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Abstract

Background: Lung cancer is one of the most common types of cancer, among which lung adenocarcinoma accounts
for the largest proportion. Currently, accurate staging is a prerequisite for effective diagnosis and treatment of lung
adenocarcinoma. Previous research has used mainly single-modal data, such as gene expression data, for classification
and prediction. Integrating multi-modal genetic data (gene expression RNA-seq, methylation data and copy number
variation) from the same patient provides the possibility of using multi-modal genetic data for cancer prediction. A
new machine learning method called gcForest has recently been proposed. This method has been proven to be
suitable for classification in some fields. However, the model may face challenges when applied to small samples and
high-dimensional genetic data.

Results: In this paper, we propose a multi-weighted gcForest algorithm (MLW-gcForest) to construct a lung
adenocarcinoma staging model using multi-modal genetic data. The new algorithm is based on the standard
gcForest algorithm. First, different weights are assigned to different random forests according to the classification
performance of these forests in the standard gcForest model. Second, because the feature vectors generated
under different scanning granularities have a diverse influence on the final classification result, the feature vectors
are given weights according to the proposed sorting optimization algorithm. Then, we train three MLW-gcForest
models based on three single-modal datasets (gene expression RNA-seq, methylation data, and copy number
variation) and then perform decision fusion to stage lung adenocarcinoma. Experimental results suggest that the
MLW-gcForest model is superior to the standard gcForest model in constructing a staging model of lung
adenocarcinoma and is better than the traditional classification methods. The accuracy, precision, recall, and AUC
reached 0.908, 0.896, 0.882, and 0.96, respectively.

Conclusions: The MLW-gcForest model has great potential in lung adenocarcinoma staging, which is helpful for
the diagnosis and personalized treatment of lung adenocarcinoma. The results suggest that the MLW-gcForest
algorithm is effective on multi-modal genetic data, which consist of small samples and are high dimensional.
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Introduction

Lung cancer is one of the most common cancers and
possesses the highest morbidity and mortality, causing
more than 1.4 million deaths each year. Lung cancer can
be classified into non-small cell lung cancer (NSCLC)
and small cell carcinoma. Lung adenocarcinoma and
lung squamous cell carcinoma are common types of
NSCLC [1, 2], with lung adenocarcinoma accounting for
approximately 70% of NSCLC. Therefore, the study of
lung adenocarcinoma is crucial in the study of lung can-
cer. The 5-year survival rate of lung adenocarcinoma
does not exceed 5% [3]. Different treatments are needed
during different stages of lung adenocarcinoma to im-
prove the patient’s survival rate. Therefore, the accurate
staging of lung adenocarcinoma is the first step in clin-
ical diagnosis and targeted treatment.

With the development of high-throughput sequencing
technology, a large number of microarrays and genetic
data have been produced. An increasing number of re-
searchers have engaged in the analysis of genetic data.
As an important branch of artificial intelligence, ma-
chine learning methods are favored by many researchers.
Various machine learning methods based on cancer gene
data have been widely used in disease prognosis and pre-
diction. Based on the Cancer Genome Atlas (TCGA)
and Stanford Tissue Microarray Database, Yu et al. [4]
used regularized machine learning methods to select the
top quantitative image features and classified patients as
having lung adenocarcinoma and squamous cell carcin-
oma. Cai et al. [5] used machine learning methods to
capture unbiased and compact molecular features to
classify lung adenocarcinoma, small cell lung cancer, and
NSCLC. Li et al. [6] proposed a method that combines
support vector machine (SVM) and random forest to
predict lung cancer adenocarcinoma stages. Nguyen
et al. [7] proposed a multi-class machine learning tech-
nique using SVM to classify tumor node metastasis
(TNM) staging of lung cancer patients by analyzing their
free-text histology reports. Singh et al. [8] used machine
learning methods to identify biomarkers and constructed
a model to distinguish early and late stages of papillary
renal cell carcinoma based on gene expression profiles.
Xiao et al. [9] used an ensemble deep neural method
comprising five machine learning models to predict can-
cer. The proposed deep learning-based multi-modal en-
semble method achieved better predictive performance
than that of any single model. Many machine learning
or deep learning algorithms classify or predict cancer by
analyzing different types of cancer gene data [10-22].
Many scholars have analyzed and studied lung cancer
gene data using other methods [23-27]; however, to the
best of our knowledge, few studies have applied machine
learning to the staging of lung adenocarcinoma based on
multi-modal genetic data.
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Multi-modal genetic data mainly include gene expres-
sion RNAseq (RNA-seq), methylation data, and copy
number variation (CNV) from the same patients, which
are usually characterized by small sample sizes and high
dimensionality. The construction of deep neural net-
works typically relies on a large amount of data: small
samples and high-dimensional genetic data increase the
risk of overfitting deep neural networks during training.
A deep forest model called gcForest [28] was recently
proposed as an alternative method of deep learning to
alleviate the overfitting problem of deep neural networks
for small samples.

The gcForest model is a new decision tree integration
of the deep forest method. The algorithm is a combin-
ation of traditional machine learning algorithms and
deep learning ideas. The gcForest model implements
multi-grained scanning to further enhance the learning
ability and can achieve good performance in high-
dimensional, small-scale data. The gcForest model
adopts a cascade structure in which each layer receives
information processed by the previous layer and trans-
mits information to the next layer. The standard gcFor-
est algorithm is expected to deliver better predictions
than those of traditional machine learning methods,
even in cases of small-scale training data [28]. However,
the gcForest algorithm still has the following shortcom-
ings in the analysis of cancer genetic data: (1) the multi-
grained scanning of the gcForest algorithm does not ac-
count for the different effects of each random forest on
the final prediction, which is not conducive to capturing
diverse features, especially in small-sample data; and (2)
the class vectors obtained under different scanning gran-
ularities have different effects on the final classification
decision-making ability, but the standard gcForest algo-
rithm simply concatenates the class vectors from differ-
ent granularity sliding windows, which potentially
weakens the final classification ability.

In our previous work, an improved gcForest algorithm
based on methylation data [29] was proposed and suc-
cessfully applied to the subtype classification of cancer.
In this paper, we have substantially revised and applied
to the staging model of lung adenocarcinoma.

The main contribution of our approach is the proposal
of MLW-gcForest to construct a staging model of lung
adenocarcinoma based on multi-modal genetic data. Spe-
cifically, (1) we set dynamic weights for different random
forests in the multi-grained scanning according to the
classification performance of each random forest; (2) we
propose a sorting optimization algorithm to set different
weights for each sliding window, as the class vectors gen-
erated by each sliding window have varying effects on the
final prediction results; and (3) we adopt decision-level fu-
sion to construct a staging model of lung adenocarcinoma
based on multi-modal genetic data.
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Method
Feature selection
In our experiment, lasso regression is used for feature se-
lection [30]. The lasso method belongs to a class of em-
bedded feature selection methods that can overcome the
problems of efficiency and computational cost in trad-
itional feature selection and has been successfully applied
to microarray classification and gene selection [31].

The lasso method uses a paradigm penalty-based re-
gression to find the optimal solution for formulas (1)
and (2).

2
arg n%in{z (yi—SO—Zx,-jS/) }
=1 =1

i=

(1)

subject toZ |8;| <z (2)

j=1

where r is the number of features of the data, n is the
number of samples, J; is the regression coefficient of the
g th variable, and z is the constraint value, which is a
paradigm penalty for the regression coefficient ;. The
value of z can vary from O to infinity. When z is small,
some variable coefficients with small effects are com-
pressed to 0 so that these variables are deleted to achieve
feature selection. When z is sufficiently large, it no lon-
ger constitutes an actual constraint, and all the attributes
are selected.

GcForest

The gcForest model comprises two components [28], as
shown in Fig. 1. (1) The first component is multi-
grained scanning, which adapts sliding windows to cut
raw features into feature vectors. After feeding these fea-
ture vectors into different types of random forest, the
model outputs class vectors. Then, all the class vectors
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are concatenated and output as the result of the multi-
grained scanning. (2) The second component is the cas-
cade forest. Each cascade layer is composed of multiple
random forests, which comprise decision trees. The in-
put is composed of the class vectors from the output of
the first component. Each cascade layer outputs a new
class vector that is concatenated with the original class
vector to form a new class vector as the input of the
next layer (detail in [28]). With multiple random forests
in each cascade, more discriminative features can be
learned from the input vector to that cascade. A more
accurate prediction is finally obtained through the layer-
by-layer transfer of each cascade layer. k-fold cross-
validation is used to reduce the risk of overfitting when
extending a new layer. Specifically, the training data are
divided into k folds. k-1 folds are selected as the training
data in turn, and the remaining fold is used as the valid-
ation data. After extending the new layer, the perform-
ance of the entire cascade is estimated on the validation
data, and if no significant performance gain is observed,
the training process is terminated. Finally, the average of
each class probability is calculated from the class vectors
of the last cascade layer’s outputs: the class with the
maximum probability value is used as the prediction
result.

Figure 1 shows the standard gcForest model [28],
which is composed of multi-grained scanning and a cas-
cade forest. Assume that the input feature vector has
400 dimensions and that three sizes of sliding windows
(100, 200, 300) are used to cut the input feature vector.
The first sliding window size is 100, and the sliding
stride is 1. Thus, a total of 301 scans are required, and
301*100-dimensional(dim) feature vectors are generated.
These feature vectors are the input to a completely ran-
dom forest and a random forest. Suppose the samples
have three classes; each sample is trained using com-
pletely random forest and random forest, and 1806-dim

: Multi-Grained Scanning
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(2*301*3 dim) class vectors are output. Similarly, when
the sliding window size is 200 and 300, respectively, we
obtain class vectors of 1206-dim (2*201*3 dim) and 606-
dim (2*101*3 dim).

The second component is the cascade structure. The
class vector output by the first component is used as input
to the cascading forest component. First, the 1806-dim
class vector obtained from the 100-dim sliding window is
used as the input to train the first cascade layer. Notably,
the diversity of forests plays an important role in con-
structing the model. After training four forests (two ran-
dom forests [32] and two completely random forests [33]),
a 12-dim class vector (4 forests, 3 classes) is generated.
The 12-dim class vector is then concatenated with the ori-
ginal 1806-dim class vector (as shown in Fig. 1) to obtain
an 1818-dim vector as the input of the second cascade
layer. Similarly, the second cascade layer’s random forests
are trained to generate a 12-dim class vector, which is
concatenated with the class vector (1206-dim) obtained
from the 200-dim sliding window in the first component.
Therefore, we obtain a 1218-dim class vector as the input
of the third cascade layer. Similarly, we train the third cas-
cade layer’s random forest and obtain a 12-dim class vec-
tor, which is concatenated with the class vectors (606
dim) from the 300-dim sliding window in the first compo-
nent. Therefore, we obtain a 618-dim class vector as the
input of the next cascade layer. We repeat the above
process each time a new layer is generated. The perform-
ance of the entire cascade is estimated on the validation
set whenever a new layer is extended: if no significant per-
formance gain is observed, the training process is termi-
nated [28].

Multi-weighted gcForest (MLW-gcForest)

Two challenges may limit gcForest’s application to
small-scale genetic data. 1) Each forest in the original
gcForest has the same impact on the final prediction,
but in reality, the classification ability of each forest is
different. Therefore, we assign different weights ato the
random forests according to the classification perform-
ance of each random forest. 2) In the original gcForest,
for the same raw data, scanning with multiple scale win-
dows can generate different-dimension feature vectors.
Multi-grained scanning enriches the diversity of gener-
ated features. The above method of generating features
can capture more comprehensive features, and the dif-
ferent grains of feature vectors generated under different
sliding windows have different effects on the final classi-
fication results. We believe giving equal attention to dif-
ferent sliding windows in the original gcForest algorithm
is unreasonable; therefore, we consider assigning corre-
sponding weights B to different sliding windows. A
structure diagram of MLW-gcForest structure is shown
in Fig. 2.
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Determination of weights

The weight assignment is the first improvement to the
algorithm. We use one random forest and one com-
pletely random forest for each sliding window and com-
pute the weights of each forest, a; and a5. The specific
method is as follows.

The performance of each random forest must be eval-
uated objectively; therefore, evaluation criteria must be
introduced. The receiver operating characteristics (ROC)
[34] curve is a common indicator to measure the per-
formance of a model and indicate the performance of a
classifier. In the case of a binary classification task, the
area under the curve (AUC) is shown in formula (3).

AUC = /0 IROC(u) duuelo, 1] (3)

However, this metric is not intuitive for multi-class
tasks because the AUC is usually used to measure the
classification ability of binary classification tasks.

For multi-class tasks, Scurfiled et al. [35] proposed the
concept of multiple ROC [36] analysis and the measure-
ment of hypervolume under multi-flow (HUM) to evalu-
ate the identification ability of the corresponding
biomarkers. The classification of lung adenocarcinoma is
a three-class task, so a double integral is used, as shown
in formula (4).

11
HUM = / / ROC(u)duydu, (4)
o Jo

In this paper, we use one random forest and one com-
pletely random forest to obtain HUM; and HUM, as the
evaluation indicators for the classifier; the HUM values
are then normalized to calculate the weight of each for-
est, as shown in formulas (5) and (6).

. HUM, )
V" HUM, + HUM,

- HUM, ©
>~ HUM, + HUM,

The values a; and a, are then used to assign weights
to the class vectors produced by the different forests.

Sorting optimization algorithm

As using different sliding windows to extract class vec-
tors greatly influences the final classification results, dif-
ferent weights are assigned to the class vectors
generated by different sliding windows; this algorithm is
called the sorting optimization algorithm (as shown in
Fig. 3). The basic structure of the algorithm is as follows.

(1) Suppose the number of samples is N, the size of the
original features is M, and the number of class
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Fig. 2 lllustration of the MLW-gcForest (multi-weighted gcForest) model. The MLW-gcForest model is composed of multi-grained scanning and a
cascade forest. We made two improvements in the multi-grained scanning module: we assign different weights to the random forests according
to the classification performance of each random forest and name the weights a; and we assign corresponding weights to different sliding windows
and name the weights 3

forests each output a C-dim class vector. Each
random forest uses V' L-dim feature vectors as
input and outputs V C-dim class vectors. Then,
these V C-dim class vectors are concatenated into
V * C-dim class vectors (called RF-vec). Similarly,
we concatenate the class vectors from the output of
the completely random forest and call it cRF-vec.

(3) RE-vec and cRF-vec are multiplied by their
respective weights a; and a, (the weights of the
different random forests, calculated in the previous

(7) section) and concatenated as 2 #V = C-dim class

S vectors (length L' =2:+V=Q).

(4) First, the L -dim class vector obtained in step (3) is
sorted in descending order. Then, the average of
the top 1/C of the sorted class vector values is
calculated. This indicator can be viewed as the

labels for the sample is C. For each sample i, we use
a sliding window t to cut features (the index of the
current window is t (1< t < T). The size of the
sliding window is L (1< L < M). The stride of the
scan is S (default S =1). We designate the number
of feature vectors after scanning as V and calculate
this value with formula (7).

(2) Each L-dim feature vector is input into one random
forest and one completely random forest. The two
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approximate ability of the current window to
predict the current sample i.We name it ¢ _ ability,,
and it is calculated as shown in formula (8).

’

. ?:lDesc(conc(RF —veckay, cCRF—vecxay))
t_ability, -

C

(8)

where conc represents the concatenate operation.

(5) Steps (1)—(4) are repeated for the N samples, and
we obtain the prediction abilities for the current
window for the N samples (¢ _ ability,, t _ ability,,
..., t _abilityy). This indicator approximates the
prediction performance of the current window ¢.

(6) The prediction ability W _ ability, of the sliding
window ¢ is obtained by averaging the prediction
abilities of the current window for the N samples,
as shown in formula (9).

n

t_ability,
1

W _ability, = = (9)

(7) Steps (1)—(6) are repeated to obtain the prediction
ability of each window (W _ ability;...W _ability,...
W _ability7). The individual W _ ability values are
normalized to obtain the predictive weights /5, of
each sliding window, as shown in formula (10),
which is used to obtain the weights of each window

B1Ba... Br... pr

W _ability,

T
> W _ability,

t=1

B, = (10)

The class vector obtained from each window is multi-
plied by its corresponding [ value and then
concatenated with each other as the output of the multi-
grained scanning component.

In step (4) of the algorithm, we calculate the average
of the top 1/C class vector values to approximate the
current scan window prediction ability because the ran-
dom forest outputs the confidence probabilities that the
samples belong to a certain class. If the maximum value
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of the confidence probabilities is closer to 1, the random
forest has a stronger ability to distinguish the sample
categories. Therefore, we take the average of the top 1/C
class vector values to approximate the current scan win-
dow prediction ability.

After assigning various weights to the gcForest algo-
rithm, we obtain the MLW-gcForest classification
model.

MLW-gcForest decision fusion of multi-modal data

The pathogenesis of lung adenocarcinoma is complex,
and satisfactory staging results are often difficult to ob-
tain using only single-modal data. A more accurate diag-
nosis of lung adenocarcinoma is achieved by combining
multi-modal data (methylation data, RNA-seq data and
CNV data) and taking full advantage of the complemen-
tarity between the advanced features of the different
modal datasets. Therefore, multi-modal lung adenocar-
cinoma genetic data are used to train different MLW-
gcForest models, and decision-level fusion is performed.

The basic idea of decision-level fusion is to determine
which class a sample belongs to by considering the clas-
sification results of multiple models. In our algorithm,
we obtain the final classification results via weighted vot-
ing of multiple models.

Each classification models /,, predicts a label from the
category label set {classi, class,, ..., classc}. The forecast
output is represented as a C-dim class vector (h;(x); h;(
X); ...hg(x)), such as (0.12,0.33, ...,0.45), where /l(x) is
the output of %, on class,. Different types of individual
models can produce different types of /f(x) values (/1(x

)€[0, 1]). The weighted voting method used in this paper
is shown in the following formula:

m

H(x) = classa,gquz :lyphz (x)

’ (1)
m is the number of modalities of the data, and y, is
the degree of influence of modality p on the classifica-
tion results based on the experimental results, where
YMethylation + YRNA + Ycnv = 1. Yatethylation YRNAS and
ycnyv are normalized by the accuracies of each type of
data’s MLW-gcForest model, as shown in formula (12).

accy,,

= 12
Yo = S acen 12

my,, is the model trained by modality p.

Finally, weighted voting is performed on the MLW-
gcForest model trained using three different modal data-
sets to obtain the final classification result (as shown in
Fig. 4).
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Fig. 4 MLW-gcForest decision fusion of multi-modal data. Multi-modal (gene expression RNA-seq, methylation data and CNV) lung adenocarcinoma
genetic data are used to train different MLW-gcForest models, and decision-level fusion is performed

Results

Materials

To evaluate the performance of the MLW-gcForest algo-
rithm, methylation data, RNA-seq data, CNV data and
corresponding clinical data of lung adenocarcinoma are
downloaded from the TCGA [37] (https://portal.gdc.can-
cer.gov/). The data include 492 methylation samples,
576 RNA-seq samples, and 516 CNV samples. After ex-
cluding samples without clinical staging and feature
values that were missing more than 50% of information,
we obtained 155 cases of stage I data, 243 cases of stage
IT data, 41 cases of stage III data, and 16 cases of stage
IV data. The small number of samples in stage IV (less
than 20 samples) would result in a very unbalanced
training sample; therefore, the data for stage IV were ex-
cluded. Then, we excluded samples that did not have
complete multi-modal data and obtained 369 samples of
multi-modal data as our final dataset.

Each sample has 485,577 columns of feature values for
the methylation data, 60,483 columns of feature values
for the RNA-seq data, and 39 columns of feature values
for the CNV data (all corresponding to valid data col-
umns after null values are deleted). After feature selec-
tion, the methylation data retained 340 columns, RNA-
seq retained 320 columns and CNV had too few col-
umns to perform feature selection.

Experiment

To evaluate the performance of the proposed algorithm,
we use nested cross-validation [38] to train and test the
model. Compared with standard cross-validation, nested
cross-validation can achieve an almost unbiased estima-
tion of model performance [38]. The process of nested
cross-validation is divided into an outer loop and an
inner loop, as shown in Fig. 5. The inner loop is used to

perform parameter adjustments, while the outer loop is
used to calculate the final error estimate for model
performance.

As shown in Fig. 5, we divide the dataset into ten folds
in a mutually exclusive manner. Each time we select
nine folds to execute the inner loop (the inner loop per-
forms standard 10-fold cross-validation), and the
remaining fold is used for testing. The above process is
the outer loop. The outer loop is repeated 10 times until
each fold is used as a test set. Therefore, results are ob-
tained for 10 test sets. We calculated the average of the
ten test results from the nested 10-fold cross-validation.

It is worth noting that the inner loop performs stand-
ard 10-fold cross-validation; that is, the data used to exe-
cute the inner loop are divided into ten folds, nine folds
are selected for training, and the other fold is used for
validation. This process is repeated 10 times until each
fold is used as the validation set. Moreover, when per-
forming the inner loops, if the error on the training data
continues to decrease but the error on the validation
data stops decreasing, the training process terminates
early, even before reaching the maximum number of
epochs to avoid overfitting.

As described in section 2.4, we trained different
MLW-gcForest models using multi-modal data with
nested 10-fold cross-validation and then performed
decision-level fusion.

In our algorithm, one random forest and one com-
pletely random forest were set up in the multi-grained
scanning, and 300 decision trees were used in each for-
est. In the cascade forest layer, we used 300 decision
trees for two completely random forests and two
random forests. For better comparison with existing al-
gorithms, we used different machine learning algorithms
to construct lung adenocarcinoma staging models based
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Fig. 5 Nested cross-validation process, which includes an outer loop and an inner loop. The inner cross-validation loop is used to perform parameter
adjustments, while the outer cross-validation loop is used to calculate the final error estimate for model performance

on single and multi-modal data (methylation, RNA,
CNV): SVM, K-nearest neighbors (KNN), logistic regres-
sion (LR), random forest (RF), gcForest and the pro-
posed MLW-gcForest. We considered commonly used
evaluation indexes, namely, AUC, accuracy, precision,
recall and F; score, to evaluate the performance of the
algorithm.

Result of lung adenocarcinoma staging models based on
single-modal data
To evaluate the performance of the MLW-gcForest
algorithm, MLW-gcForest, gcForest, and traditional
machine learning methods were used to build lung
adenocarcinoma staging models from different single-
modal data. Based on the different single-modal data-
sets, we trained different methods with nested 10-fold
cross-validation to evaluate the classification ability
(Fig. 6). The three rows of Fig. 6 show the classifica-
tion performance of different algorithms based on
methylation, RNA, and CNV measured through
nested 10-fold cross-validation. The three columns in
Fig. 6 show the classification performance of different
algorithms based on different modal data under the
same evaluation metric. As shown in Fig. 6a(1), b(1)
and c(1), the AUC values of the proposed MLW-
gcForest algorithm are higher than those of the
remaining algorithms on all three modal datasets.

The accuracy of the different algorithms on each data
modality is shown in Fig. 6a (2), b(2), and c(2). The

accuracy of the MLW-gcForest algorithm is higher than
that of gcForest, SVM, KNN, LR and RF.

In addition, we also compare the precision and F;
scores of MLW-gcForest with those of the other algo-
rithms in Table 1. Table 1 shows that our algorithm
achieves a precision of 0.771 and an F; score of 0.767,
which are higher than those of the standard gcForest
(precision and F; score of 0.715 and 0.709) in methyla-
tion data. MLW-gcForest always outperforms gcForest,
and their performances are superior to those of trad-
itional machine methods on the other two single-modal
data (RNA and CNV). This result demonstrates that the
deep forest structure can capture more complex and di-
verse features, making it more suitable for small-sample
genetic data. Furthermore, the proposed multi-level
weighting strategy can help deep forests extract more
valuable multi-level features, thus effectively improving
the classification ability of the standard gcForest on
small-sample genetic data.

Comparison of the staging of lung adenocarcinoma
based on different algorithms using multi-modal data

We used different classification algorithms to construct
staging models of lung adenocarcinoma based on multi-
modal data to demonstrate the performance of the pro-
posed MLW-gcForest algorithm in integrating multi-
modal data for lung adenocarcinoma staging. In addition
to plotting the ROC curves and calculating the AUC, the
accuracy for each method under the multi-modal data
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Table 1 Performance comparison of different modal data with
different methods

Classification  Methylation RNA CNV

algorithm Precision  F, Precision  F4 Precision  F4
SVM 0.524 0519 0552 0.558 0427 0434
KNN 0.584 0.605 0533 0528 0.460 0.466
LR 0.575 0572 0.609 0603 0446 0.486
RF 0.606 0618 0611 0602 0512 0.557
gcForest 0.715 0709 0.634 0643 0616 0.628
MLW-gcForest  0.771 0.767 0.659 0669 0675 0.677

measured through nested 10-fold cross-validation was
calculated and is shown in Fig. 7. As shown in Fig. 7, the
MLW -gcForest algorithm achieves better classification
results on the staging of lung adenocarcinoma. The
AUC and accuracy values of MLW-gcForest are higher
than those of the standard gcForest algorithm and trad-
itional machine learning algorithms.

The precision, recall and F,; score of the proposed MLW-
gcForest and the other algorithms are shown in Table 2. The
precision, recall and F; score of the MLW-gcForest classifica-
tion reached 0.896, 0.882 and 0.889, respectively, which are
higher than those of the standard gcForest (0.764, 0.795, and
0.779). The comparison results indicate that MLW-gcForest
and gcForest perform significantly better than the other trad-
itional machine learning algorithms when using multi-modal
data for lung adenocarcinoma staging. The results suggest
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Table 2 The effects of different classification algorithms on the
precision, recall, and F; score of the staged model of the multi-
modal data

Algorithm Precision Recall F

SVM 0.674 0.664 0.669
KNN 0.664 0.646 0.655
LR 0675 0.669 0672
RF 0.706 0.730 0.718
gcForest 0.764 0.795 0.779
MLW-gcForest 0.896 0.882 0.889

that the deep forest algorithms (MLW-gcForest and gcFor-
est) are more effective in lung adenocarcinoma staging be-
cause more complex and diverse features can be captured to
distinguish different classes.

Furthermore, our result indicates that comprehensive
multi-modal genetic data and the multiple decision-level fu-
sion strategies of the MLW-gcForest model effectively im-
prove the accuracy of lung cancer staging because the
proposed algorithm not only enables the deep forests to ex-
tract more valuable and multi-level features through im-
proved multi-level weighting strategies but also effectively
utilizes the complementarity of multi-modal genetic data.



Dong et al. BMC Bioinformatics (2019) 20:578

Comparison of multi-modal data and single-modal data in
the staging of lung adenocarcinoma with the MLW-
gcForest algorithm

To confirm the effectiveness of the multi-modal
data, we compared the classification performance of
MLW-gcForest using single-modal (methylation,
RNA-seq, CNV) and multi-modal data. We plotted
the ROC curves and calculated the AUC value be-
tween different modal data measured through nested
10-fold cross-validation, as shown in Fig. 8. The re-
sults indicate that the MLW-gcForest algorithm
achieves better classification performance when using
multi-modal data than when using single-modal data.
In addition, comparing the accuracy in the multi-
modal scenario in Fig. 7b with that in the single-
modal scenario in Fig. 6a(2), b(2) and c(2), it can be
seen that the integration of multi-modal data effect-
ively improves the accuracy of lung adenocarcinoma
stage prediction. Table 3 shows the accuracy, preci-
sion, recall, and F; score of the lung adenocarcinoma
staging model measured through nested 10-fold
cross-validation of different modal datasets. The re-
sults indicate that MLW-gcForest achieves better
performance (accuracy 0.908, precision 0.896, recall
0.882, F; 0.889) with multi-modal data than with
single-modal data. Using multi-modal data in the
proposed MLW-gcForest significantly improved the
accuracy of lung adenocarcinoma staging, which sug-
gests that integrating multi-modal genetic data can
effectively improve the accuracy of lung adenocarcin-
oma staging compared to using only single-modal
data.
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Table 3 Performance of the lung adenocarcinoma staging
model with different modalities of data

Modality Accuracy Precision Recall Fi

Methylation 0.751 0.771 0.763 0.767
RNA 0.689 0.659 0679 0.669
CNV 0.645 0675 0677 0677
Multi-modal 0.908 0.896 0.882 0.889

Table 3 also shows that the methylation data have a
higher staging classification ability for lung adenocarcin-
oma than do RNA-seq and CNV data.

Discussion

Methylation data are found to be the most discriminative
in building lung adenocarcinoma staging models using
single-modal data. MLW-gcForest based on multi-modal
genetic data achieves better classification performance
than that with single-modal data. These results indicate
that combining multi-modal genetic data is an efficient
way to improve the classification ability of lung adenocar-
cinoma staging. We also found that in the process of sta-
ging lung adenocarcinoma, the MLW-gcForest model and
the gcForest model are superior to the traditional machine
learning algorithms. The most likely reason is that deep
forests (MLW-gcForest model, gcForest) can learn more
valuable and advanced features with multi-grained and
cascade layers. In addition, MLW-gcForest outperformed
the standard gcForest on most lung adenocarcinoma data-
sets. The results suggest that our multi-level weighting
strategy effectively improves the classification ability of the
standard gcForest model on small-sample cancer datasets.
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Now, we explain why 300 decision trees are chosen in
our algorithm. We conducted comparative experiments
to determine the required number of decision trees in
the RF for the algorithm to achieve the best results. Fig-
ure 9 shows the results of these comparative
experiments.

As shown in Fig. 9, changing the number of decision
trees has little effect on the results when using RNA-seq
data (Fig. 9b) but a larger effect on the results when
using methylation (Fig. 9a) and CNV (Fig. 9¢) data. For
the methylation and CNV data, the worst performance
is obtained when the number of decision trees in the al-
gorithm is set to [30, 101] (i.e., the number of decision
trees in the RF at the multi-grained scanning step is set
to 30 and that of the cascade forest is set to 101). The al-
gorithm performs best when the number of trees is set
to [300, 300] or [500, 500].

Based on the above comparative results, [300, 300]
was selected as the final experimental parameters: al-
though [300, 300] and [500, 500] yielded similar experi-
mental results, the time and calculation costs of using
[300, 300] are lower.

Other scholars have used machine learning algorithms
to stage lung adenocarcinoma. Li et al. [6] provided a
staging model of lung cancer with an accuracy of 0.71.
Nicolas Anthony Nguyen et al. [7] used SVM to classify
TNM staging in lung cancer patients, with overall accur-
acies of 0.64 and 0.82 across T and N stages, respect-
ively. The comparison of the experimental results shows
that our proposed algorithm achieves higher AUC values
and accuracy for lung adenocarcinoma classification.
Moreover, MLW-gcForest based on multi-modal genetic
data is an effective method to improve the classification
model of lung adenocarcinoma compared to traditional
machine learning algorithms.

Conclusion
In this paper, we propose an improved gcForest model
called MLW-gcForest and implement decision-level fu-
sion to address the challenge of staging lung adenocar-
cinoma using small-sample multi-modal genetic data.
The experimental results show that the MLW-gcForest
algorithm has an AUC of 0.96 and an accuracy of 0.908
for lung adenocarcinoma staging, which are better than
those achieved by the standard gcForest and traditional
machine learning algorithms. Therefore, the proposed
MLW-gcForest algorithm is more suitable for small-
sample genetic data, and the integration of multi-modal
genetic data can effectively improve the accuracy of lung
adenocarcinoma staging compared to that achieved with
single-modal data.

Although the experimental results show that the pro-
posed combination of MLW-gcForest and multi-modal
genetic data has the potential to improve the staging of
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lung adenocarcinoma, some limitations remain in our
research. First, the amount of multi-modal genetic data
collected in the experiment is relatively small, which
may limit the training of more powerful lung adenocar-
cinoma staging models. Second, our experiments inte-
grate only three types of genetic data, namely,
methylation data, RNA-seq, and CNV, which may ignore
the value of other types of genetic data for the staging of
lung adenocarcinoma. In addition, pathological images,
another class of valuable data found in the TCGA, are
not considered in our study. In our future work, we will
collect more types of genetic data to train and test the
proposed model and explore the possibility of combining
pathological images with multi-modal genetic data for
the staging of lung adenocarcinoma. In addition, we in-
tend to extend the proposed algorithm to the classifica-
tion task of cancer subtypes.
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