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Abstract

Background: The improvements of high throughput technologies have produced large amounts of multi-omics
experiments datasets. Initial analysis of these data has revealed many concurrent gene alterations within single
dataset or/and among multiple omics datasets. Although powerful bioinformatics pipelines have been developed
to store, manipulate and analyze these data, few explicitly find and assess the recurrent co-occurring aberrations
across multiple regulation levels.

Results: Here, we introduced a novel R-package (called OmicsARules) to identify the concerted changes among
genes under association rules mining framework. OmicsARules embedded a new rule-interestingness measure,
Lamda3, to evaluate the associated pattern and prioritize the most biologically meaningful gene associations.

As demonstrated with DNA methlylation and RNA-seq datasets from breast invasive carcinoma (BRCA), esophageal
carcinoma (ESCA) and lung adenocarcinoma (LUAD), Lamda3 achieved better biological significance over other
rule-ranking measures. Furthermore, OmicsARules can illustrate the mechanistic connections between methlylation
and transcription, based on combined omics dataset. OmicsARules is available as a free and open-source R package.

Conclusions: OmicsARules searches for concurrent patterns among frequently altered genes, thus provides a new

dimension for exploring single or multiple omics data across sequencing platforms.
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Background
Disease initiation and progression often result from mul-
tiple aberrations at multiple regulation dimensions. The
improvements of high throughput technologies have en-
abled them to be precisely characterized at epigenetic,
genomic, transcriptomic, proteomic and metabolomic
levels [1-3]. While this opens the door to a systems-
based research approach, there is an urgent demand of
novel methods to better illustrate the underlying mech-
anistic connections within or across different omics
datasets.

Previously, analyzing the cancer genomic data have iden-
tified associated mutations among a few genes. For ex-
ample, George et al. have conducted whole genome

* Correspondence: jzxu01@stu.edu.cn

Danze Chen and Fan Zhang contributed equally to this work.
'Computational Systems Biology Lab, Department of Bioinformatics, Shantou
University Medical College (SUMC), No.22, Rd. Xinling, Shantou, China

Full list of author information is available at the end of the article

K BMC

sequencing on 110 small cell lung cancers (SCLC). They
found TP53 and RB1 are universally mutated in all but two
cases, which supported TP53 and RB1 follow the classical
discrete ‘two-hit paradigm’ pattern of Knudson type tumor
suppressors in SCLC [4]. Indeed, integrative analysis of
multi-modal datasets of the same cancer tissue further re-
vealed that some genes often concurrently altered at mul-
tiple regulation levels [5, 6]. For instance, adult cases of de
novo acute myeloid leukemia were analyzed using genome
sequencing along with RNA/microRNA sequencing and
DNA-methylation chip. The multi-omics datasets showed
that gene fusion events were correlated with specific pat-
terns of mRNA expression, and the occurrences of specific
mutations were associated with some expression signatures
[6]. Importantly, the co-occurrence pattern among signifi-
cantly mutated genes, hyper (hypo)-methlylated genes or
differentially expressed genes often imply potential mech-
anistic relationships [4, 7-9].
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In data mining field, the frequently co-occurring items
are called frequent item sets. Their associated relation-
ship (rules) can be efficiently mined via Apriori algo-
rithm [10]. Originated from market basket data analysis,
association rules mining (ARM) is a popular and well
established method for discovering strong relationship
between frequent items [11]. Alike to find frequent items
and concurrent pattern in commercial datasets, we have
proposed to identify frequent molecular alterations and
combinations of these events from single or multiple
omics data. Our OmicsARules package, which embedded
with a new rule-interestingness measure Lamda3, can
evaluate the association rules to identify biologically sig-
nificant patterns.

Implementation

OmicsARules is implemented in R environment to analyze
omics data sets under ARM framework (Fig. 1). Input data
should be a matrix with continuous variables, such as mRNA
profiling dataset or DNA methylation dataset. OmicsARules
provides 5 simple processing methods to discretize the con-
tinuous values into binary matrix, which indicating the pres-
ence or absence of a molecular event in each sample. Users
can mine and prioritize association rules, thresholding on
several measures of significance and interestingness. The out-
put from OmicsARules includes a table listed the found asso-
ciated rules with significance and interestingness measures,
and graphical presentations, which efficiently organize and
visualize the identified rules for further exploration. Based on
combination of various alteration spectrum simultaneously
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obtained from different sequencing platforms (ie. both
mRNA profiling dataset and DNA methylation dataset for
the same group of patients), OmicsARules can identify the
concordant changes among genes, which usually indicates
broader biological implications.

Association rules mining and its application in omics
datasets

Let I= {i}, ip. ., iy} be a set of n binary attributes called
items. Let D = {t;, t. ., ty} be a set of transactions called
the database. Each transaction in D has a unique transac-
tion ID and contains a subset of the items purchased in 1. A
rule is defined as an implication of the form X = > Y where
X, Y Tand Xn Y= @. The sets of items (for short, item-
sets) X and Y are called antecedent (left-hand-side, LHS)
and consequent (right-hand-side, RHS) of the rule, respect-
ively. Frequent item-set, which is defined as the frequently
co-occurring items, composes the association rule. Finding
frequent item-set is a principal theme underlying identifica-
tion of association rules. Utilizing a “bottom-up” approach,
Apriori is a basic algorithm for identifying association rules
[10]. It extends one item at a time to generate candidate
frequent item-sets, and terminates if there is no further suc-
cessful extensions to be identified. At each step, candidates
having an infrequent sub-pattern are eliminated. Con-
straints on various measures of significance and interesting-
ness of rules, such as Support, Confidence and Lift, could be
used to rank the identified association rule (See Additional
file 1 for formal definitions of these measures).
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Fig. 1 Schematic representation of the analysis pipeline performed by the OmicsARules
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In a similar sense, items usually refer to genes in omics
dataset. The frequent items could be significantly mu-
tated genes, hypo—/hyper-methlylated genes and up
—/down-expressed genes, etc., which occur more fre-
quently than expected by random chance. Transaction
indicates each independent patient sample. Notably, the
frequent item-set, a set of co-occurrence between the in-
terested genes, often implies potentially vital mechanistic
connections [4, 7, 8]. To illustrate the concept, a small
example from the gene expression profile was shown in
Table 1. Rows correspond to each patient sample
whereas columns correspond to the measured genes.
Zero or one in the matrix indicates whether or not that
gene is dys-regulated in that sample. In this case, the
item-set is I= {NEK2,TPX2, CKS1B, UBE2C, CDKN3}
and an example rule for this data could be {NEK2}
=> {CDKN3}, which means, if the expression of NEK2
is altered, CDKN3 is also differentially expressed.

Lamdas3 is a novel measure indicating the interestingness
of rules

ARM is supposed to be used on binary datasets, so continu-
ous omics dataset should be transformed to the binary
matrix before mining association rules. However, data
transformation often results to information loss. Besides,
the cutoff values used in transformation are arbitrary and
could have a dominant affect on the performance of ARM.
To overcome these obstacles, we proposed a novel rule-
interestingness measure, Lamda3 on basis of coordinated
changes among genes. Suppose the input continuous
matrix containing M., which is of size m x n, where m de-
noted #sample and 7 for #gene. After data discretization, it
will be transformed into a Boolean matrix, M, containing
‘1’ indicating dys-regulation and ‘0’ representing insignifi-
cant change. Given an association rule, Lamda3 is defined
as the ratio of the association strength between LHS genes
and RHS genes, to the average association strength between
the LHS gene and other genes which are not included in
that rule. For simplicity, we assumed here the identified as-
sociation rule is Z, A=> C, i.e. only one gene A on the LHS,
and one gene C on the RHS for each rule. Then firstly, ac-
cording to M,, all the samples in M. were divided into

Table 1 An example of the application of ARM to omics

datasets

Genes NEK2 TPX2 CKS1B UBE2C CDKN3
Patient Samples

TCGA-2H-A9GF-01 1 1 0 1 1
TCGA-2H-A9GG-01 0 0 0 0 0
TCGA-2H-A9GH-01 1 1 1 1 1
TCGA-2H-A9GI-01 1 0 1 1 1
TCGA-2H-A9GJ-01 0 1 0 0 0
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three parts, M?, Mi and Mg. Mg contains samples with
gene A to be “1” and simultaneously gene C to be “1” in the
My, M} indicates samples having inconsistent changes of
these two genes of this rule. Besides, Mg indicates samples
with both A and C to be “0” in the M,,. That is, M2 and M?
includes samples with consistent changes of these two
genes in this rule, while the former matrix contains samples
with both A and C are dys-regulated while the latter has
normal genes. Secondly, the association strength between
genes could be defined as sum of correlation significance in
the M? and M?. The corresponding P values of correlation
measure can be calculated as follows:

Pf\’c<—cor(A7 C) in M?;
P c—cor(A,C) in M.

At the same time, the P values of correlations between
gene A and the other genes in the matrix (except for A
and C), were calculated in the M2 and M? as follows:

P?—median (P2 P?

2 2 .
2 o A&,...,PA&,...),gieMC,but:tA,C,

PY—median (PO P

0 0 .
% e Agz,...,PA}gl,...),gieMC,but;cA,C,

where, P4 g cor(A, g;) in the M? and P, g cor(A, g;)
in the M. Then Lamda3 was defined as,

log,, (Pi,c) + log, (Pgﬁc)
logy, (PZ) + logy, (PO)

An example of calculating the proposed Lamda3 was
presented in Additional file 1.

Lamda3 =

Results
Lamda3 can select biologically relevant rules from single
omic dataset
OmicsARules pipeline was in turn applied to single omic
dataset such as mRNA RNA-seq or DNA methylation
datasets from three types of cancers (BRCA, ESCA and
LUAD). For each of the six datasets, the top 50 or 100
differentially changed genes were used for association
rules mining. Then, we retrieved the top 20 rules ranked
by various significance measures, and their average GS
scores were estimated for evaluation of these rules [12].
As shown in Fig. 2a, in all comparisons from BRCA,
Lamda3 performs superiorly than the other three rule-
interestingness measures. The top 20 rules (based on
n =50, Supp =0.3, Conf=0.8) ranked by either Supp,
Lift or Lamda3 from mRNA dataset or methylation
dataset were shown in Additional file 2: Tables S2 and
Table S3, respectively. It was noticed that these rules
have similar values of Conf, Supp and Lift. But Lamda3
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abnormal gene used for ARM

could better differentiate them. Genes constituting the
top 20-ranked rules by Lamda3 in BRCA mRNA
dataset, were all from HOXA cluster, namely HOXA3,
HOXA4, HOXA5, HOXA7. HOX genes encode a
highly conserved family of homeodomain-containing
transcription factors that have crucial roles in specify-
ing positional identity along the anterior—posterior
body axis during embryogenesis [13]. According to
their located chromosomes, the mammalian HOX
genes have been classified into 4 clusters (HOXA, -B,
-C, and -D). HOXA3, HOXA4, HOXA5 and HOXA7
are located on chromosome 7. Previous studies had
indicated dys-regulated HOX gene expression in

carcinogenesis and breast cancer metastasis. HOXA3
and HOXA7 were found to be down-regulated in the
MDA-MB-231 cells compared to the non-malignant
cells [14, 15]. Expression levels of HOXA3 and A5 were
found to be significantly different between breast can-
cerous and normal tissues [16]. Loss of expression of
p53 in human breast cancer was supposed to be pri-
marily due to lack of expression of HOXA5 [17]. Al-
though little is known about HOXA4 in breast cancer
currently, the co-occurrence of HOXA3, A4, A5 and
A7 in these rules identified an intimate expression rela-
tionship between HOXA4 and the other three HOXA
genes, suggesting its potential role in carcinogenesis.
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As seen in Fig. 2b, Lamda3 also performs better than
the other three rule-interestingness measures based on
ESCA mRNA dataset. As for the ESCA methylation
dataset, Lamda3 had the better performing when Sup-
port is set to be 0.2, in contrast to Support=0.3. Also
observed in Fig. 2c of LUAD mRNA dataset, the per-
formance of Lamda3 and Lift are comparable, and both
are better than the other two measures. Regarding the
LUAD methylation dataset, Lamda3 achieved the best
performance when including only 50 genes, but was not
as good as Lift when 100 genes were included. All the
corresponding top-ranked 20 rules selected either by
Lamda3, Lift or Support were shown in Additional file 2:
Tables S4-S7.

Overall, the performance of Lamda3 is superior to
other measures for the mRNA datasets in all the three
cancers. As for the methylation dataset, Lamda3 and lift
performed comparable and better than other measures.
Therefore, Lamda3 is capable to identify biologically sig-
nificant rules.

Lamda3 can identify biologically relevant rules from
combined multi-omics datasets
Multi-omics experiments provide good opportunity to
explore tumor formation and development via answering
questions at systems level, such as how the genetic or
epigenetic factors coordinate to drive the malignance in
cancer? Here, for each cancer, DNA methylation and
transcriptional data were collected from the same group
of patients. After processing, the top-ranked 50 differen-
tially expressed (DE) or differentially methylated (DM)
genes were combined into one single matrix according
to samples IDs and then subjected to ARM. The ob-
tained rules were filtered to retain those which LHS and
RHS contain genes from different omic datasets. Then
these rules were ranked according to interestness mea-
sures, Lift, Lamda3 as well as Support. Notably, wcs
could not be estimated because of the lack of rank-based
weights assigned to each gene under current circum-
stances. As indicated by GS scores in Fig. 3a, Lamda3 is
higher than other two measures in all these three cancer
datasets based on Supp =0.2. When support was set to
be 0.3, the performance of Lamda3 is still the best in
LUAD datasets. Regarding the analysis of the BRCA and
ESCA datasets based on Supp=0.3, the average GS
scores of rules ranked by these three measures were very
close to each other. Overall, Lamda3 can identify more
biologically significant association rules from combined
multi-omics datasets. The top-ranked 20 rules (based on
Supp =0.2, Conf=0.8) mined from the three cancers
were shown in Additional file 2: Tables S8-S10.

As shown in Fig. 3b, according to their association,
genes in the top-ranked 20 rules from ESCA constituted
two subsets of network. PSMB9 mRNA change is the
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hub of one sub-network. PSMB9 locates in the class II
region of the MHC (major histocompatibility complex)
and encodes the proteasome subunit. In previous stud-
ies, there is no evidence of positive relationship between
PSMB9 and ESCA, but PSMB9 has been suggested to be
potential targets for the diagnosis and therapy for several
other cancers, such as cutaneous squamous cell carcin-
oma and cervical cancer [18, 19]. As shown in Fig. 3b
and ¢, the association rules {TAP1.1,ANXA5.2}=>{
PSMB9.1} and {TAP1.1,KDM5B.2}= > {PSMB9.1} were
identified by Lamda3. These two rules suggested a com-
bined mechanism between TAP1 expression and DNA
methylation of ANXA5/KDM5B, which leads to the ab-
normal expression of PSMB9 in ESCA. ANXAS5 is a
phospholipase A2 and protein kinase C inhibitory pro-
tein with calcium channel activity and it plays a role in
cellular signal transduction, inflammation, growth and
differentiation [20]. An association between ANXA5 and
several cancers has been assumed [20]. KDM5B is the
specific demethylase of histone H3 lysine 4 (H3K4), and
its’ up-regulation can reduce H3K4 methylation level. In
previous studies, a crucial role of histone lysine methyla-
tion in the epigenetic regulation of eukaryotic genes has
been demonstrated, which suggested histone methyla-
tion disorders can cause cancer [21, 22]. KDM5B also in-
volves in ESCA development and progression [23]. Here,
a potential mechanistic association between the DNA
methylation of KDM5B and the transcript levels of
PSMB9 was proposed by Lamda3, which provided a re-
search clue to be tested further. Interestingly, one recent
paper found that, DNMT inhibitors (that removed DNA
methylation) up-regulate expression of the antigen pro-
cessing and presentation molecules, including PSMB9 at
the RNA and protein level in a wider range of colon and
ovarian cancer cell lines [24].

These two rules also showed an association of PSMB9
and TAP1 on the transcript levels. TAP1, a member of
the superfamily of ATP-binding cassette (ABC) trans-
porters, is involved in the pumping of degraded cytosolic
peptides into the membrane-bound compartment. Loss
of TAP1 has been reported to render some tumor cells
to escape the immune surveillance and contribute to the
clinical course of esophageal cancer [25]. Again, the
identified rules pinpoint a mechanistic link between
TAP1 and PSMB9, thus provide testable hypothesis.

Discussion

Multiple molecular events are responsible for the ini-
tiation and progression of diseases. Therefore, it is a
key issue to identify the recurrent aberrations and as-
sociated changes at multi-modal data level. A stand-
ard approach is exploratory analysis of the interested
cancers by querying a gene list against all available
omics data [26, 27]. Also others jointly modeled



Chen et al. BMC Bioinformatics (2019) 20:554

Page 6 of 8

A *E’ 0.9 7 Combination
= 0.8 X
E 0.7 -
»n 0.6 g 2] X
2 0s- X a o X
0.4 A
s 03 - N =
=1)] * o)
S 02 - O o supp
5 - Onift
é 0.1 1 Xlamda3
Tumor type: BRCA BRCA ESCA ESCA LUAD LUAD
Support: 0.2 0.3 0.2 0.3 0.2 0.3
Number of rules: 9157 35 2025 36 31074 7196
B ZNF329.1 C
/ [ZNF229.
ZNF229.1
TAP 22D1.2
{USP24.2)- °
KDMSB.2 OAT.2 ’ ' Lamda
® 7
@ ®:s
£ {UQCRFS12)- @ ® . o
& B34—pSME1.1 @
ANXAS:
/ {TAP1.1 [ ] Supp
RER1.2 CLINT1.2 0325
SRRM2.2 GALR32 0300
0.275
IL17A1 ® @ e o0 o o @ 3550
0.225
IL17F.1
USP2 2 17 ¥
NUP160.1 ‘
RXFP31 -
i AC12 g
u RF 12 3
TMEM1 c1 8
z H2.1 3
CPEBZ ! UBE2L6.1

Fig. 3 Quantitative assessment and graphical representation of association rules from multi-omics datasets. Based on different parameter settings,
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individual alterations that arise from single platform
over biological networks and pathway [28, 29]. Al-
though these methods provided novel insights, few of
them explicitly found and assessed the recurrent co-
occurring aberrations across omics datasets. Besides,
these tools usually involved sophisticated statistical
modeling and scripts programming, thus have no
easy-to-use access to biologists.

In this study, we applied the association mining for omics
datasets. Especially, the newly developed interestness meas-
ure Lamda3 minimized the loss of information due to di-
chotomization, achieved better biological significance over
other rule-ranking measures. Besides, OmicsARules searches
for the concurrent pattern among frequent aberrations from
multiple omics datasets, thus to better illustrate the under-
lying common mechanism.

Conclusions

OmicsARules package will be regularly updated and op-
timized to handle larger cancer datasets. We concluded
that OmicsARules enables a new dimension to interpret
the observed aberrations and regulation mechanism
across high throughput platforms.

Methods

Data source and preprocessing

TCGA omics datasets of breast invasive carcinoma
(BRCA), esophageal carcinoma (ESCA) and lung adeno-
carcinoma (LUAD) were downloaded. Each dataset in-
cludes both RNA sequencing data and DNA methylation
data from the same cohort of patients. General informa-
tion of these datasets was summarized in Additional file
2: Table S1.
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Above datasets were subjected to OmicsARules to find
biologically significant association rules. Before that, the
raw data went through several preprocess steps, includ-
ing removal of genes with missing values, differential ex-
pression analysis and discretization. More details are
presented in Additional file 1.

Application of OmicsARules on the cancer omics datasets
Single omic dataset can input directly to find association
rules after data preprocessing. Regarding multi-omics
datasets, each dataset was separately subjected to the
preprocess step such as differential expression analysis
and discretization. Then these two binary datasets were
combined according the sample IDs, and then subjected
to association rule mining by OmicsARules. In order to
discriminate sources of genes, suffix 1’ or ‘.2’ was added
behind the gene symbol, thus the former indicated genes
were present in the mRNA dataset; and the latter indi-
cated genes were from the methylation data. Finally,
rule-interestingness measures, namely Lift and Lamda3,
as well as Wcs (weighted condensed support) [30], were
calculated to rank the rules.

Quantitative assessment of the biological significance of
the identified rules

In order to assess and compare the biological significance
of the rules identified by above interestingness measures,
we calculated the annotated functional similarity of Gene
Ontology (GO) terms, to evaluate the biological connec-
tion between gene(s) on the LHS and these on the RHS.
Gene functional similarities (GS) between genes were
computed with R-package ‘GOsim’ [12].

Availability and requirements
Project name: OmicsARules.
Project home page: https://github.com/Bioinformatics-
STU/OmicsARules
Operating system(s): Linux, Microsoft Windows.
Programming language: R.
Other requirements: R > =3.3.2.
License: MIT License.
Any restrictions to use by non-academics: No restrictions.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512859-019-3171-0.

Additional file 1. Description of R package development, datasets
preprocessing and assessment of the biological significance of the
identified rules.

Additional file 2: Table S1. General information of three real datasets
downloaded from TCGA. Table S2. Top 20 rules identified from BRCA
mRNA dataset. Table S3. Top 20 rules identified from BRCA DNA
methylation. Table S4. Top 20 rules identified from ESCA mRNA dataset.
Table S5. Top 20 rules identified from ESCA DNA methylation dataset.

Page 7 of 8

Table S6. Top 20 rules identified from LUAD mRNA dataset. Table S7.
Top 20 rules identified from LUAD DNA methylation dataset. Table S8.
Top 20 rules identified from the combined BRCA mRNA and DNA
methylation datasets. Table S9. Top 20 rules identified from the
combined ESCA mRNA and DNA methylation datasets. Table S10. Top
20 rules identified from the combined LUAD mRNA and DNA
methylation datasets.
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