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Abstract

Background: S-sulphenylation is a ubiquitous protein post-translational modification (PTM) where an S-hydroxyl
(−SOH) bond is formed via the reversible oxidation on the Sulfhydryl group of cysteine (C). Recent experimental
studies have revealed that S-sulphenylation plays critical roles in many biological functions, such as protein
regulation and cell signaling. State-of-the-art bioinformatic advances have facilitated high-throughput in silico
screening of protein S-sulphenylation sites, thereby significantly reducing the time and labour costs traditionally
required for the experimental investigation of S-sulphenylation.

Results: In this study, we have proposed a novel hybrid computational framework, termed SIMLIN, for accurate
prediction of protein S-sulphenylation sites using a multi-stage neural-network based ensemble-learning model
integrating both protein sequence derived and protein structural features. Benchmarking experiments against the
current state-of-the-art predictors for S-sulphenylation demonstrated that SIMLIN delivered competitive prediction
performance. The empirical studies on the independent testing dataset demonstrated that SIMLIN achieved 88.0%
prediction accuracy and an AUC score of 0.82, which outperforms currently existing methods.

Conclusions: In summary, SIMLIN predicts human S-sulphenylation sites with high accuracy thereby facilitating
biological hypothesis generation and experimental validation. The web server, datasets, and online instructions are
freely available at http://simlin.erc.monash.edu/ for academic purposes.

Keywords: Protein post-translational modification, S-sulphenylation, Bioinformatics software, Machine learning,
Ensemble learning

Background
Post-translational modifications (PTMs) of the cellular
proteome provide a dynamic regulatory landscape that in-
clude both rapid reversible modifications and long-lasting
irreversible modifications to cellular perturbations [1]. In
particular, reactive oxygen species (ROS), which are highly
reactive and toxic molecules generated during mitochon-
drial metabolism, have been shown to play important
signalling roles in the presence of oxidative stress and cellu-
lar pathophysiology in various complex diseases when their

levels are altered in periods of cellular stress [2–5]. In the
redox environment, S-sulphenylation (i.e. S-sulfenylation), a
type of PTM that occurs at cysteine residues, is a fleeting
and reversible covalent oxidation of cysteinyl thiols (Cys-
SH) towards supheric acids (Cys-SOH) in the presence of
hydrogen peroxide, which thereby acts as a rapid sensor of
oxidative stress [6–12]. Thus far, a number of experiments
have validated that S-sulphenylation plays important roles
in regulating protein functions under both physiologic and
oxidatively stressed conditions [7, 9–11, 13–19]. Despite
the lack of knowledge regarding the specific function-
ality of this redox modification in human cell systems,
it has been reported that S-sulphenylation is involved
in many signal transduction processes, such as the
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deubiquitinase activity in ovarian tumors and growth
factor stimulation [11, 17, 20]. Furthermore, including
S-sulphenylation, more than 200 sulfenic modifica-
tions that have been identified in various situations,
such as transcription factors, signaling proteins, meta-
bolic enzymes, proteostasis regulators, and cytoskeletal
components [17]. Although only approximately 2% of pro-
teins in the human, mouse, and rat proteomes contain cyst-
eine residues [21], it is essential to understand the underlying
mechanisms that contribute to the residues’ critical roles in
various biological processes, such as S-sulphenylation, regula-
tion of oxidative PTMs, and the quantification of sulfenic
modification processes [6, 7, 9, 10, 14–16].
Despite the significant progress in selective labelling

methods for S-sulphenylation using β-dicarbonyl com-
pounds dimedone and analogues, it remains challenging
to accurately characterize protein S-sulphenylation sites
experimentally, due to their intrinsic instability and low
abundance of cysteine residues [6–8, 11, 17, 20, 22].
Moreover, experimental identification of S-sulphenylation
is labour-intensive and particularly difficult due to its in-
trinsically unstable nature and the diversity of the redox
reaction [7, 8, 11]. Therefore, in order to assist biologists
with characterization of S-sulphenylation sites and S-
sulphenylated sequences, it is imperative to construct a
generalizable computational tool for highly accurate pre-
diction of protein S-sulphenylation sites.
To date, several algorithms for S-sulphenylation pre-

diction have been published, including MDD-SOH,
SOHSite [6, 7], SOHPRED [23], Press [24], iSulf-
Cys [25], SulCysSite [26], PredSCO [27], the predictor
by Lei et al [28], and SVM-SulfoSite [29]. Among these
computational tools, to the best of our knowledge, the
most representative algorithm for S-sulphenylation pre-
diction is MDD-SOH, along which the training dataset
in this study was assembled. MDD-SOH is a two-stage
ensemble learning model based only on SVM classifiers
built upon the previous “SOHSite” project [6, 7]. Despite
the progress of computational methods for S-
sulphenylation prediction, the prediction performance
needs to be further improved, due to the low abundance
of cysteine residues and the insufficient number of ex-
perimentally verified S-sulphenylation sites.
In this study, we propose a novel bioinformatics tool for

improved prediction of protein S-sulphenylation sites,
named SIMLIN, integrating a number of protein sequence-
derived and protein structural features based on the se-
quence motifs previously identified in [6, 7]. SIMLIN is a
two-layer framework consisting of Support Vector Machine
(SVM) and Random Forests (RF) in the first layer and neural
network models in the second layer. To further improve the
prediction accuracy of SIMLIN, an incremental feature
selection method was employed, based on by the mRMR ap-
proach implemented in the R package “mRMRe” [30]. The

constructed SVM and RF models, trained on different fea-
ture clusters plus the selected feature set, were used as the
input for the neural network in the second layer. Empirical
assessment on the independent testing dataset demonstrated
that SIMLIN achieved a prediction accuracy of 88% and an
AUC score of 0.82, outperforming the existing methods for
S-sulphenylation site prediction.

Implementation
Figure 1 provides an overview of the framework of SIM-
LIN, which consists of four major steps: (i) data collec-
tion, (ii) feature calculation and selection, (iii) model
training, and (iv) performance evaluation. During the
data collection process, we collected experimentally veri-
fied S-sulphenylation sites from the study of Bui et al.
[7]. The negative dataset (defined as proteins without ex-
perimentally validated S-sulphenylation sites) was extracted
from the UniProt database [31]. Refer to the section 2.1 for
more details regarding data collection and pre-processing.
For feature extraction, a variety of protein sequence and
structural features were extracted and selected using the
MDL (minimum descriptive length) technique [32] and
mRMR (minimum-redundancy maximum-relevancy) algo-
rithm [30, 33]. A detailed description and statistical sum-
mary of the calculated features are provided in the Section
2.2. To construct accurate predictive models, at the ‘Model
Construction’ step, a generalized ensemble framework of
SIMLIN was developed by integrating various machine-
learning algorithms including Artificial Neural Net-
works (ANNs) [34, 35], SVMs with various kernel func-
tions [36, 37], and RFs [38]. To evaluate and compare the
prediction performance of SIMLIN with the existing
methods, at the last step, we assessed the prediction per-
formance of different algorithms on both 10-fold stratified
cross-validation sets and independent datasets assembled
in the previous study of Bui et al [7].

Data collection and pre-processing
Both benchmark and independent test datasets in this
study were extracted from the ‘SOHSite’ web server,
constructed by Bui et al. [6, 7]. Sequence redundancy of
the dataset was removed in this study (using 30% as the
sequence identity threshold), which was reported to be
the most complete dataset for S-sulphenylation to date
through the integration of experimentally validated S-
sulphenylation sites from four different resources: (i) the
human S-sulphenylation dataset assembled using a che-
moproteomic workflow involving the S-sulfenyl-mediated
redox regulation [11], by which the S-sulphenylation cys-
teines were identified; (ii) the RedoxDB database [39],
which curates the protein oxidative modifications includ-
ing S-sulphenylation sites; (iii) the UniProt database [31],
and (iv) related literature. Considering the frequent up-
dates of UniProt, based on the gene names provided in
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the datasets, we further mapped these proteins to the Uni-
Prot database (downloaded November 2016). The canon-
ical protein sequences harboring experimentally verified
S-sulphenylation sites were retrieved and downloaded
from the UniProt database. Motifs of 21 amino acids with
the S-sulphenylation site in the center and flanked by 10
amino acids each side were then extracted from the pro-
tein sequences. The highly homologous motifs have been
further removed to maximize the sequence diversity ac-
cording to [7, 13]. The resulting dataset contains a total of
1235 positive samples (i.e. with S-sulphenylation sites) and
9349 negative samples (i.e. without S-sulphenylation sites).
Table 1 provides a statistical summary of the benchmark
and independent test datasets, respectively.

Feature extraction and calculation
To numerically represent the sequence motifs in the
datasets, we calculated and extracted both sequence-
based and structural features [40]. In total nine types of
sequence-derived and structural features were extracted

and used, including the composition of k-spaced amino
acid pairs (CKSAAP) [41], motif binary representations
[42], amino acid substitution matrix (BLOSUM62) [43],
protein specific scoring matrix (PSSM) by PSI-BLAST
[44], amino acid index (AAindex) [45], amino acid com-
position (AAC), surface accessibility (ACC) based on
protein secondary structure prediction, protein predicted
disordered region, and protein predicted secondary
structure. The detailed information about each type of
features and its feature dimensionality is shown in
Table 2.

Composition of k-spaced amino acid pairs (CKSAAP)
The CKSAAP encoding theme has been widely applied
[46–49], which represents a protein sequence using the
compositions of amino acid pairs spaced by the k resi-
dues [41, 50, 51]. The composition of each possible k-
spaced amino acid pair i can be therefore calculated
based on the following formula:

Table 1 The statistics of datasets employed in this study

Number of positive motifs Number of negative motifs Total

Training dataset 1019 7937 8956

Independent test dataset 216 1412 1628

Total 1235 9349 10,584

Fig. 1 The overall framework illustrating the model construction and performance evaluation for SIMLIN. a The four major steps for constructing
SIMILIN include data collection, feature engineering, model construction, and performance evaluation, (b) A detailed breakdown of the
construction of the two-stage hybrid SIMLIN model
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CKSAAP i ¼ 1; 2; 3;… kmax þ 1ð Þ � 400½ �
¼ Ni= W−k−1ð Þ; ð1Þ

where Ni is the number of the k-spaced amino acid
pair i, W denotes the window size, and kmax represents
the maximum space considered — which has been opti-
mized as kmax = 5 in this study [42]. In total, the
CKSAAP scheme generated a feature vector of 2400 di-
mensions for each motif.

Motif one-hot encoding (binary)
Each motif was also presented using a binary encoding
scheme [42], where each amino acid in the motif was de-
noted using a 21-dimensional vector organized via the
alphabetic order of 20 natural amino acids and a gap-
filling residue “X”. The value 1 was used to denote that
the amino acid was in fact in the motif and was placed
in its corresponding position in the vector, while other
positions in the vector were filled with “0”. For instance,
the residue C (cysteine) is denoted as {0,1,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0}. Therefore, for a motif with 21
amino acids, a total of 441 (21 × 21) features were gen-
erated using the motif binary representation scheme.

Amino acid substitution matrix (BLOSUM62)
The BLOSUM62 is a widely used amino acid substitu-
tion matrix based on sequence alignment [43, 52] and
has been employed in a variety of bioinformatic studies
[6, 22, 53–55]. For each amino acid, a 21-dimensional
vector consisting of substitution scores of all 20 amino
acids and an additional terminal signal constitute the
matrix. For each motif, a 21 × 21 matrix was used and a
total number of 441 features were added.

Position-specific scoring matrix (PSSM)
Using the UniRef90 dataset from the UniProt database,
we performed PSI-BLAST (version 2.2.26) search to
generate the PSSM for each motif in our dataset to

represent the sequence conservation and similarity
scores. PSSM has been widely applied in a variety of bio-
informatics studies as a crucial sequence feature type.
Similar to the feature representation of BLOSUM62, 441
features were finally generated for each motif.

Amino acid index (AAindex)
AAindex is a collective database that provides a variety
of physical and chemical properties of amino acids [45].
A number of bioinformatics studies have benefited from
use of these amino acid properties provided in the AAin-
dex database [46, 48, 56]. Due to the high diversity of
the properties offered in the AAindex database, Saha
et al. [57] further categorized these indices into eight
clusters, which were used for the AAindex feature set
for each motif in our study. Therefore, we utilized a se-
lected set of AAindex (i.e., a vector of 1344 dimensions
(21 × 8 × 8) [52] attributes to represent each motif.

Amino acid composition (AAC)
For the ACC encoding, each motif is represented as a
20-dimensional vector, where each dimension denotes
the number of occurrence of each amino acid within the
given motif and is further normalized (i.e. divided by the
length of the motif [22]).

Predicted protein disordered region
Given the strong relationships between protein disor-
dered regions and PTMs [58–63], we also integrated the
predicted disordered region of a protein as a feature set.
To do so, we conducted protein disordered region pre-
diction using DISOPRED (Version 3.1) [64] based on
protein sequence. Each amino acid is given a predictive
score by DISOPRED, which indicates the likelihood of
being located in the protein’s disordered region. For a
sequence motif of 21 residues, a 20-dimensional vector
of predicted scores (i.e. 10 scores for the upstream and
10 scores for the downstream amino acids, respectively)
was constructed.

Predicted protein secondary structure
PSIPRED (Version 3.5) [65, 66] was employed to predict
protein secondary structure based on the protein’s amino
acid sequence. The predictive outputs of PSIPRED contain
four scores for each residue including the predicted struc-
tural class (i.e. C, coil; E, beta strand; and H, alpha helix)
and the probabilities of each structural class. As a result,
for a motif with 21 amino acids, an 84-dimensional (in-
cluding three probabilities and the recommendation for
each residue) vector was generated for the predicted pro-
tein secondary structure feature.

Table 2 The sequence and structural features extracted and the
feature dimensionalities

Feature type Feature Cluster Dimension

Sequence AAC 20

CKSAAP 2400

BLOSUM62 441

PSSM 400

AAindex 1344

Binary 441

Structural Predicted protein disordered region 20

Predicted protein secondary structure 84

Predicted surface accessibility 147

Total 5297
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Predicted surface accessibility (ACC)
The surface accessibility feature was calculated using
the NetSurfP-1.1 algorithm [67] based on the protein
sequences. Each residue in the protein is represented
using seven predictive scores, indicating the accessi-
bility (i.e. if this residue is buried), relative surface
accessibility, absolute surface accessibility, Z-fit score,
probability of this residue being in alpha-helices,
beta-strands, and coils. Note that the predictive
scores of each category generated by NetSurfP range
widely. Therefore, we employed the Min-Max method
to normalize the prediction scores of each type [35].
The formula we used for the data normalization was
as follows:

Vij ¼
Vij− minj∈ 1…mf g Vij

� �

maxj∈ 1…mf g Vij
� �

− minj∈ 1…mf g Vij
� � ; ð2Þ

where Vij represents the value i of the feature category
vector j, and m denotes the number of observations rep-
resented in the vector j. As a result, all values were
rescaled to the range between 0 and 1.

Feature selection
As shown in Table 2, a total of 5297 sequence and
structural features were calculated and extracted.
Such high-dimensional feature vectors might contain
misleading and noisy information, which would lead
to biased model training. Furthermore, it would re-
quire considerable time and effort to build computa-
tional models based on such high-dimensional feature
set. Therefore, we employed the mRMR (minimum
Redundancy Maximum Relevance) [30, 33] package
and forward incremental feature selection to elimin-
ate noisy and less informative features from the ori-
ginal feature vector. To perform feature selection, we
first applied mRMR to calculate and rank the import-
ance score of each feature. Then, based on the feature
importance ranking provided by mRMR, we initiated
an empty set and added one feature from the original
feature set at a time. The AUC values based on the
current feature set were evaluated for both RF and
SVM independently, and the resulting feature subset
was formed using the features that resulted in higher
AUC values for both SVM and RF models. Each
feature was incrementally added into the optimized
feature set based on the scores of feature importance
provided by the mRMR until the curve of AUC values
achieved its peak. As described, by applying this
forward stepwise sequential variable elimination, the
feature with the highest importance was selected. Ac-
cording to the RF algorithm, the global permuted im-
portance is based on the out-of-bag sample B of the

tree t in the forest F for each feature Xj and is defined
as follows [22, 35, 38]:

f imp X j
� � ¼

P
i∈BI yi ¼ y

0
i

� �
−I yi ¼ y

0
ij

� �

j B j : ð3Þ

Model construction
As shown in Fig. 1, the development of SIMLIN consists
of two major stages after feature selection: (i) employing
SVM and RF models based on different feature types
(Table 2) to generate the input for the neural network
models, and (ii) training of the neural network model
based on the optimized RF and SVM models to deliver
the final predictive outputs. During the first stage, ten
RF and SVM models were constructed based on the nine
types of features and the selected feature set. 10-fold
stratified cross-validation was performed on the training
dataset to select the best model (i.e. with highest AUC
values) for each feature type. During the second stage,
we built a neural network model which consists of three
layers including an input layer, a hidden layer, and an
output layer. The first layer harbours 20 nodes to take
the output of the best RF and SVM models as the input
based on the 10-fold stratified cross-validation per-
formed during the first stage, while the hidden and out-
put layers only have one node (denoted as H1 and O1,
respectively). Furthermore, in the hidden layer, in
addition to H1, two extra nodes, B1 and B2, were auto-
generated nodes by the neural network algorithm for the
purpose of model balancing. Lastly, the O1 node in the
output layer represents the prediction outcome from the
entire algorithm.
We applied a number of software packages to imple-

ment SIMLIN in our study, including the Python-
based machine learning package “scikit-learn” [68],
and various R packages of SVM (combining “kernelab”
and "e1071") and neural network model (“nnet”) [35,
69]. The feature selection techniques employed in our
study, including mRMR and MDL, were implemented
based on the R packages “mRMRe” and
“discretization” [70–72], respectively. Additionally, R
packages “caret” [73] and “fscaret” [74] have been used
in combination for the control of overall workflow for
model training and parameter optimization.

Prediction performance evaluation
We applied widely used measures to evaluate and com-
pare the prediction performance of SIMLIN, including
the Area Under the Curve (AUC), Accuracy, Sensitivity,
Specificity and Matthew’s Correlation Coefficient (MCC)
[75–77]. During the model training process, AUC was
used as the main measure for parameter optimization.
The performance measures used are defined as follows:
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Accuracy ¼ TP þ TN
TP þ FP þ TN þ FN

;

Sensitivity ¼ TP
TP þ FN

;

Specificity ¼ TN
TN þ FP

;

MCC ¼ TP � TN−FP � FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FNð Þ � TN þ FPð Þ � TP þ FPð Þ � TN þ FNð Þp ;

where TP, TN, FP, and FN denote the numbers of true
positives, true negatives, false positives and false nega-
tives, respectively. In this study, the S-sulphenylation
sites were regarded as the positives, while the non-S-
sulphenylation sites were considered as the negatives for
the statistics of AUC, specificity and sensitivity.

Results and discussion
Motif conservation analysis and feature selection
We first performed the motif conservation analysis using
both benchmarking and independent test datasets. Two
sequence logos with the human proteome as the back-
ground set generated by pLogo are shown in Fig. 2. In
general, the over- and under-represented amino acids
surrounding the central cysteine are similar across the
benchmarking and independent test datasets. In accord-
ance with the conclusion by Biu et al., amino acids such
as leucine (L), lysine (K), glutamate (E), and aspartate
(D) are over-represented, while cysteine (C), serine (S),
and phenylalanine (F) are under-represented.
Prior to the construction of SIMLIN, based on the calcu-

lated and extracted features (Table 2), we generated another
feature set which contains selected features from the ori-
ginal combined features (i.e. AAC, CKSAAP, BLOSUM62,
PSSM, AAindex, ACC, Protein predicted disordered region,
Protein secondary structure prediction, and Binary) using
stepwise forward sequential variable elimination. As a re-
sult, the AUC achieved its highest value of 0.72 (sensitivity:
0.95; specificity: 0.19; accuracy: 86.6%; MCC: 0.182) when

166 features were selected. Among the selected 166 fea-
tures, 110 (66.3%) and 56 (33.7%) were sequence and struc-
tural features, respectively. A detailed breakdown list of
these features in terms of feature types and names is avail-
able in supplementary material (Additional file 1: Table S1).

Model constructions in the two stages of SIMILN
At the first stage of SIMILN construction, we built nine
SVM and RF models based on the nine clusters of calcu-
lated features (Table 2), respectively. Additionally one
SVM and RF models were also constructed using the set
of selected features (Additional file 1: Table S1). The RF
and SVM models were constructed and assessed via 10-
fold stratified cross-validation and the average AUC
values are shown in Table 3. For the RF models, to reach
the optimal performance, the number of trees was set to
the nearest integer of the subspace dimensionality of the
classification task, which is the square root of the predic-
tors’ number. For the SVM models, different kernels
were used including the polynomial, radial sigma, and
linear kernels for each feature set. The AUC-based per-
formance optimization and kernel selection was per-
formed automatically by the R packages “caret” and
“kernelab”. The best-performing kernels and their corre-
sponding AUC values were listed in Table 3. It can be
seen from Table 3 that SVM and RF models provided
competitive performance when using different types of
features; however, the RF model outperformed the SVM
model on the selected feature set. As shown in Fig. 3,
the outputs of the 20 constructed models (i.e. ten RF
and ten SVM models; the first layer) were used as inputs
for the second layer, i.e. the neural network model,
where the nodes, from I1 to I20 took the output of the 20
models based on the outputs of RF and SVM models.
At the second stage a Feed-Forward Neural Network with

three layers - including an input layer (20 nodes), a hidden
layer (3 nodes) and an output layer (1 node) — was con-
structed using the R package ‘nnet’ and subsequently evalu-
ated. Similar to the RF and SVM construction, 10-fold

Fig. 2 Motif conservation analysis of S-sulphenylation using the human proteome as the background set for (a) benchmarking and (b)
independent datasets
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stratified cross-validation was employed using the training
dataset for building the neutral network model. During the
training process, two parameters (i.e. the number of units in
the hidden layer and the weight decay for optimising the
performance and minimizing the overfitting) were automat-
ically adjusted and evaluated by the network model. The
values of the two parameters were adjusted automatically
and the resulting performance including AUC, sensitivity,
and specificity are given in Table 4. Generally, the perform-
ance achieved using different numbers of units in the hidden
layer and weight decay values was satisfactory. Based on the
performance, the number of units and the weight decay were
set to 1 and 0.1 in the final neural network model, respect-
ively (Additional file 1: Table S2). This was for the purpose

of minimizing the number of nodes in the hidden layer while
maximining the AUC value and convergence rate.

Independent test and performance comparison with
existing methods
We assessed and compared the prediction performance of
SIMLIN with state-of-the-art methods for S-sulphenylation
prediction on the independent test dataset. The compared
approaches included MDD-SOH, SOHSite [6, 7],
SOHPRED, PRESS, iSulf-Cys, SulCysSite. We also noticed
that several new computational frameworks have been pub-
lished recently, including PredSCO [27], the predictor by Lei
et al [28], and SVM-SulfoSite [29]. However, due to the in-
accessibility of source codes or implemented webservers, we

Table 3 The AUC values of RF and SVM models constructed using different feature sets at the first stage

Feature sets AUC

RF
(class weight balanced)

SVM
(kernel function)

AAC 0.68 0.63 (Polynomial kernel)

AAindex 0.69 0.69 (Radial basis function kernel with grid search hyperparameter tuning)

ACC 0.71 0.64 (Radial basis function kernel)

BINARY 0.59 0.71 (Polynomial kernel)

BLOSUM62 0.68 0.74 (Radial basis function kernel)

CKSAAP 0.66 0.63 (Polynomial kernel)

DISOPRED 0.54 0.55 (Linear kernel)

PSIPRED 0.62 0.60 (Polynomial kernel)

PSSM 0.73 0.71 (Polynomial kernel)

Selected features
(mRMR+forward consequential elimination)

0.75 0.72 (Linear kernel)

The bold font shows the highest performance of each feature among the RF and SVM

Fig. 3 Prediction performance of SIMLIN on the independent test dataset in terms of (a) ROC and (b) MCC
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were not able to compare their prediction results on our in-
dependent test dataset with the performance of SIMLIN.
From Table 5 and Fig. 3, it is clear that generally SIMLIN
outperformed the compared approaches. Compared to
MDD-SOH, an important advantage of SIMLIN is that it
does not require any pre-classified motifs. iSulf-Cys is
another computational framework that employs a similar ap-
proach to create a unified predictive model, but it only used
SVM models with three major encoding features (AAindex,
binary and PSAAP) for model construction. The overall per-
formance of iSulf-Cys is lower than SIMLIN. On the 95% CI
the accuracy of iSulf-Cys is 0.7155 ± 0.0085; while SIMLIN
achieved a prediction accuracy of 0.88 (0.857–0.892) on the
95% CI. The MCC value of SIMLIN was also higher than
iSulf-Cys (0.39 vs. 0.3122). The SulCysSite model is mainly
developed based on the multistage RFs with four major fea-
tures (AAindex, binary amino acid codes, PSSM, and com-
positions of profile-based amino acids). Although SulCysSite
achieved an AUC of 0.819, it used a biased approach whose
final decision was dependent on a complex series of rules,
each of which can only cover a small subset. In general, SIM-
LIN outperformed all the compared methods in terms of
sensitivity, MCC, and AUC, demonstrating its ability to
accurately predict human S- sulphenylation sites.

Proteome-wide prediction and functional enrichment
analysis
In order to more effectively portray the distribution of
predicted S-sulphenylation sites and their potential mo-
lecular functions, we performed human proteome-wide
S-sulphenylation site prediction using the protein se-
quences collected from the UniProt database (Version
Sep 2017) and our proposed SIMLIN framework. We
first conducted statistical analysis on the distribution of
predicted S-sulphenylation sites in proteins followed by
a Gene Ontology (GO) enrichment analysis to reveal the
potential cellular localization, biological function, and
signalling/metabolic pathways involved in the predicted
S-sulphenylation sites using the DAVID biological func-
tional annotation tool (Version 6.8) [78, 79].
Figure 4a-d display the top ten enriched candidates of

our gene ontology and pathway enrichment analysis, in
terms of molecular function, biological process and cellu-
lar component. Figure 4e shows the distribution of num-
bers of predicted S-sulphenylation sites in the human
proteome. In terms of molecular function, the ATPase re-
lated activities (i.e., ATPase activity, coupled to movement
of substances with a significant p-value of 8.5 × 10− 21;
ATPase activity, coupled to transmembrane movement of
substances - 8.5 × 10− 21; ATPase activity - 3.42 × 10− 14)
have been found to be significantly enriched in proteins
with predicted S-sulphenylation sites (Fig. 4a). An example
of such relationship has been demonstrated in the study
by Wojdyla et al. [80] where Acetaminophen (APAP)
treatment has been shown to influence the ATP produc-
tion, and the APAP-induced S-sulphenylation may act as
one contributing fact to such effect. All enriched biological
processes shown in Fig. 4b are metabolic processes, which
indicate the important roles of S-sulphenylation in metab-
olism [11]. For instance, one S-sulphenylation occurring
at C212 of a fatty acid synthase (FASN) protein may play
a role in blocking an active site (C161), which is respon-
sible for fatty acid synthase (Fig. 3B; fatty acid metabolic
process - 5.82 × 10− 17) [11, 81]. While for cellular

Table 4 Prediction performance of the neural network model with different units in the hidden layer via 10-fold stratified cross-
validation test

#Units in the hidden layer Decay AUC Sensitivity Specificity

1 0 0.999842 ± 3.15E-4 0.999685 ± 6.30E-4 1

0.0004 0.999994 ± 6.30E-5 0.999887 ± 3.62E-4 1

0.1 1 0.999874 ± 3.68E-4 1

3 0 0.999874 ± 3.35E-4 0.999723 ± 6.84E-4 1

0.0004 0.999987 ± 8.85E-5 0.999937 ± 2.76E-4 1

0.1 1 0.999874 ± 3.80E-4 1

5 0 0.999793 ± 5.90E-4 0.999685 ± 7.02E-4 0.999902 ± 9.80E-4

0.0004 0.999869 ± 7.28E-4 0.999912 ± 4.48E-4 0.999704 ± 2.20E-3

0.1 1 0.999899 ± 3.44E-4 1

Table 5 Performance comparison with existing approaches for
S-sulphenylation prediction on the independent test

Method Sensitivity Specificity MCC Accuracy AUC

SOHPRED 0.73 0.74 0.34 N.A.b 0.80

PRESS 0.68 0.69 0.27 73.8% N.A.

iSulf-Cys 0.73 0.64 0.31 66.8% 0.72

SulCysSite 0.77 0.71 N.A. 72.0% 0.76

SIMLIN 0.88 0.56 0.39 88.0% 0.82

MDD–SOHa 0.85 0.87 0.58 87.0% N.A.
aThe performance values of MDD-SOH were extracted from the study of Bui
et al [6]
bN.A.: not available
The bold font shows the highest performance of each feature among the RF
and SVM
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component category (Fig. 4c), the top three localisations
are organelle (5.30 × 10− 08), intracellular organelle (5.30 ×
10− 08) and membrane-enclosed lumens (5.30 × 10− 08),
which is consistent with the analysis of Bui et al [6, 7] RNA
transport is an important process associated with protein
synthesis, which consists of 14 proteins enriched in S-
sulphenylation and S-nitrosylation sites [80], highlighting
the necessity of protein S-sulphenylation sites in RNA
transport (Fig. 4d; 1.50 × 10− 05). Figure 3e shows the distri-
bution of the numbers of predicted S-sulphenylation site
contained in each protein. Expectedly, most of the proteins
(72.3%) only contain one predicted site; while only 1.5% of
the human proteome harbour five or more predicted sites.
A full list of the predicted S-sulphenylation sites on human
proteome is freely available on the SIMLIN webserver.

Case study of predicted S-sulphenylation using SIMLIN
As aforementioned, compared with the dataset used for
training SIMLIN, three more S-sulphenylation sites have
been recently identified and added to the UniProt data-
base, including BRF2_HUMAN (position 361 of
Q9HAW0) [82], PTN7_HUMAN (position 361 of
P35236; by similarity according to UniProt) and UCP1_
HUMAN (position 254 of P25874; by similarity accord-
ing to UniProt). SIMLIN precisely predicted all of these
three S-sulphenylation sites, with the possibility scores
of 0.997, 0.999 and 0.998, respectively, illustrating the
predictive power and capacity of SIMLIN for predicting
human S-sulphenylation sites.

Implementation and usage of the SIMLIN webserver
The open-access web application for SIMLIN was imple-
mented using the Shiny framework (Version 1.3.0.403)

in R language combining with Node.js (Version 0.10.21)
and is freely available for academic use at http://simlin.
erc.monash.edu/. The SIMLIN server resides on a Linux
server, equipped with dual AMD Opteron CPUs, 8 GB
memory, and 10GB disk space. SIMLIN accepts both indi-
vidual protein and a sequence file with the size limit of 1
MB as the input in FASTA format. An ‘Example’ link has
been provided to demonstrate the predictive functionality
of the service and guide users to conveniently use it. As
the training dataset of SIMLIN was collected from the hu-
man proteome, the prediction results delivered by SIMLIN
should be interpreted at the users’ discretion if the input
protein is from other species rather than Homo sapiens. A
graphical illustration of the SIMLIN webserver in terms of
input and output is provided in Fig. 5.

Conclusion
In light of the biological importance of S-sulphenylation,
it is imperative to develop easy-to-use computational ap-
proaches for the accurate identification of S-sulphenylation
sites. In this article, we present SIMLIN, a hybrid computa-
tion al framework integrating RF, SVM, and neural
network models and sequence and structural features
of S-sulphenylated motifs and proteins. Performance
assessment on both cross-validation and independent
test sets demonstrated that SIMLIN achieved outstand-
ing prediction performance compared to state-of-the-
art computational approaches (MDD-SOH, SOHSite,
SOHPRED, PRESS, iSulf-Cys, and SulCysSite) for S-
sulphenylation prediction. A user-friendly webserver
has also been implemented to provide high-quality
predictions of human S-sulphenylation sites using the
optimised hybrid SIMLIN framework. Proteome-wide
prediction of S-sulphenylation sites for the entire

Fig. 4 Gene ontology enrichment analysis of the predicted protein S-sulphenylation sites in the human proteome using SIMLIN: top 10 significant
(a) molecular function terms (GO_MF), (b) biological process terms (GO_BP), (c) cellular component terms (GO_CC), (d) pathways; and (e)
distribution of the numbers of predicted S-sulphenylation sites
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human proteome extracted from the UniProt database,
has been made available at the SIMLIN webserver,
aiming to provide highly accurate S-sulphenylation
sites and facilitate biologists’ efforts for experimental
validation, hypothesis generation, and data analysis.
We anticipate that SIMLIN will be explored as a useful
tool for human S-sulphenylation prediction. This
effective framework can also be generally applied to
address the prediction problem of other protein PTMs.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12859-019-3178-6.

Additional file 1: Table S1. A detailed summary of the selected
sequence and structural features using the MDL and mRMR feature
selection methods. Table S2. The assigned weights of each node in the
final neural network model.
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