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Abstract

Background: Single-cell RNA-sequencing (scRNA-seq) is a transformative technology, allowing global
transcriptomes of individual cells to be profiled with high accuracy. An essential task in scRNA-seq data analysis is the
identification of cell types from complex samples or tissues profiled in an experiment. To this end, clustering has
become a key computational technique for grouping cells based on their transcriptome profiles, enabling subsequent
cell type identification from each cluster of cells. Due to the high feature-dimensionality of the transcriptome (i.e. the
large number of measured genes in each cell) and because only a small fraction of genes are cell type-specific and
therefore informative for generating cell type-specific clusters, clustering directly on the original feature/gene
dimension may lead to uninformative clusters and hinder correct cell type identification.

Results: Here, we propose an autoencoder-based cluster ensemble framework in which we first take random
subspace projections from the data, then compress each random projection to a low-dimensional space using an
autoencoder artificial neural network, and finally apply ensemble clustering across all encoded datasets to generate
clusters of cells. We employ four evaluation metrics to benchmark clustering performance and our experiments
demonstrate that the proposed autoencoder-based cluster ensemble can lead to substantially improved cell
type-specific clusters when applied with both the standard k-means clustering algorithm and a state-of-the-art
kernel-based clustering algorithm (SIMLR) designed specifically for scRNA-seq data. Compared to directly using these
clustering algorithms on the original datasets, the performance improvement in some cases is up to 100%, depending
on the evaluation metric used.

Conclusions: Our results suggest that the proposed framework can facilitate more accurate cell type identification
as well as other downstream analyses. The code for creating the proposed autoencoder-based cluster ensemble
framework is freely available from https://github.com/gedcom/scCCESS
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Background
Transcriptome profiling by single-cell RNA-sequencing
(scRNA-seq) is a fast-emerging technology for studying
complex tissues and biological systems at the single-cell
level [1]. Identification of cell types present in a biolog-
ical sample or system is a vital part of scRNA-seq data
analysis workflow [2]. The key computational technique
for unbiased cell type identification from scRNA-seq data
is unsupervised clustering [3]. Typically, this is achieved
by using a clustering algorithm to partition cells in a
scRNA-seq dataset into distinct groups and subsequently
annotating each group to a type of cell based on cell type
marker genes and/or other biological knowledge of cell
type characteristics [4].

Due to the critical role played by cell type identifi-
cation for downstream analyses, significant effort has
been devoted to tailoring standard clustering algorithms
or developing new ones for scRNA-seq data clustering
and cell type identification [5]. These include standard
k-means clustering, hierarchical clustering, and vari-
ants that are specifically designed for scRNA-seq data
(i.e. RaceID/RaceID2 [6], CIDR [7]) as well as more
advanced methods that utilise likelihood-based mixture
modelling (countClust) [8], density-based spatial cluster-
ing [9] and kernel-based single-cell clustering (SIMLR)
[10]. Several studies have compared and summarised
various clustering algorithms used for scRNA-seq data
analysis [11–13].

One of the key challenges in scRNA-seq data clus-
tering is handling specific characteristics of the data
including high feature-dimensionality and high feature-
redundancy. This is because typically a large number of
genes are profiled in the experiment but only a small
proportion of them are cell type-specific and therefore
informative for cell type identification. Hence, cluster-
ing directly on the original high-dimensional feature
space may result in suboptimal partitioning of the cells
due to low signal-to-noise ratio. To reduce the high
feature-dimensionality in scRNA-seq data for visualisa-
tion and downstream analyses, various dimension reduc-
tion techniques, including traditional approaches as well
as newly developed ones, have been applied to scRNA-
seq data. These include generic methods such as prin-
cipal component analysis (PCA), independent compo-
nent analysis (ICA), non-negative matrix factorization
[14], and t-distributed stochastic neighbour embedding
(tSNE) [15], as well as other methods developed for
scRNA-seq data, such as zero inflated factor analysis
(ZIFA) [16]. Recently, deep learning techniques such
as scvis, a deep generative model [17], and a scNN
[18], a neural network model, were developed specif-
ically for scRNA-seq data dimension-reduction. While
these new developments are primarily focused on scRNA-
seq data visualisation, they represent the first applica-

tions of deep learning techniques for scRNA-seq data
analysis.

Ensemble learning is an established field in machine
learning and has a wide application in bioinformatics [19].
Ensemble clustering via random initialisation is a popu-
lar ensemble learning method for clustering [20]. While
this approach was found to improve stability of the k-
means clustering algorithm, it appeared to have a less
consistent effect on clustering accuracy [21]. Ensemble
clustering via random projection is an alternative ensem-
ble learning method for clustering. This approach was
applied to DNA microarray data analysis and resulted
in improved clustering accuracy [22]. Weighted ensem-
ble clustering combines multiple clustering outputs based
on their respective quality [23]. Recently, cluster ensem-
bles have been generated by combining outputs from
different upstream processing and similarity metrics [24]
or different clustering algorithms for cell type identifica-
tion from scRNA-seq data [25, 26]. While these heuris-
tic methods were found to be effective for improving
clustering accuracy in cell type identification, they are
ad-hoc in nature and may not fully explore character-
istics and biological signals in scRNA-seq data when
clustering.

To extract biological signal from scRNA-seq data while
at the same time addressing the issues of high feature-
dimensionality and high feature-redundancy, here we pro-
pose an autoencoder-based cluster ensemble framework
for the robust clustering of cells for cell type identifi-
cation from scRNA-seq data. The proposed framework
first randomly projects the original scRNA-seq datasets
into sub-spaces to create ‘diversity’ [27] and then trains
autoencoder networks to compress each such random
projection to a low-dimensional feature space. Subse-
quently, clusterings are generated on all encoded datasets
and consolidated into a final ensemble output.

The proposed framework of ensemble clustering via
autoencoder-based dimension-reduction and its applica-
tion to scRNA-seq is a principled approach and the first
of its kind. We demonstrate that (1) the autoencoder-
reduced ensemble clustering of scRNA-seq data signifi-
cantly improves clustering accuracy of cell types, whereas
simple ensemble clustering without autoencoder-based
dimension reduction showed no clear improvement; (2)
improvement of clustering accuracy in general increases
with the ensemble size; and (3) the proposed framework
can improve cell type-specific clustering when applied
using either the standard k-means clustering algorithm
or a state-of-the-art kernel-based clustering algorithm
(SIMLR) [10] specifically designed for scRNA-seq data
analysis. This demonstrates that the proposed framework
can be coupled with different clustering algorithms to
facilitate accurate cell type identification and other down-
stream analyses.
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Results
Hyperparameter optimisation for autoencoders
We undertook a grid search to optimise three hyper-
parameters including random projection size, encoded
feature space size and autoencoder learning rate during
backpropagation; this was performed across four datasets
(Table 2) using the ARI, NMI, FM and Jaccard index met-
rics discussed above. Together, the four metrics across
four datasets made a total of sixteen dimensions across
which to optimise. We used Pareto analysis [28] to select
an appropriate combination of parameters from across all
four optimisation datasets without giving priority to any
single dataset or metric. A Pareto rank of 1 indicates an
optimal clustering results on a selection of optimisation
datasets using a combination of hyperparameters.

As the Pareto front becomes larger and more ambiguous
as more datasets are included, we tested the robustness
of each parameter set by obtaining the Pareto front for
all possible combinations of 1, 2, 3 or all 4 datasets and
counting the number of such combinations for which the
given parameter set appears in the Pareto front (Fig. 1).
We determined that the most robust high-accuracy results
were obtained by selecting 2048 genes during random
projection; producing an encoded feature space of 16
dimensions; and training the autoencoder using a learning
rate of 0.001. All evaluation benchmarks were undertaken
using this parameter combination and a hidden layer
width of 128.

Ensemble of k-means clustering
We first asked if the ensemble of autoencoder-based clus-
tering can improve upon the performance of a single
clustering run on a single encoded dataset. To test this,

we first used a standard k-means clustering algorithm
(“Clustering algorithms” section) to create base clustering
results and tested the performance of different ensem-
ble sizes based on ARI, NMI, FM and Jaccard. Note that
we repeatedly ran the entire procedure multiple times
to account for the variability in the clustering results.
We found that in general the overall ensemble clustering
performance improves as the number of base clustering
runs increases (Fig. 2, light blue boxes) according to all
four evaluation metrics and in all four datasets used for
evaluation. These results demonstrate that the ensemble
of autoencoder-based clustering framework can indeed
improve cell type identification for the k-means clustering
algorithm.

We wondered if such an improvement from ensemble
clustering is independent of the random projection and
autoencoder framework. Hence, we compared the perfor-
mance of k-means clustering on the raw input expression
matrix without using the autoencoder framework (that
is, without applying the random projection and autoen-
coder steps) with different ensemble sizes. We found that
the improvement in clustering performance was dimin-
ished in most cases (Fig. 2, red boxes), suggesting that
the improved clustering performance is due to the ran-
dom projection and autoencoder steps implemented in
the proposed framework in addition to the ensemble step.
Notably, the autoencoder framework also enhanced the
data signal-to-noise ratio in most cases as can been seem
from the improved performance of autoencoder-based k-
means cluster compared to direct k-means clustering on
the raw input at the ensemble size of 1.

Another interesting observation is that the variance
of the clustering outputs in general decreased with the

Fig. 1 Hyperparameter optimisation for autoencoders using Pareto analysis. Left panel: PCA visualisation of the four evaluation metrics (i.e. ARI, NMI,
FM and Jaccard) on each of the four optimisation datasets. Each point corresponds to a single combination of hyperparameter values including
random projection size, encoded feature space size, and autoencoder learning rate during backpropagation; each combination/point is
colour-coded by the number of times it was assigned Pareto rank 1 (i.e. the combination that gives best clustering performance) across all possible
combinations of the four optimisation datasets. Right panel: Autoencoder architecture as determined by the hyperparameter optimisation
procedure
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Fig. 2 Ensemble of k-means clustering results on the four scRNA-seq datasets. Red boxes represent ensemble of k-means clustering on the raw
input expression matrix without using the autoencoder framework. Light blue boxes represent autoencoder-based k-means cluster ensemble

increasing number of base clusterings (Fig. 2). While the
ensemble of k-means clustering without random projec-
tion and autoencoder does not improve cell type identi-
fication accuracy, it does reduce the clustering variability,
and therefore resulted in more stable and reproducible
clustering outputs compared to a single run of k-means
clustering. These results are consistent with previous
findings [21]. In comparison, autoencoder-based ensem-
ble clustering led to both more accurate cell type identi-
fication and a reduction of variability, both of which are
desirable characteristics for scRNA-seq data analysis.

Autoencoder-based SIMLR ensemble
While the autoencoder-based cluster ensemble frame-
work is able to improve the performance of a standard
k-means clustering algorithm in both accuracy and repro-
ducibility of cell type clustering, we wondered if such
an ensemble framework could also improve the perfor-
mance of the latest clustering algorithm. To this end,
we applied the proposed framework to a state-of-the-
art kernel-based clustering algorithm, SIMLR, designed
specifically for cell type identification on scRNA-seq data.
Because the computational complexity of SIMLR grows
exponentially with the number of cells in a dataset, we

focused our evaluation on the two smaller datasets (i.e.
GSE84371 and GSE82187). Similar to k-means cluster-
ing, we found in these cases that the performance of
the autoencoder-based SIMLR ensemble improved with
increased ensemble size (Fig. 3). Clustering variability
also generally decreased with larger ensemble sizes. These
results demonstrate that the proposed autoencoder-based
cluster ensemble framework can also lead to more accu-
rate cell type identification and clustering reproducibility
from scRNA-seq data for SIMLR.

While cell type clustering accuracy improves with the
larger ensemble sizes for both k-means clustering algo-
rithm and SIMLR (Figs. 2 and 3), we observed that this
improvement plateaus at an ensemble size of 50 (Fig. 3).
We therefore recommend an ensemble size of 50 as a good
trade-off between clustering output quality and computa-
tional time. Note that the computational complexity of the
proposed cluster ensemble framework increases linearly
with respect to the ensemble size.

Performance comparison of autoencoder-based cluster
ensemble
Typically, a single run of a clustering algorithm is used
to identify cell types from a given scRNA-seq dataset.
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Fig. 3 Evaluation of autoencoder-based SIMLR ensemble. Ensemble sizes range from 1 to 100 were tested using four evaluation metrics in two
scRNA-seq datasets

An interesting question is how much improvement
the proposed autoencoder-based cluster ensemble offers
compared to the common clustering procedure where a
clustering algorithm is directly applied to raw gene expres-
sion data (that is, without random projection and autoen-
coder steps). To address this, we next quantified cell type
clustering accuracy from the direct application of k-means
and SIMLR clustering to the raw gene expression input
and compared these with the autoencoder-based cluster
ensemble of k-means and SIMLR, respectively. Note that
an ensemble size of 50 was used for the cluster ensem-
ble. k-means clustering and the random projection step in
ensemble clustering are non-deterministic; while SIMLR
contains technically non-deterministic steps (including a
k-means step), we found that repeated runs on the same
raw dataset with different random seeds produced iden-
tical clustering partitions. Consequently, SIMLR may be
thought of as functionally deterministic. To account for
variability in the clustering results for stochastic methods,

we repeated clustering ten times and calculated the stan-
dard deviation across multiple runs. Table 1 summaries
these results.

Specifically, the autoencoder-based k-means ensemble
improved cell type clustering for an average of about 30%
in the four evaluation datasets according to all four eval-
uation metrics (Table 1). Clustering variability was also
typically smaller using the autoencoder-based k-means
ensemble. Perhaps more strikingly, the cell type cluster-
ing accuracy as measured by ARI and Jaccard metrics for
the autoencoder-based SIMLR ensemble improved about
50% to 100% compared to using SIMLR alone on the raw
expression matrix for the mouse neurons and striatum
datasets. Moreover, we found that the cell type cluster-
ing accuracy of SIMLR is substantially better than the
standard k-means clustering algorithm, suggesting SIMLR
is indeed an effective clustering algorithm for scRNA-
seq data analysis. Therefore, the further gain in clus-
tering accuracy by coupling SIMLR with the proposed

Table 1 Comparison of direct application of k-means and SIMLR clustering on raw gene expression data with autoencoder-based
k-means and SIMLR ensemble

Raw Autoencoder

ARI NMI FM Jaccard ARI NMI FM Jaccard

k-means

Mouse neurons 0.22±0.02 0.36±0.03 0.39±0.02 0.22±0.01 0.38±0.02 0.56±0.01 0.53±0.02 0.34±0.02

Mouse striatum 0.36±0.07 0.69±0.06 0.51±0.06 0.31±0.05 0.45±0.01 0.75±0.01 0.58±0.01 0.37±0.01

Human archived brain 0.29±0.01 0.49±0.01 0.35±0.01 0.21±0.01 0.37±0.01 0.56±0 0.43±0.01 0.27±0.01

Mouse archived brain 0.32±0.01 0.49±0 0.35±0.01 0.21±0.01 0.43±0.01 0.58±0 0.46±0.01 0.3±0.01

SIMLR

Mouse neurons 0.44±0 0.65±0 0.58±0 0.39±0 0.71±0 0.7±0 0.81±0 0.67±0

Mouse striatum 0.55±0 0.81±0 0.67±0 0.34±0 0.8±0.02 0.87±0.01 0.85±0.02 0.74±0.03

Cell type identification accuracy were quantified by the four evaluation metrics
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autoencoder-based cluster ensemble is of practical impor-
tance and will add to the state-of-the-art methods for
scRNA-seq data analysis.

Comparison of autoencoder-based cluster ensemble with
PCA-based clustering
We next compared the performance of autoencoder-based
cluster ensemble with PCA-based clustering. PCA is a
commonly used dimension reduction method and has
been widely used for reducing the high-dimensionality
of scRNA-seq data prior to clustering cell types. By
benchmarking the performance of cell type clustering
across the evaluation datasets, we found that in almost
all cases autoencoder-based clustering ensemble outper-
formed PCA-based approach for both k-means cluster-
ing and SIMLR according to all four evaluation met-
rics (Fig. 4). We confirmed the statistical significance
of these performance improvements using the Wilcoxon
Rank Sum test. These results further demonstrate the util-
ity of the autoencoder-based cluster ensemble for more
accurate clustering of cell types in scRNA-seq datasets.

Discussions
There may be further opportunities to build on the pro-
posed method:

Firstly, we performed hyperparameter optimization
over four datasets searching for the most robust
configuration. While our chosen configuration was the
most consistently accurate over all possible combinations
of these four datasets, we saw that it was not among

the most accurate configurations for two of the opti-
mization datasets individually. Additionally, there is no
guarantee that this combination falls into a global or
near-global optimum across scRNA-seq datasets in gen-
eral, or that such an optimum exists. Devising a way
to produce parameter configurations based on individual
dataset characteristics without ground-truth labels may
be an avenue for further exploration.

Secondly, the current iteration of our proposed method
uses random subspace projection to reduce the dimension
of datasets prior to autoencoder training. An additional
direction for future research may include exploring other
methods of basic dimension reduction, such as weighted
gene selection based on variability or other metrics; this
may be more useful in capturing cell type-specific char-
acteristics by retaining genes containing more biological
signal related to cell type.

Lastly, while the clustering algorithms k-means and
SIMLR were used as independent components in our
current proposed framework, an interesting direction for
future work might be the development of an artificial
neural network architecture and training method which
performs simultaneous dimension reduction and cluster-
ing. An integrated approach such as this may facilitate
the exploration of clustering output in the reduced feature
space.

Conclusions
High throughput scRNA-seq technology is transforming
biological and medical research by allowing the global

Fig. 4 Comparison of autoencoder-based clustering framework with PCA-based dimension reduction and clustering using the four evaluation
metrics. Statistical significance (p <0.001; denoted by �) of either autoencoder with k-means clustering against the rest for human and mouse
archived brain datasets, or autoencoder with SIMLR clustering against the rest for mouse neurons and striatum datasets were performed using
Wilcoxon Rank Sum test (two-sided)
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transcriptome profiles of individual cells from heteroge-
neous samples and tissues to be quantified with high
precision. Cell type identification has become essen-
tial in scRNA-seq data analysis, and clustering has
been the key computational approach used for this
task. In this study, we have proposed an autoencoder-
based ensemble clustering approach by incorporating
several state-of-the-art techniques in a computational
framework.

We evaluated the proposed clustering framework on its
impact on the level and robustness of cell type identifi-
cation accuracy using a collection of scRNA-seq datasets
with pre-defined cell type annotations. Based on previ-
ously defined gold standards for each scRNA-seq dataset,
we demonstrate that the proposed framework is highly
effective for cell type identification. The application of the
proposed framework to both a standard k-means cluster-
ing algorithm and a state-of-the-art kernel-based cluster-
ing algorithms, SIMLR, illustrates its generalisability and
applicability to other clustering algorithms. We therefore
envision the proposed framework being flexibly adopted
into the common workflow for scRNA-seq data analysis.

Methods
The autoencoder-based cluster ensemble framework is
summarised in Fig. 5a. The proposed framework accepts
scRNA-seq data in the form of an N×M expression matrix
(denoted as X) where N is the number of cells and M is
the number of genes.

Dimension reduction by autoencoders
Genes are randomly selected from the input dataset to
produce a set of “random projection” datasets Xt (t =
1, ..., T), each with a dimension of N × M′. The pur-
pose of this step is to create ‘diversity’ [27] in subsequent

encodings and individual clusterings of these datasets to
achieve a more robust consensus in the resulting ensem-
ble. Following the random projection step, each matrix Xt

is then used to train a fully-connected autoencoder neural
network. An autoencoder is an artificial neural network
consisting of two sub-networks: an encoder and a decoder,
intersecting at a ‘bottleneck’ layer of a smaller size than
the original input. The network is trained to reconstruct
the original input with minimum error, forcing the net-
work to learn to encode the information contained within
the smaller latent space of the output of the bottleneck
layer[29].

In the autoencoders used with our framework, the
encoder accepts samples of cell data from X as input.
The encoder contains a single hidden layer and an out-
put layer which produces reduced-dimension encodings
of the aforementioned samples. The decoder subnetwork
accepts these encoded samples as input, passing these
through a single hidden layer and an output layer which
produces reconstructions of the original samples. In both
subnetworks, the activation function of the hidden layer is
a ‘Leaky ReLu’ [30]; linear activation is applied to all other
layers.

Each autoencoder is trained by minimising reconstruc-
tion error using the mean squared loss function:

l(Xt , Xt′) = {l1, ..., lN }�, ln =
(

xt
n − xt′

n

)2

where Xt is the input expression matrix from the tth

random projection and Xt′ is the autoencoder’s recon-
struction of Xt .

Following training, each matrix Xt is fed through its
respective autoencoder and a low-dimension encoded
dataset is extracted from the encoder output. Training

Fig. 5 A schematic illustration of the proposed autoencoder-based cluster ensemble framework. The first step is the sampling of multiple random
projections from the original input scRNA-seq data set. A separate autoencoder artificial neural network is trained on each of these random
projections and used to encode the data to a smaller-dimensional space. Subsequently, clustering of each encoded dataset is conducted using an
arbitrary clustering method; the final clustering output is produced by integrating individual clustering results using a fixed-point algorithm [31]
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and hyperparameter optimisation of autoencoders are dis-
cussed in Hyperparameter optimisation for autoencoders
section.

Clustering algorithms
To perform clustering on dimension-reduced datasets
generated from autoencoders, we utilised both a
standard k-means clustering algorithm with Lloyd’s
implementation [32] and a kernel-based clustering algo-
rithm (SIMLR) specifically designed for scRNA-seq data
analysis [10].

Given an initial set of random centres m1, ..., mK , and
a distance matrix D (typically computed from Euclidean
space), the algorithm first finds the closest cluster centres
for each of all cells based on their expression profiles Xe =
xe

1, ..., xe
N :

for x ∈ Xe : c(x) = argmink=1,...,K {D(x, mj)}
and then updates the cluster centres:

for k ∈ 1, ..., K : mk = mean({x ∈ Xe|c(x) = k})
The output is the assignment of each cell based on its

expression profile x to a cluster k ∈ 1, ..., K .
SIMLR calculates the distance matrix for cells using

multiple kernels as follows:

D(xi, xj) =
∑

l
wl(2 − 2 × K(xi, xj))

where wl is the weight of a Gaussian kernel function for a
pair of cells defined as follows:

K(xi, xj) = 1
εij

√
2π

exp
(

−|xi − xj|2
2ε2

ij

)

where εij is the variance and |xi − xj|2 is the squared dis-
tance between cell i and j, calculated from their expression
profiles xi and xj. To test the proposed framework, we
utilised SIMLR (Version 1.8.0) implemented in Biocon-
ductor (Release 3.7).

The number of clusters to be created was set accord-
ing to the number of pre-defined cell types/classes in
each scRNA-seq data for both the k-means clustering and
SIMLR (see “Evaluation metrics” section). After obtain-
ing individual clustering outputs (denoted as Pt) from
either k-means clustering or SIMLR, a fixed-point algo-
rithm for obtaining hard least squares Euclidean consen-
sus partitions was applied to compute the consensus PE of
individual partitions [31]:

argminPE∈P
T∑

t=1
wbD(Pt , PE)2 (1)

in which wb is the weight associated with individual clus-
tering output and is set to 1 in our case, and D(Pt , PE)2

is the squared Euclidean function for computing the
distance of an individual partition with the consensus
partition.

Together, the proposed autoencoder-based cluster
ensemble framework can be summarised in pseudocode
as below.

Algorithm 1: Autoencoder-based cluster ensemble
Data: X, an N × M expression matrix
Result: A clustering partition P of all cells in X

1 t = 0;
2 PE ← NULL; // initialise consensus partitions
3 while t < T do
4 t ← t + 1;
5 Xt ← randomProjection(X);
6 Xe ← autoencoder(Xt);
7 Pt ← clustering(Xe); // k-means, SIMLR etc.
8 PE ← PE ∪ Pt ; // saving each clustering output
9 end

10 P ← consensus(PE); // Eq. (1).

Data description and evaluation
This section summarises the scRNA-seq datasets and
performance assessment metrics utilised for method eval-
uation.

scRNA-seq datasets
A collection of eight publicly available scRNA-seq
datasets (Table 2) were utilized in this study. These
datasets were downloaded from the NCBI GEO repos-
itory, the EMBL-EBI ArrayExpress repository, or the
Broad Institute Single-Cell database portal. The log2-
transformed transcripts per million (TPM) or counts per
million (CPM) values (as determined by the original publi-
cation for a given dataset) were used to quantify full length
gene expression for datasets generated by SMARTer or
SMART-seq2 protocols. UMI-filtered counts were used
to quantify gene expression for the Drop-seq datasets.
All datasets have undergone cell-type identification using
biological knowledge from their respective original pub-
lications which we retain for evaluation purposes. For
each dataset, genes detected in less than 20% of cells
were removed. This step trims the number of genes and
allows only those that are expressed in at least a subset
of cells to be considered for subsequent analyses. Four
datasets were used to optimise autoencoder hyperparam-
eters. We present evaluation benchmarking results for
four additional datasets.
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Table 2 Summary of the experimental scRNA-seq datasets used for hyperparameter optimisation and method evaluation

Repository Source # cell # class Ref. Protocol Purpose

GSE60361 Mouse cortex 3005 7 [33] SMARTer Optimisation

GSE45719 Mouse embryogenesis 300 8 [34] SMART-seq2 Optimisation

GSE67835 Adult and fetal human brain 466 8 [35] SMARTer Optimisation

E_MTAB_3929 Human embryogenesis 1529 5 [36] SMART-seq2 Optimisation

GSE84371 Mouse neurons 1402 8 [37] Smart-seq2 Evaluation

GSE82187 Mouse striatum 705 10 [38] SMARTer & Smart-seq2 Evaluation

Broad portal Human archived brain 14963 19 [39] Drop-seq Evaluation

Broad portal Mouse archived brain 13313 26 [39] Drop-seq Evaluation

Evaluation metrics
A common approach to assess the performance of clus-
tering methods for cell type identification in scRNA-seq
data analysis is to compare the concordance of the clus-
tering outputs of cells with a ‘gold standard’. As mentioned
above, such a gold standard may be obtained from orthog-
onal information such as cell type marker genes and/or
other biological knowledge of cell type characteristics.
In this study, cell type annotations from their original
publications are used as ‘gold standards’.

For each dataset, the number of clusters for both k-
means clustering and SIMLR was set as the number of pre-
defined classes based on its original publication and the
concordance between the clustering outputs and the ‘gold
standard’ were measured using different metrics. Here we
employed a panel of four evaluation metrics including
Adjusted Rand index (ARI), normalized mutual informa-
tion (NMI), Fowlkes-Mallows index (FM), and Jaccard
index [40] (Fig. 6).

Let G, P be the cell partitions based on the gold stan-
dard and the clustering output respectively. We define a,
the number of pairs of cells assigned to the same group
in both partitions; b, the number of pairs of cells assigned
to the same cell type in the first partition but to different
cell types in the second partition; c, the number of pairs
of cells assigned to different cell types in the first partition
but to the same cell type in the second partition; and d, the
number of pairs of cells assigned to different cell types in
both partitions. ARI, FM, and Jaccard index can then be
calculated as follows:

ARI = 2(ad − bc)
(a + b)(b + d) + (a + c)(c + d)

;

FM =
√(

a
a + b

) (
a

a + c

)
;

Jaccard = a
a + b + c

.

Let G = {u1, u2, ..., uk} and P = {v1, v2, ..., vk} denote
the gold standard and the clustering partition across K

classes, respectively. NMI is defined as follows:

NMI = 2I(G, P)

H(G) + H(P)
,

where I(G, P) is the mutual information of G and P,
defined as

I(G, P) =
K∑

i=1

K∑
j=1

|ui ∩ vj|
N

log
N |ui ∩ vj|
|ui| × |vj| ,

Concordance measured by:
- Adjusted rand index (ARI), 
- normalized mutual information (NMI),
- Fowlkes-Mallows index (FM),
- Jaccard index

)dradnats dl og(  noit atonna  lanig ir
O

C
lustering output

Fig. 6 A schematic showing the quantification of concordance of the
clustering output with the original ’gold standard’ annotation using a
panel of evaluation metrics
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and H(G) and H(P) are the entropy of partitions G and P
calculated as

H(G) = −
K∑

i=1

ui
N

log
ui
N

, H(P) = −
K∑

j=1

vj

N
log

vj

N

where N is the total number of cells.
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