

9
3

� �
as shown in Fig. 7.

Therefore, the necessary condition NC for bistability
stated in the Methods section (see Eq. 58) is satisfied.
Next, one proceeds with the calculation of the Jaco-
bians to establish sufficiency. Both eigenvalues of the

Jacobian are negative at steady-states
9
1

� �
;

9
3

� �
in-

dicating that these are the stable steady-states; one

eigenvalue is positive for
10
2

� �
indicating that this

is the unstable steady-state. Therefore, the system is
bistable.
g1(Y) = 0 has two solutions, one less than the total

number of steady-states for the state. Therefore, one of

the roots Y = 9 is necessarily repeated in the steady-state

solutions for the state: x ¼ Y
Z

� �
=

9
1

� �
;

10
2

� �
;

9
3

� �
.

Since the repeated roots belong to the stable steady-state

solutions, the system is not switchable in the output Y.

Figure 7 shows the state trajectories x(t) approaching the

stable steady-states separated by the middle unstable

fixed point at
10
2

� �
.

Figure 7 shows the state trajectories x(t) approaching
the stable steady-states separated by the middle unstable

fixed point at
10
2

� �
. However, unlike Z and X = c-Z, Y

is not a switchable output since its value remains the
same (equal to 9) at the stable steady-states.
The reason for Y not to be a switchable output can be

physically explained as follows.
The mass balance for Y is determined by the following

set of reactions (see Fig. 6):

X þ Z→
k1 Y þ 2X

X→
k2 Y þ Z

Y →
k3 P

and the constraint X + Z = c.
The first two reactions produce Y and the third reac-

tion depletes Y. Conservation of Y is given by the follow-
ing ODE:

Y
: ¼ k1 c−Zð ÞZ þ k2 c−Zð Þ−k3Y ð29Þ

The first term k1(c − Z)Z is the rate of production
of Y by the first reaction, and the second term k2(c −
Z) is the rate of production of Y by the second reac-
tion. The last term k3 Y is the rate of consumption of
Y which is equal to the sum of the two production
rates at steady-state:

k3Y ¼ k1 c−Zð ÞZ þ k2 c−Zð Þ ð30Þ
The total production rate of Y is maximum at the

middle unstable steady-state as shown in Fig. 7. At
the stable steady-state to the left of the maximum,
the first production rate is greater than the second
production rate k1(c − Z)Z > k2(c − Z) and the total
production rate is 9. At the stable steady-state to the
right of the maximum, the reverse is true i.e. k1(c −
Z)Z < k2(c − Z) but the total production rate k3Y re-
mains the same. Since k3 = 1 (see Table 1), k3Y = Y = 9
at the stable steady-states; thus, it cannot switch. The
above result shows that, if an output species (Y) is
produced by two reactions and the sum of the reac-
tants is constant X + Z = c; then, for some values of
the rate constants, the total production rate can re-
main the same at the stable steady-states leading to
unswitchability of Y while both X and Z can switch.
Example 4. Consider the reaction network given in

Fig. 8.
The conservation equations with mass action kinetics

are given by:

Table 1 Parameters for the reaction network of Example 3

k1 k2 k3 k4 k5 k6 k7 k�8 c

1 1.1623 1 0.0156 1 0.0156 5.0983 0.1 5.1623

* constant concentration of the species S is lumped into k8 ¼ ek8S

Fig. 7 Bistable system with an output that does not switch at
steady-state. Three steady-states are marked by black circles. The
middle one at Z = 2, Y = 10 is the unstable steady-state. Trajectories
starting from different initial conditions converge to the stable
steady-state, where the output (Y) value does not change (i.e. Y = 9).
The red curve is the production rate of Y which is the locus of
steady-states for Y as a function of Z
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Z
: ¼ v−k1Z2−k4YZ−k7Z3−k8Z þ k9Z

2 ¼ f 1 Y ;Zð Þ
ð31Þ

X
: ¼ k1Z

2−k2X ¼ f 2 X;Zð Þ ð32Þ

Y
: ¼ −k3XY þ k4YZ−k5Y 2 þ k6Y ¼ Y f 3 X;Y ;Zð Þ

ð33Þ

The parameter values are given in Table 2.
At steady-state Yf3(X, Y, Z) = 0 and one solution is

Y = 0, but for this value of Y, there is only one real
positive solution for Z at 6.56; therefore, the system
cannot be bistable. Thus, we consider the other solu-
tions that satisfy f3(X, Y, Z) = 0. If Y is designated as
the output variable, the univariate polynomial in Y
does not exist. Choosing Z as the output variable and
using the lexicographic order (X, Y, Z), the Gröbner
basis is computed for the polynomials f1(Y, Z), f2(X,
Z), f3(X, Y, Z) and the triangular system of basis poly-
niomials is given by

g1 Zð Þ ¼ 24−26Z þ 9Z2−Z3 ¼ 0 ð34Þ

g2 Z;Xð Þ ¼ X−Z2 ¼ 0 ð35Þ

g3 Z;Yð Þ ¼ −Y−Z2 þ 6Z þ 10 ð36Þ

The steady-state solutions for the state are easily com-

puted: x ¼ ðx1;Sss ; x
2;U
ss ; x3;Sss Þ ¼

Z
X
Y

0
@

1
A ¼

2
4
18

0
@

1
A;

3
9
19

0
@

1
A;

4
16
18

0
@

1
A: The system is bistable as determined by the

Jacobians.
The univariate basis polynomial (34) satisfies the out-

put switchability conditions; thus, the system is switch-
able in output Z. Due to (35) it is switchable in X as
well. But it is not switchable in the output Y, since the
solution Y = 18 determined from (36) is repeated in the
stable steady-states. This is also shown in the bifurcation
diagrams in Fig. 9.

c. Cellular signaling pathways: AKT, RAS and MAPK
signal transduction systems.

Example 5. AKT signaling pathway
AKT signaling pathway plays a key role in the

most significant metabolic action of insulin, which is
the glucose uptake. Insulin resistance can develop
through impairments in the signaling events involved
in the activation of AKT. We use the following min-
imal dimensionless two-state model which we have
derived earlier [39] from the original model pre-
sented in [6]:

x1
: ¼ −

βx1x2
K 1 þ x1

þ k2
E2 1−x1ð Þ

K 1 þ 1−x1ð Þ ð37Þ

x2
: ¼ δ

β

� �
k2
k1

� �
E2 λþ θ 1−x1ð Þ−δx2 ð38Þ

where the states are the dimensionless concentrations
x1 = pAKT (active AKT) and x2= pIRS (insulin recep-
tor substrate). The input is the amount of insulin
represented by λ. The parameter values are taken
from [39].

Fig. 8 Reaction network for Example 4

Table 2 Parameters for the reaction network of Example 4

k1 k2 k3 k4 k5 k6 k7 k8 k9 v

1 1 0.166 1 0.166 1.667 2 16 16 24
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k1 ¼ k2 ¼ 0:909; β ¼ 1; δ ¼ 1; E2 ¼ 1;K 1 ¼ K2

¼ 0:05; d1 ¼ 0:909; θ ¼ 0:99

Since the Gröebner basis is defined for polynomials,
the right-hand side of (37) is first converted to a rational
polynomial function so that (37) and (38) can be
expressed as:

x1
: = f 1ðx1;x2Þ

d1ðx1;x2Þ and x2
: = f2(x1, x2)

where both f1(x1, x2) and f2(x1, x2) are polynomials. Since
the steady-states are determined by the solutions f1(x1,
x2) = 0 and f2(x1, x2) = 0, the Gröbner basis is computed
for these two polynomials using MATHEMATICA, and
for the insulin level λ =0.4 it is given by:

g1 x1ð Þ ¼ 0:0505−0:5146x1 þ 1:4439x21−x
3
1 ð39Þ

g2 x1; x2ð Þ ¼ −1:39þ 0:99x1 þ x2 ð40Þ
Since g1(x1) given by (39) satisfies all the conditions for

three distinct roots (Eqs. 59–61), the output x1 = pAKT is
switchable, if the system is bistable. The necessary condition
NC for bistability is satisfied since the triangular system
(39)–(40) gives three steady-states:

x1;ss
x2;ss

� �
=

0:1689
1:2228

� �
;

0:310
1:083

� �
;

0:964
0:435

� �

The sufficiency of bistability (i.e. checking the stability
status of the three steady-states) is established by bifur-
cation analysis of eqs. (37)–(38) using XPPAUTO and is
given in Fig. 10. The stable and unstable branches show
that AKT is bistable for the range of λ between LP1 =
0.38 and λ = LP2 = 0.65. This confirms that the system is
indeed bistable for λ = 0.4 and output x1 = pAKT is
switchable.
In order for insulin to perform its function, AKT has

to switch between its inactive and active states. Activated
AKT (pAKT) enables the translocation of glucose
transporter-4 (GLUT-4) from cytosol to the plasma
membrane, thus glucose is taken into the cell.

The bistable behavior of pAKT is shown in Fig. 11.
pAKT resides on either its active or inactive stable state
depending on the initial condition.
The MAPK cascade is an integral part of the ERK (Extra-

cellular Signal-Regulated Kinase) signaling pathway which
plays a key role in cell cycle control. In the first stage of the
cascade, RAF (Rapidly Accelerated Fibrosarcoma) gets acti-
vated by RAS-GTP (Rat Sarcoma Guanosine Triphos-
phate), and it triggers the second stage where MEK
(Mitogen activated protein kinase kinase) gets double phos-
phorylated [2, 38]. This is followed by the activation ERK in
the last stage. Here we will focus on the second stage which
is shown in Fig. 12.
The two-site MAPK phosphorylation and dephosphor-

ylation cycle with a distributive kinetic mechanism for
the kinase and phosphatase possesses the necessary
properties to exhibit bistable response [2, 40]. MEK and
MEKp compete for the same kinase (RAF) for phosphor-
ylation; MEKpp and MEKp compete for the same phos-
phatase (MEK P’ase) for dephosphorylation. Through
this competition, MEK inhibits the production of
MEKpp, and MEKpp inhibits the production of MEK.
This double inhibition results in a positive feedback loop
which leads to bistability under the right set of operating
conditions or parameter values. Next we detect and con-
firm this bistability by using the method of Gröebner
bases.
The model is taken from [40]:

x: ¼ v2−v1 ð41Þ
y: ¼ v3−v4 ð42Þ
1−x−y−z ¼ 0 ð43Þ

ðx; y; zÞ are the dimensionless concentrations MEK
MT

;
MEKpp

MT
and MEKp

MT
, (respectively)

MT is the total concentration of MEK. The rates are
given by:

Fig. 9 a. Bifurcation of Z with respect to v. Red and blue branches are the unstable and stable solutions. At v = 24, there are three distinct
solutions for Z (stable, unstable, stable). b. Bifurcation of Y with respect to v. Red and blue branches are the unstable and stable solutions. At v =
24, there are two repeated stable solutions for Y at 18 (shown by black circle) and one unstable solution at 19
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v1 ¼
Vm1

x
Ks1

1þ x
Ks1

þ z
Ks3

v2 ¼
Vm2

z
Ks2

1þ y
Ks4

þ z
Ks2

v3 ¼
Vm3

z
Ks3

1þ x
Ks1

þ z
Ks3

v4 ¼
Vm4

y
Ks4

1þ y
Ks4

þ z
Ks2

with the parameters:

Ksi ¼ di þ kið Þ= MT�aið Þ i ¼ 1 : 4

Vmi ¼ kic i ¼ 1; 3

Vmi ¼ kip i ¼ 2; 4

where c and p are the concentrations of RAF kinase and

the MEK phosphatase, respectively. Pertinent data is
listed in Table 3.
First (41)–(43) are re-expressed as:

x: ¼ v2−v1 ¼ f 1 x; y; zð Þ
p1 x; y; zð Þ ð44Þ

y: ¼ v3−v4 ¼ f 2 x; y; zð Þ
p2 x; y; zð Þ ð45Þ

0 ¼ 1−x−y−z ¼ f 3 x; y; zð Þ ð46Þ
The Gröebner basis was obtained using MATHEMATICA:

g1 yð Þ ¼ −y3 þ 1:08y2−0:1366yþ 4:54x10−4

g2 x; yð Þ ¼ x−0:9142−15:99yþ 142:15y2−132:66y3

g3 y; zð Þ ¼ z−0:085þ 16:99y−142:15y2 þ 132:66y3

which can be solved easily to give three solutions:
y
x
z

0
@

1
A ¼

0:0033
0:9655
0:0312

0
@

1
A;

0:1421
0:6969
0:1610

0
@

1
A;

0:9347
0:0065
0:0588

0
@

1
A . Evalu-

ation of the eigenvalues of the Jacobians shows that the
system is bistable. Since the univariate basis polynomial
g1(y) meets the conditions for three distinct roots, the
system is switchable for the output

y ¼ MEKpp

MT
as well. In fact, all the states are switchable.

Example 7. RAS signaling
RAS, which is a small GTP (Guanosine Triphosphate)

binding protein, serves as an important molecular switch
in signaling pathways. For example, in ERK signaling
pathway, RAS interacts with the ShC-Grb2-SOS com-
plex, and it is transformed to its active conformation by
exchanging GDP (Guanosine Diphosphate) for GTP. Ac-
tive Ras-GTP starts the sequential phosphorylation of
the MAPK pathway that consists of the RAf-MEK-ERK

Fig. 11 Bistability of the AKT signaling pathway. AKT system has two
stable fixed points (red circles) and an unstable saddle-point (green
circle). Trajectories are separated into two basins of attraction of the
stable steady-states. λ = 0.4

Fig. 10 Bifurcation diagram for AKT showing the stable and unstable branches. LP1 and LP2 are the turning points. The bistable region is for
λ between LP1 = 0.38 and λ = LP2 = 0.65
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signaling cascade. Catalytic activation of RAS by the SOS
(Son of Sevenless) complex Shc-Grb2-SOS while RAS-
GTP is bound to its allosteric site creates a positive loop
resulting in a bistable switching response of Ras-GTP [41].
The model is taken from [41] and it is converted to a di-
mensionless form. It consists of the following equations:

RT½ �: ¼ −βk2 S½ � RT½ � þ k−2 SRT½ �

þ kcat4 α RD½ � SRD½ �
K4m þ β RD½ � þ kcat3 α RD½ � SRT½ �

K 3m þ β RD½ � −
kcat5 RGAP½ � RT½ �
K5m þ β RT½ �

ð47Þ
¼ f 1 S½ �; RT½ �; RD½ �; SRT½ �; SRD½ �ð Þ=d1 S½ �; RT½ �; RD½ �; SRT½ �; SRD½ �ð Þ SRT½ �:

¼ βk2 S½ � RT½ �−k−2 SRT½ � ¼ f 2 S½ �; RT½ �; SRT½ �ð Þ ð48Þ

SRD½ �: ¼ βk1 S½ � RD½ �−k−1 SRD½ � ¼ f 3 S½ �; RD½ �; SRD½ �ð Þ
ð49Þ

1− RD½ �− RT½ �− α
β

� �
SRD½ �− α

β

� �
SRT½ � ¼ f 4 RT½ �; RD½ �; SRD½ �; SRT½ �ð Þ ¼ 0

ð50Þ

1− S½ �− SRD½ �− SRT½ � ¼ f 5 S½ �; SRD½ �; SRT½ �ð Þ ¼ 0 ð51Þ

The variables are defined as follows: S is the Shc-
Grb2-SOS complex; RT is RAS-GTP; RD is RAS-GDP,
SRD and SRT are the complexes formed by the reactions;
[.] denotes the concentration. The total concentration of
S molecules is α, and the total concentration of RAS
molecules is β. The values for the parameters are given
in Table 4.
The model has three steady-states, two of which are

stable representing the active and inactive states of RAS,
and a saddle point with a positive eigenvalue. BistabilityTable 3 Parameter values for MAPK

a1 0.0204

a2 0.0493

a3 0.0564

a4 0.0326

d1 10.386

d2 2.716

d3 10.088

d4 0.813

k1 7

k2 11.13

k3 3.57

k4 1.13

MT 5128 nM

c 0.6 nM

p 1 nM

Table 4 Parameter values for RAS

β 200 nM

α 10 nM

k1 1.125e − 4 nM−1 s−1

k2 1.0625e − 4nM−1 s−1

k−1 3s−1

k−2 0.4s−1

kcat3 1.75s−1

kcat4 0.003s−1

kcat5 0.1s−1

RGAP 0.1 nM

K3m 2.7388e3 nM

K4m 1.52304e4nM

K5m 17.869nM

Fig. 12 Dual phosphorylation/dephosphorylation cycle of protein MEK
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is illustrated in Fig. 13. Trajectories first converge to the
unstable manifold, and then they are attracted to either
of the two steady-states.
MATLAB computes the univariate basis polynomial as

a cubic polynomial:

g1 RTð Þ ¼ −RT
3 þ 0:912RT

2−0:07RT þ 4:05x10−6

with three distinct roots, thus RT is a switchable output.

Discussion
We have developed a new method to detect and analyze
biological switches by simultaneously treating bistability
and output switchability using the Gröebner bases. As
demonstrated by several examples, the proposed meth-
odology offers the following:

� First the method provides computational advantages
due to its nice properties. Specifically, the method of
Gröebner bases to solve polynomial systems can be
seen as a multivariate, non-linear generalization of
the Gaussian elimination for linear systems. Multi-
stationarity is easily checked by solving a triangular
set of equations which facilitates the root finding.
Bistability is confirmed by local stability analysis
using the Jacobian which is also straightforward.

� It provides a theoretical framework and a systematic
methodology that analyzes both bistability and
output switchability simultaneously. Output
switchability conditions follow immediately from the
univariate Gröebner polynomial basis and are easy
to check. We show by Examples 3 and 4 that some
bistable systems can have outputs that do not switch
their steady-states.

� The univariate Gröebner basis polynomial provides
useful biological insight which can help in the design
of biological switches. A bistable dynamical system
with output x, is output switchable, if its univariate
basis polynomial g1(x) = − x3 + bx2 − cx + d with b >

0, c > 0, d ≥ 0 has three distinct nonnegative roots.
This result provides some biological insight. The
terms −x3 − cx represent the rate of depletion of
species x, and the terms bx2 + d represent the rate of
production of species x. This suggests that a
biological switch for an output species x can be
designed by constructing a reaction network (with
its corresponding ODEs) whose univariate Gröbner
basis polynomial in x has the above types of
depletion and production terms. In fact Examples 1,
3 and 4 were constructed in this fashion.

Conclusions
We have presented a new method to detect biological
switches by analyzing their bistability and output switch-
ability properties. The methodology is based on the
Gröebner bases. Conditions are established to make the
connections between the Gröebner bases, bistability and
output switchability. Various examples are given to elu-
cidate the theoretical results. We show that the method
can analyze bistability and output switchability while
providing useful insight into the underlying mechanisms.
The method is easy to apply since significant software
such as MAPLE, MATLAB and MATHEMATICA exists
to perform the Gröebner bases computation.
It goes without saying that high dimensionality can

pose computational problems as in other methods. As a
remedy, techniques such as lumping, network complex-
ity reduction can be used to reduce the number of ODEs
before the Gröebner basis calculation is carried out. In
general the method can be applied to other types of
polynomial differential equations derived from data in-
stead of first principles. Such potential models include
the nonlinear polynomial regression models.

Methods
Bistability and output switchability analysis is based on
the Gröebner bases.

Fig. 13 Bistability of a three-dimensional RAS model. The system has two stable fixed points (blue stars) and an unstable saddle-point (magenta
circle). Trajectories reach the stable fixed points after following the unstable manifold of the saddle point. S is the Shc-Grb2-SOS complex. RT is
RASGTP. SRT is the SOS-RASGTP complex
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The Gröebner bases
Any finite set of multivariate polynomials F can be trans-
formed by an algorithm (see Buchberger’s algorithm
[26]) into another set of basis polynomials, called the
Gröebner basis G. Many problems that are difficult to
handle by the original set of polynomials can be easily
solved by using the method of Gröebner bases due to its
“nice” properties. Readily available computer software
such as MAPLE, MATHEMATICA and MATLAB are
equipped with the computational machinery of the
Gröebner bases. The most basic definitions and proper-
ties of the Gröebner bases are presented in the Add-
itional file 1. In this paper we explore the Gröebner
bases within the context of bistability analysis. To this
end, we state some of the useful properties of the Gröeb-
ner bases for solving polynomial equations.

Solution of polynomial equations by the Gröebner bases
The method of Gröebner bases to solve polynomial sys-
tems can be seen as a multivariate, non-linear
generalization of the Gaussian elimination for linear sys-
tems [42].
The ideal I = < f1, f2, . . , fn> is the set of all possible

linear combinations of fi ′ s where the coefficients are
polynomials pi (Additional file 1). Since F = (f1, f2, , .., fn)
and its Gröebner basis G generate the same ideal, they
have the same solutions [42, 43]. The advantageous
property of the Gröebner basis G is that it yields a tri-
angular system which conveniently seperates the vari-
ables and drastically simplifies the calculation. This
triangular system is like the reduced row echelon form
obtained by pivoting in Gaussian elimination in the case
of linear systems.
Consider the steady-state solutions of the dynamical

system (Eqs. 4–5) which satisfy following set of polyno-
mial equations:

f 1 ¼ 16y−x2−xy−1:5x ¼ 0 ð52Þ

f 2 ¼ x2−8y ¼ 0 ð53Þ

The Gröebner basis G for these two polynomials with
respect to the lexicographic ordering is given in a tri-
angular form:

g1 xð Þ ¼ 12x−8x2 þ x3 ð54Þ

g2 x; yð Þ ¼ −0:125x2 þ y ð55Þ

First the univariate basis polynomial g1(x) is easily
solved for its roots x: (0, 6,2). Next these x values are
substituted into the bivariate basis g2(x, y) to determine
its corresponding roots y: (0,4.5,0.5). Thus, the solutions
(x, y) of the original set of polynomials F are obtained:
(0, 0), (6,4.5) and (2,0.5).

Detection of Bistability
Consider the dynamical system Sf given by:

x: ¼ f xð Þ with x ¼ x1x2…::xn½ �T ð56Þ
where the steady-state solutions satisfy f(x) = 0, and

they are denoted as

xiss ¼ ½xi1;ss xi2;ss……:xin;ss �T i ¼ 1 : m with m the num-
ber of solutions.
Let G = [g1(x1), g(x)] be the Gröebner basis for the ideal

I = < f1, f2, …, fn>, where g1(x1) is the univariate basis
polynomial, and g(x) is the vector of remaining polyno-
mials arranged in triangular form:

g xð Þ ¼ g2 x1; x2ð Þ g3 x1; x2; x3ð Þ…::gt x1; x2; x3; ::; xnð Þ� �
:

ð57Þ

A necessary condition for bistability (NC)
The dynamical system Sf is bistable only if the following
set of equations have three distinct real nonnegative so-
lutions ðx1ss; x2ss; x3ssÞ for the state x:

g1 x1ð Þ ¼ 0
g2 x1; x2ð Þ ¼ 0

g3 x1; x2; x3ð Þ ¼ 0
:

gt x1; x2; x3; ::; xnð Þ ¼ 0

ð58Þ

Necessity follows from the working definition of bist-
ability which requires three distinct steady-state solu-
tions for the state vector x, and the fact that the steady-
state solutions of Sf and the solutions of the Gröebner
basis polynomials (58) are the same. Moreover, for a
zero-dimensional ideal, the triangular structure in the
Gröebner basis always exists [42]. For Gröbner bases,
unlike other triangular systems, it is guaranteed that
each partial solution can be extended to a full solution.
This means that every solution x1 of the first polynomial
can be extended to a solution (x1, x2) of the polynomials
in x1 and x2, and each of these solutions can be further
extended to a solution (x1, x2, x3) of the polynomials in
x1, x2, x3, etc.
It is important to note that bistability cannot be de-

tected by checking the number of solutions of the uni-
variate basis polynomial g1(x1) alone but the whole basis
must be considered. This follows from the fact that the
number of solutions of g1(x1) = 0 can be less than the
number of solutions for the state x.
Systems that fail to meet the necessary condition

cannot be bistable; thus, they are easily eliminated
from further consideration. However, satisfying the
necessary condition does not guarantee bistability.
Further tests should be applied to confirm it. The
most common approach is to compute the
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eigenvalues of the Jacobian of f(x). The Jacobian
matrix is obtained by linearizing the dynamical system
Sf at its steady-states xiss:

J i ¼ ∂ f xð Þ
∂xT xiss

����
A steady-state xiss of the dynamical system Sf is

stable if all the eigenvalues of Jacobian matrix Ji have
negative real parts. The steady-state is unstable if at
least one of the eigenvalues has a positive real part
[44]. Bistability can be easily ascertained by checking
the stability status of each of the three distinct
steady-states ðx1ss; x2ss; x3ssÞ of Sf.

Detection of switchable outputs
A bistable dynamical system with output x1; S f ;x1 ; is out-
put switchable, if its univariate basis polynomial satisfies
the following conditions:

g1 x1ð Þ ¼ −x13 þ bx1
2−cx1 þ d ð59Þ

b > 0; c > 0; d≥0: ð60Þ

D ¼ −27d2 þ 18bcd−4c3−4b3d þ b2c2 > 0 ð61Þ
These conditions guarantee that g1(x1) has three dis-

tinct nonnegative roots so that, the output x1 can take
different values when the state x changes between its
stable steady-states. Existence of three distinct nonnega-
tive roots can be shown as follows. According to the
Descartes’ rule of signs, the maximum number of nega-
tive real roots of a polynomial f(x) is equal to the num-
ber of changes in sign of the coefficients of the terms of
f(−x). When (60) is true, there are no sign changes in the

coefficients of g1(−x1) in (59); thus, g1(x1) can have max-
imum three nonnegative roots. The inequality (61) is the
cubic discriminant condition which guarantees that
there are three distinct real roots. The general graph of
g1(x1) satisfying conditions (59)–(61) is shown in Fig. 14.
If the univariate basis polynomial g1(x1) does not have

three distinct roots; then, the bistable system S f ;xi is
switchable in its output xi, only if one of the repeated so-
lutions belongs to the unstable steady-state solution x2;Uss

. This follows from the definition of output switchability
which requires that the output values are different at the
two stable steady-states.
It is possible that for an output variable of interest y,

the univariate basis polynomial g1(y) may not exist. If
this happens, by changing the lexicographic ordering,
the triangular system of basis polyniomials (58) is calcu-
lated using a different univariate basis polynomial g1(xi)
where xi ≠ y. In such cases, the bistable system is switch-
able in its output y, only if the solutions y obtained from
the triangular system of basis polynomials are different
at the two stable steady-states (x1;Sss and x3;Sss Þ.

The univariate basis polynomial dynamics
For a bistable system with a switchable output x1, we de-
fine the univariate basis polynomial dynamics describing
the output as:

Sg1;x1 : x1
: ¼ g1 x1ð Þ ¼ −x13 þ bx1

2−cx1 þ d ð62Þ

Sg1;x1 is bistable as seen from the signs of the local Ja-
cobians depicted in Fig. 14. Note that the output trajec-
tories of Sg1;x1 and the original system S f ;x1 are different
in transient but both converge to the same stable steady-
state, since they have the same output solutions due to
the property of Gröbner basis. When the univariate basis

Fig. 14 The univariate basis poynomial. Distinct roots are shown by the circles (red for stable; green for unstable). Slopes of the tangent lines
(Jacobians) are negative and positive at the stable fixed points and saddle-point, respectively
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polynomial has three distinct roots, it is always possible
to construct the one-dimensional bistable system Sg1;x1 :
It can be seen from Eq. (62) that |g1(x1)| is the imbal-

ance between the rate at which the output species is
generated and the rate at which it is depleted:

x1 ¼ g1 x1ð Þ ¼ bx1
2 þ d

� �
− x31 þ cx1
� �

¼ ggeneration x1ð Þ−ggeneration x1ð Þ ð63Þ

At the roots of g1(x1), the two rates equilibrate. Be-
tween the roots, the sign of (ggeneration − gdepletion) alter-
nates as (+ − +) to create a bistable switching output
response as shown in Fig. 15.
According to (63) for a bistable system to have a

switchable output x1, the rate of generation must consist
of a quadratic and a constant term, and the rate of de-
pletion must consist of a cubic and a linear term:

ggeneration ¼ bj jx12 þ dj j ð64Þ

gdepletion ¼ x1
3 þ cx1 ð65Þ

This suggests that a biological switch for an output
species can be synthetically designed by constructing a
reaction network (and its corresponding ODEs) who’s
univariate Gröbner basis polynomial has the above types
of depletion and production terms. Examples 1, 3 and 4
were constructed in this fashion.

Analysis procedure
We have incorporated the theoretical results into the
following analysis procedure:

1. Given a Differential Algebraic System, compute its
Gröbner basis. We have used MATLAB and
MATHEMATICA for this purpose.

2. By solving the triangular system of eqs. (58), check
if three distinct nonnegative solutions exist in some
region of the state space. If it does, check the
eigenvalues of the Jacobian at the three steady-
states to decide if the system is bistable. If the sys-
tem is bistable, proceed to the next step. If three
distinct nonnegative solutions for the state do not
exist, the system cannot be (fixed-point) bistable
and stop.

3. For the bistable system, identify the output of
interest y and compute the univariate basis
polynomial in y i.e. g1(y) by reordering the variables,
if necessary. Compute the roots of g1(y). If the
number of roots is three, the bistable system is
switchable in the output if these roots are all
distinct. In all other cases where there are two
repeated roots, one of the repeated roots must
belong to the unstable steady-state solution x2;Uss .
Otherwise the system is not switchable in output y.

4. In case the univariate basis polynomial g1(y) does
not exist, solutions y are calculated using a different
univariate basis polynomial g1(xi) where xi ≠ y. The
bistable system is switchable in its output y, only if
the solutions at two stable steady-states (x1;Sss and
x3;Sss Þ are distinct.
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