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Background: Reconciliation methods are widely used to explain incongruence between a gene tree and species
tree. However, the common approach of inferring maximum parsimony reconciliations (MPRs) relies on user-defined
costs for each type of event, which can be difficult to estimate. Prior work has explored the relationship between
event costs and maximum parsimony reconciliations in the duplication-loss and duplication-transfer-loss models, but
no studies have addressed this relationship in the more complicated duplication-loss-coalescence model.

Results: We provide a fixed-parameter tractable algorithm for computing Pareto-optimal reconciliations and
recording all events that arise in those reconciliations, along with their frequencies. We apply this method to a case
study of 16 fungi to systematically characterize the complexity of MPR space across event costs and identify events

Conclusion: This work provides a new framework for studying the relationship between event costs and
reconciliations that incorporates both macro-evolutionary events and population effects and is thus broadly
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Background

Phylogenetic tree reconciliation is a fundamental tech-
nique for studying the evolution of gene families. Given a
gene tree, a species tree, and an association between their
leaves, reconciliation methods explain the incongruence
between the trees by postulating a sequence of evolution-
ary events, with different evolutionary models allowing
for different types of events. For example, the duplication-
loss (DL) model [1, 2] allows for gene duplication and
gene loss, the duplication-transfer-loss (DTL) model [3, 4]
allows for horizontal gene transfers as well, and the multi-
species coalescent (MSC) model [5] allows for incomplete
lineage sorting through deep coalescence. However, the
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DL and DTL models do not model population effects,
and the MSC model implicitly assumes that all genes are
orthologs.

More recently, several combined duplication-loss-
coalescence (DLC) models have been developed, which, as
the name implies, allow for duplication, loss, and coales-
cence. Little evidence has been found for horizontal gene
transfer in eukaryotes [6], making DLC-models suitable
for capturing eukaryotic evolution. In this work, we rely
on the DLCoal model of Rasmussen and Kellis [7]. While
the models of Vernot et al. [8] and Chan et al. [9] are con-
ceptually simpler, neither keep track of the inferred loci
of genes nor rely explicitly on the multispecies coalescent,
limitations that prevent the models from capturing all
possible evolutionary histories [10, 11]. (For a detailed
comparison of these models, see Chan et al. [9] and Du
et al. [11].) While it is possible to perform DLC
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reconciliation using a probabilistic approach [7], for effi-
ciency and broad applicability, we use a maximum parsi-
mony framework, in which each type of event in the model
has an associated user-defined cost and the objective is to
find a reconciliation of minimum total cost. In prior work,
we introduced a new structure for representing reconcili-
ations and an algorithm DLCpar for inferring a maximum
parsimony reconciliation (MPR) [10].

However, while it is generally understood that MPRs are
sensitive to event costs, analyses typically choose a sin-
gle setting of costs for each type of event. Probabilistic
approaches can weight events by estimating event rates
and population parameters [7], but there is currently no
systematic method for choosing event costs or determin-
ing the relationship between event costs and the resulting
MPRs under the DLC model.

The problem of appropriate event costs does not arise
in the DL model, as the MPR is always unique if dupli-
cation and loss events have positive costs [12]. For the
DTL model, several authors use Pareto-optimality, modi-
fying existing dynamic programming algorithms for DTL
reconciliation to compute event counts rather than rec-
onciliation costs [3, 13—15]. We build on their ideas to
apply the same concept to the considerably more com-
plicated DLCpar algorithm. In addition, we demonstrate
how to track events across Pareto-optimal solutions; such
an extension was mentioned but not detailed in our prior
work on the DTL model [14]. Tracking events substan-
tially complicates the algorithm; we formally elaborate on
this process for the DLC model.

In summary, the contributions of this paper are as fol-
lows:

e We provide an algorithm DLCparETO that extends
DLCpar to compute Pareto-optimal event counts
over a range of event costs. Our algorithm also counts
the number of distinct reconciliations associated with
each event count and records all events that arise in
those reconciliations, along with their frequencies.

e We demonstrate how DLCparETO can be used to
partition the space of event cost parameter values
into regions such that all sets of event costs in a given
region result in the same set of maximum parsimony
reconciliations. In addition, we demonstrate how to
compute support for individual events.

e We analyze our algorithms and show that they are
efficient except when the two trees are extremely
incongruent.

We have applied our algorithms to a biological dataset of
16 fungal species [16] to gain insight into the effect of
event costs on maximum parsimony reconciliations and
to compute several measures of support for constituent
events.
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Methods

Preliminaries

We start by reviewing prior work that formalizes the
concept of reconciliations and maximum parsimony rec-
onciliations under the DLC model [10, 11]. For brevity,
we provide an overview of the key concepts here; formal
definitions appear in Additional file 1: Section S1.

Given a gene tree G, a species tree S, and a leaf map-
ping Le from the leaves of G to the leaves of S (which need
not be one-to-one nor onto), a reconciliation seeks to map
G “inside” S. The labeled coalescent tree (LCT, Fig. 1a,
Additional file 1: Section S1.3) formalizes this notion of a
reconciliation in the DLC model.

Given G, S, and Le, an LCT for (G,S,Le) is a tuple
(M, L, O), where M is a species map that maps each node
of G to a node of S; L is a locus map that maps each node
of G to a finite set of natural numbers, each representing
a locus that has evolved within the gene family; and O is a
partial order that orders gene tree nodes within the same
species and locus (Fig. 1b). Note that the mapping M is
defined first, then implied nodes are added to G so that
each gene branch spans only a single branch of the species
tree, then L is defined, and finally O is defined.

It will be convenient to consider the restriction of an
LCT to a single species branch or to a subtree rooted at a
species, in each case considering only the parts of the gene
tree that evolve within the considered species. Hence-
forth, the term LCT encompasses these restrictions.

Given a species node s and a species map M, let nodes(s)
denote the set of gene nodes that map to s; bottoms(s)
denote the subset of nodes(s) that are leaves or whose chil-
dren map to descendants of s; and tops(s) = bottoms(p(s))
if s # r(S) and tops(s) = {r(G)} otherwise, where p(s)
denotes the parent of s and r(S) and r(G) denote the roots
of the species tree and gene tree, respectively. Note that
bottoms(s) and tops(s) can be viewed as the set of gene
nodes at the “bottom” or “top” of the branch for species s,
respectively.

The LCT allows for several evolutionary events (Fig. 1c,
Additional file 1: Section S1.4). A speciation event corre-
sponds to a locus present at the bottom of a species branch
continuing at the same locus in at least one child species.
As a speciation in the LCT reflects a speciation in the
species tree, it is considered a null event. A duplication
event corresponds to the creation of a new locus along a
gene branch, which occurs when a gene node and its par-
ent are mapped to different loci; such a gene branch is said
to have a duplication. A loss event corresponds to a locus
present at either the top of a species branch, or created via
a duplication within the species branch, being no longer
present at the bottom of the species branch. A coalescence
event is, in fact, a deep coalescence, in which two or more
lineages fail to coalesce; such failure can result in multiple
lineages at speciations or duplications. Note that counting
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Fig. 1 The labeled coalescent tree. a Evolution is represented using the LCT. In this example, a duplication (yellow star) creates a new locus, “locus 2"
(yellow), from the original locus, “locus 1" (red), and lineages j and k fail to coalesce within species m2. b The LCT consists of a species map M, a
locus map L, and a partial order O. ¢ Evolutionary events are depicted in the LCT. Except for speciation, evolution within a single species tree
branch is shown. d An alternative scenario is presented for evolution in species m2. The new partial order induces an extra lineage at the time of the
duplication. [Figure and caption adapted with permission from Du et al. [11] and Wu et al. [10]]

speciation, duplication, loss, and coalescence at speciation
events requires only the species map and locus map while
counting coalescence at duplication events also requires
the partial order (Fig. 1d).

Let Cp, Cr, and C¢c denote the positive real-number
costs associated with duplication, loss, and coalescence
events, respectively. (Separate costs can be associated with
the two types of coalescence events, as well.) The cost
of reconciling G and S according to LCT (M, L, O) is
defined as follows:

Definition 1 (Reconciliation Cost) Given G, S, Le, Cp,
Cy, and Cc, the reconciliation cost of an LCT (M, L, O)
for (G, S, Le) with d duplication events, ¢ loss events, and ¢
coalescence events is Ripm,c,0y =d-Cp+£-Cp +c- Cc.

Given G, S, Le, Cp, Cr, and Cc¢, the objective of the
most parsimonious reconciliation (MPR) problem is to

find an LCT for (G, S, Le) with minimum reconciliation
cost (Additional file 1: Section S1.5). The solution to this
problem is not necessarily unique.

Next, we define optimality of LCT components.

Definition 2 (Optimal LCT Components) A species
map M* is said to be optimal if there exists a locus map
L and a partial order O such that (M*, L, O) solves the
MPR problem. Given a species map M, a locus map L*
is said to be optimal if there exists a partial order O such
that (M, L*, O) solves the MPR problem. Given a species
map M and locus map L, a partial order O* is said to be
optimal if (M, L, O*) solves the MPR problem.

Henceforth, the term MPR refers to an LCT that solves
the MPR problem. We previously showed that the species
map M* is optimal if and only if M* is the lowest
common ancestor (LCA) map [10, 11].
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Problem statement and definitions

The MPR problem requires that event costs be specified.
As appropriate event costs can be difficult to estimate, we
seek to solve the MPR problem when event costs are not
known a priori.

Let [ dmins max)s [£min> £max]> and [ ¢min, Cmax] be ranges
of positive real-number costs associated with duplication,
loss, and coalescence events, respectively. We seek to solve
the equivalent region partition problem.

Problem 1 (Equivalent Region Partition (ERP))
Given G, S, Le, [dmindmaxl, [Lmin»€max), and
Cmax), partition the space of event costs
[ dmins @max] X[ £mins £max] X[ Cmin, Cmax] into aﬁnite num-
ber of equivalence classes, or regions, such that all event
costs within the same region yield the same set of MPRs.

[ Cmins

Note that the regions are not strictly speaking partitions
of the space since regions may overlap at boundaries, and
thus a given point in event cost space may be an element
of multiple regions.

We also wish to identify events that are highly supported
by merit of occurring in a large fraction of MPRs or a large
fraction of regions. We therefore collect the set of events
that are in any MPR in a region.

Our algorithm for solving the ERP problem and com-
puting event support requires new data types and oper-
ations. In particular, rather than optimizing for reconcil-
iation cost, we now focus on inferred event counts and
Pareto-optimality.

Definition 3 (Event Count) Given G, S, and Le, the event
count ofan LCT (M, L, O) for (G, S, Le) with d duplication
events, £ loss events, and c coalescence events is the vector
(d, 2, c).

Given two event counts v = (d, ¢,c) and v/ = (d', ¢/, ¢),
v is said to be strictly better than V' if each entry of v is less
than or equal to the corresponding entry in v and at least
one entry of v is less than its corresponding entry in v'.

Given a set A of event counts, an event count
v € A is said to be Pareto-optimal with respect to
A if there does not exist any other vV € A that is
strictly better than v. The set A is said to be Pareto-
optimal if every event count in A is Pareto-optimal with
respect to A. Note that an LCT with a non-Pareto-
optimal event count cannot be an MPR under any event
costs.

Given a set of LCTs, multiple LCTs in the set
may yield the same event count. Therefore, we define
a structure to keep track of the number of LCTs
with the same event count. To compute event sup-
port, we also keep track of the specific events and
frequencies.
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Definition 4 (Event Count Descriptor) Given G, S, and
Le, an event count descriptor for (G,S,Le) is a tuple
(v, k, E), where

e v={(d,{,c) is an event count.

e i is the number of LCTs with event count v, called
the LCT count.

® ¢ isa set, called the event set, of ordered pairs of the
form (e, k), where e is an event that occurs in some
LCT with event count v and k is the number of those
LCTs that contain that event.

For simplicity, we will often use the short-hand descrip-
tor to refer to an event count descriptor.

Given a set A of descriptors, let v(A), «(A), and E(A)
denote the sets of event counts, LCT counts, and event
sets in A. A descriptor w € A is said to be Pareto-optimal
with respect to A if the event count of w is Pareto-
optimal with respect to v(A). The set A is said to be
Pareto-optimal if every descriptor in A is Pareto-optimal
with respect to A. Given a set A of descriptors, the term
Pareto-optimal subset of A is the unique set that results
from removing all descriptors that are not Pareto-optimal
with respect to A.

Next, we define operations on these new data types.
These operations will be used when merging subproblems
in our extension to DLCpar. Recall that an LCT may refer
to the restriction to a species branch or to a subtree rooted
at a species. Let A and B be two sets of Pareto-optimal
descriptors for sets A and B of LCTs. Then, let A @ B be
the Pareto-optimal subset of A U 5. This subset describes
the union A U B of LCTs, with the restriction that an LCT
in this union have a Pareto-optimal event count. Similarly,
let A ® B be the Pareto-optimal subset of A x 3, where x
indicates the Cartesian product. This subset describes the
Cartesian product A x B of LCTs that combine one LCT
from A and one LCT from B, with the restriction that the
resulting LCTs have a Pareto-optimal event count. In the
interest of precision, we now provide formal definitions of
these two operations.

To start, we define operations on event counts and event
sets. Given two event counts v = (d,{,c) and v =
(d,t,c),let

vV =d+d,t+0,c+C).
Given an event set E and a positive integer x, let
x-E= {(e)kx) | (e!k) € E};

that is, the count k of each event e is increased by a factor
of x. Given two event sets E and F, let E @ F be the union
of the sets; that is, the union of the two sets of events, with
the corresponding counts added together. Let

P={(ex+y) | (e,x) € E; (e,y) € F}
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contain the set of events that appear in both sets, with
their counts from both sets added, and let

Q= 1{(e,x) | (e,x) € EUF; ﬂy s.t.(e,y) € P}

contain the set of events that appear in only one set, with
their original counts. Then E® F = PU Q.

Next, we define operations on descriptors. Recall that
A @ B is the Pareto-optimal subset of AU 5 and describes
the union A U B of LCTs, such that an LCT in this set
has a Pareto-optimal event count. Thus, A @ B is the set
obtained by taking the union of the component sets, then
removing the elements that are not Pareto-optimal with
respect to that set. Similar to our operation of @ for event
sets, let

P={wv,k +ck,E®E)| (v,k,E) € A; v,k',E) € B}

combine descriptors whose event counts appear in both
sets, and let

Q={(vkE)| (v,k,E) e AUB; v ¢ v(P)}

contain descriptors whose event counts appear in only one
set. Then A @ B is the Pareto-optimal subset of P U Q.
Similarly, recall that A ® B is the Pareto-optimal sub-
set of A x B and describes the Cartesian product A x B
of LCTs, such that an LCT in this set has a Pareto-optimal
event count. Thus, A ® B is the set obtained by first
computing the Cartesian product of the component sets,
then converting each resulting ordered pair into a sin-
gle descriptor, and finally removing the elements that are
not Pareto-optimal with respect to that set. Given two
descriptors a = (v,k,E) and b = (V, k', E'), let

a+b=wv+vV,k &,k - E®«-E)

be the combined descriptor. The event counts add because
the combined LCT includes events from both component
LCTs, and the LCT counts multiply from combining one
of k¥ LCTs with one of another «” LCTs. Finally, each LCT
with event e in event set E is combined with one of «’
LCTs; hence the count for e is increased by a factor of «’
(and similarly for event €’ in event set E’). Next, let

R={a+blacA; beB}

combine all descriptors from A and B. Lastly, we must
merge descriptors that share event counts. For v € v(R),
let 7 (v) denote the subset of descriptors (V,k',E’) € R
such that v/ = v. Then A ® B is the Pareto-optimal subset
of

S =1{W, 2 c(TW),®E(TM)) | vev(R)}.

Note that the computation of set S is a generalization of
PUQfor A® B.

DLCparETO algorithm
We now describe the basic steps of the DLCparETO algo-
rithm for tracking Pareto-optimal descriptors (Figs. 2, 3, 4,
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and 5). Formal pseudocode is provided in Additional file 1:
Section S2. Note that Pareto-optimality is defined inde-
pendently of event cost ranges. We will later show how
event cost ranges are used together with this algorithm to
solve the ERP problem. DLCparETO is based on an exten-
sion of DLCpar [10, 11], but rather than returning a single
optimal LCT, the goal of DLCparETO is to return a set of
Pareto-optimal descriptors that correspond to one more
LCTs, each of which is optimal for some setting(s) of event
costs.

Given G, S, and Le, DLCparETO sets the optimal species
map M* to be the LCA map (Fig. 2a), then prunes the
species tree to the subtree rooted at M*(r(G)). Next, the
algorithm uses this map to decompose the gene tree into
disjoint forests that evolve within each species branch
(Fig. 2b). For each species node s, let a sub-locus map
and sub-partial order be a locus map and partial order
restricted to the gene nodes in the species branch, that
is, over g € tops(s) U nodes(s). Let a tile consist of a
particular sub-locus map with its associated descriptor.
DLCparETO constructs a set of tiles for each species,
then uses dynamic programming to “stitch” together tiles
across species such that loci of nodes shared across
species match. Each stitch combines tiles and thus must
also merge the corresponding sets of descriptors. In the
remainder of this section, we provide more details on this
process.

DLCparETO traverses the species tree in pre-order and
for each valid sub-locus map, computes a set .4 of Pareto-
optimal descriptors as follows (Fig. 3). A is initially empty.
To enumerate sub-locus maps, consider as an example
the root species, which contains a part of the gene tree.
DLCparETO assigns the root of the tree to an arbitrary
locus, then considers all possible placements of duplica-
tions along branches, subject to the constraints on an LCT,
with each combination of duplication placements yielding
a sub-locus map. For each sub-locus map, DLCparETO
considers all valid sub-partial orders. For each sub-locus
map and sub-partial order, it then computes the set of
induced events and constructs a descriptor a compris-
ing the event count, an LCT count of 1, and an event set
comprising pairs (e, 1) for each event. The algorithm then
updates A to A @ {a}. Note that because a sub-partial
order affects only the number of coalescence at duplica-
tion events, each sub-locus map induces the same number
of duplication and loss events and therefore has a sin-
gle Pareto-optimal event count and descriptor. Thus, after
this update, A is always a singleton set. If a species branch
contains no gene tree nodes, then A contains a single
descriptor with an event count of (0,0,0), an LCT count
of 1, and an empty event set.

Next, DLCparETO considers the problem of propagat-
ing locus assignments across species. For each sub-locus
map, the algorithm computes top loci and bottom loci,
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Fig. 2 The DLCparETO algorithm, decomposing the gene tree. a The input species tree S, gene tree G, and leaf mapping Le. The optimal species
map M* is the LCA map. b The gene tree decomposed by species. Implied nodes (x) are added to gene tree branches that span multiple branches
of the species tree. [Figure and caption adapted with permission from Du et al. [11] and Wu et al. [10]]

which are compact representations of the locus assign-
ments at tops(s) and bottoms(s). As in DLCpar, the algo-
rithm constructs these representations by arbitrarily (but
consistently) ordering tops(s) (or bottoms(s)), assigning
the first node to an arbirary “locus 1’; then assigning each
subsequent node either to one of the previous loci, if the
node is mapped to the same locus as a previous node, or to
the next available locus. The relative locus pair for a sub-
locus map is a tuple (¢, b) with top loci t and bottom loci
b, each of which are a sequence of relative locus numbers.
Let C5(t, b) denote the set of Pareto-optimal descriptors
for a tile for species s with relative locus pair (¢, b). DLC-
parETO constructs these sets as follows. C*(t, b) is initially
empty. For each tile with a set 4 of descriptors, the algo-
rithm determines the relative locus pair (¢, ) induced by
the tile, then updates C*(¢, b) to C5(¢,b) & A. Note that
by traversing the species tree in pre-order, DLCparETO
ensures that the set of top loci for any non-root species is
determined by the set of bottom loci of its parent species,
and the set of bottom loci for any species is in turn deter-
mined by the sets of top loci and enumerated sub-locus
maps for the species.

Once all tiles are constructed for all species, DLC-
parETO uses dynamic programming to merge sets of
descriptors across species as follows (Fig. 4). Let RLP(s)
denote the set of relative locus pairs for species s, and let
F5(t, ) denote the set of Pareto-optimal descriptors for the
subtree rooted at species s with top loci ¢ for s. (Note that
this latter set includes evolution within species s but not
evolution within the sibling of s.) DLCparETO traverses
the species tree in post-order and for each species s, con-
siders the possible top loci {¢ | (¢,b) € RLP(s)} for the

species. If s is a leaf, the subtree rooted at s is simply the
node s. Furthermore, DLCparETO has already required
that bottom loci for extant species be distinct when enu-
merating valid sub-locus maps, so there exists only one
possible assignment b of bottom loci. Therefore,

F5(t,) = C(4, b).

If s is not a leaf, then F*(¢,-) relies on a helper variable
F5(t, b) that denotes the set of Pareto-optimal descriptors
for the subtree rooted at s with top loci ¢ and bottom loci
b for s. Note that F*(t, b) requires assigning top loci b to
children species s’ and s” and a tile for s with relative locus
pair (¢, b). Therefore,

F5(t,b) = F* (b)) ® F* (b,-) ® C*(t, b).

Then F*(¢,-) must choose among bottom loci for the
species,

F(t,-) = ®p:¢,pyerLp(s) F° (£, b).

Once the species tree root s = r(S) is reached, there is
only one possible assignment ¢ of top loci, so DLCparETO
returns F5(¢, -).

Computing regions

From Libeskind-Hadas et al. [14], the set of Pareto-
optimal event counts from DLCparETO can be used to
solve the ERP problem, that is, to partition the space of
event costs into equivalent regions (Fig. 5a). For com-
pleteness, this algorithm is described below. To allow
visualization in two dimensions, we rely on the costs being
unit-less to normalize the coalescence cost to 1 and con-
sider the costs of duplication and loss to be positive values
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Fig. 3 The DLCparETO algorithm, enumerating tiles. Example continued from Fig. 2. Tiles for each species enumerated via pre-order traversal of the
species tree. Each tile consists of a sub-locus map with a singleton set of one event count v = (d, ¢, ¢) comprising the number of duplications,
losses, and coalescences. v is Pareto-optimal for the sub-locus map across all partial orders. (The algorithm tracks descriptors rather than event
counts, but for simplicity, only event counts are shown.) To propagate locus assignments across species, the set of top loci t and bottom loci b for
each tile are compactly represented. Each unique relative locus pair (t, b) is associated with a set C(t, b) of Pareto-optimal event counts. In this
example, species B and C have the same set of tiles, though in practice, these tiles are enumerated separately. [Figure and caption adapted with
permission from Du et al. [11] and Wu et al. [10]. Gray boxes indicate new content]

relative to the unit cost of coalescence. An event count
v = (d, ¥, c) with positive real-number costs Cp and Cp,
for duplication and loss events, respectively, has a rec-
onciliation cost C(v,Cp,C;) = d - Cp + £ - C, + Cc.
A set A of Pareto-optimal event counts induces a parti-
tion of the event cost space into regions, where region
R(v) associated with event count v € A is the set
of points (Cp, Cr) €[ dmin @max] X[ £min> £max] such that
Cv,Cp,C1) < C(V,Cp,C1) VW € A — v. Because each
inequality induces a half-space, a region is the intersection
of several half-spaces. Note that not all Pareto-optimal
event counts induce a minimum reconciliation cost for a
given set of event costs [15]. In this work, we consider
only the event counts that are Pareto-optimal for the given
space of event costs.

Time complexity

Let m denote the number of leaves in the species
tree, n denote the number of leaves in the gene tree,
and k denote the maximum number of nodes at the
top or bottom of any species branch. In this section,
we show that the ERP problem is fixed-parameter
tractable by showing that the running time of DLC-
parETO is O(f (k)m’) for some function f that depends
only on k.

Note that the value of k is not inherent to the gene tree
or species tree but rather is induced by the LCA species
map. When the gene and species trees are congruent,
k = 1, and in general, when the trees are not highly dis-
cordant, k is small. However, in the worst case, kK = #,
and since the function f(k) has fast asymptotic growth in




Mawhorter et al. BMC Bioinformatics 2019, 20(Suppl 20):639 Page 8 0of 13
top loci ¢
m1 p ([
<1,0,1>
return F(t,)
top loci ¢ (] ([
bottomlocito @@ 0
Puy) <01 FIES
= F*(b;) =<0,0,0> =<0,1,0>
+ F(b) + +
+ (LY +<00,0% +<100>
|
t
m2 o0 0
Pt 10,1 =0,0,0%
t o0 ( X J 0
b ( X J 0 0
Py E203 ETOMH  EOOOd
=<1,0,1> =<0,0,0> =<0,0,0>
+<1,0,1> +<0,0,0> +<0,0,0>
+<0,0,1> +<1,0,1> +_
| |
A t ([ X ) 0 B t ( X ) 0 C t ( X ) 0
Py <000 ROMOR | ) [EHOMS <000% || i) 6075 0005
Fig. 4 The DLCparETO algorithm, stitching together tiles. Example continued from Figs. 2 and 3. The dynamic programming structure for merging
Pareto-optimal event counts across species, completed via post-order traversal of the species tree. Solutions £ (¢, ) (and F* (¢, b)) for sub-problems
denote the set of Pareto-optimal event counts for the subtree rooted at species s with top loci t (and bottom loci b). Colored boxes indicate which
tile from Fig. 3 and which bottom loci are used. The algorithm terminates at the species tree root and returns the set of Pareto-optimal event counts
for the reconciliation of G and S. [Figure and caption adapted with permission from Du et al. [11] and Wu et al. [10]. Gray boxes indicate new content]

k, this algorithm may not be viable for large and highly
discordant trees.

Although it is possible to derive an explicit closed-form
for the function f(k), it is not necessary for establishing
fixed-parameter tractability and is therefore omitted in
the interest of brevity. For the simpler DLCpar algorithm,
fk) = By22K(2k)!k%, where By denotes the k' Bell
number [11]. The function f (k) for DLCparETO involves
similar terms but is considerably more complicated.

By assumption, the parts of the gene tree that
exist within each species branch form a forest with
at most k roots and k leaves; thus, the forest con-
tains O(k) gene tree nodes and branches. We will use
this observation repeatedly in the proofs of the results
below.

Lemma 1 The cardinality of any set of Pareto-optimal
descriptors is bounded by O(g(k)ym?) for some function
g(k).

Proof The number of Pareto-optimal descriptors is the
number of Pareto-optimal event counts. Consider a sin-
gle species branch which, as noted above, has O(k) gene
tree nodes and branches. Each gene branch can have a
duplication for a bound of O(k) duplications per species.
Since there are at most O(k) gene nodes, and each node
can map to a different loci, the number of losses per
species is also bounded by O(k). Therefore, across all m
species, there are at most O(km) duplications and O (k1)
losses. A Pareto-optimal set of event counts may con-
tain at most one event count vector (d,¢,c) for a given
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Fig. 5 Equivalent regions and maximum parsimony reconciliations. Example continued from Figs. 2, 3, and 4. a The landscape of equivalent regions.
Regions are polygons, lines, or points; colors are arbitrary and are used to match regions with the event counts in the legend. In addition, the

number of LCTs with each event count, and the default cost setting for DLCpar (Cp = 1, (; = 1, Cc = 0.5) are shown. b Most parsimonious
reconciliations for each region. DLCparETO does not return these MPRs, but for a fixed setting of event costs, DLCpar returns an MPR sampled
uniformly at random. [Figure and caption adapted with permission from Du et al. [11] and Wu et al. [10]. Gray boxes indicate new content]

pair d, £. Thus, the number of Pareto-optimal descriptors
is bounded by O((km)?) which is O(g(k)m?) for
gk) = k. O

Lemma 2 The number of events in the event set of a
Pareto-optimal descriptor is bounded by O(h(k)m) for
some function h(k).

Proof In an optimal LCT, the species map is fixed.
Consider a single species branch which, as noted above,
has O(k) gene tree nodes. Since the events are induced
solely by the loci and orderings of nodes (in addition
to the fixed species map), the total number of possi-
ble events within the species branch is a function of k.
Since there are m species nodes, the total number of
events in an event set is bounded by O(%(k)m) for some
function A (k). O

Lemma 3 Given two descriptors a = (v,k,E) and b =
(V,k',E') in a Pareto-optimal set, a + b can be computed
in time O(j(k)ym?) for some function j(k).

Proof Adding the event counts and computing the prod-
uct of the LCT counts takes constant time. The time
required to compute the new event set is dominated
by the cost of enumerating all pairs of events, one
from each of the two original event sets. By Lemma 2,
there are O(k(k)m) events in each set. Thus, the cost is
bounded by O(#*(k)m?*), which is O(j(k)m?) for some
function j(k). O

Lemma 4 Given two sets A and B of Pareto-optimal
descriptors, the set A @ B can be computed in time
O(p(k)m6)for some function p(k).

Proof Libeskind-Hadas et al. [14] showed that A ® B
can be computed in O(K? log K) time, where K is a bound
on the size of a Pareto-optimal set. However this algo-
rithm does not keep track of events. While combining two
event counts takes constant time, we must now combine
two descriptors. If M bounds the time to combine two
items (in this case descriptors), then this algorithm runs
in time O(K2(M + log K)). In this case, K is O(g(k)m2) by
Lemma 1, and M, the cost of combining two descriptors, is
O(j(k)m?) by Lemma 3. Therefore, the total running time
is bounded by O(p(k)m®) for some function p(k). O

Lemma 5 Given two sets A and B of Pareto-optimal
descriptors, the set A & B can be computed in time
O(p(k)mP®) for some function p(k).

Proof A® B can be computed in time O(K?(M+log K))
via a simple modification of the procedure for A ® B in
Libeskind-Hadas et al. [14]. Therefore, as in Lemma 4,
the total running time is bounded by O(p(k)m®) for some
function p(k). O

Theorem 1 The running time of the DLCparETO algo-
rithm is bounded by O(f (k)m”) for some function f (k).

Proof We bound the asymptotic running time by con-
sidering each of the steps of the algorithm.

Step 1: The LCA mapping from the gene tree to the
species tree can be computed in time O(mn) [17]. Since
the number of gene nodes mapped to a given species node
is bounded by O(k), there are at most O(km) gene nodes,
and this step takes time O (km?).

Step 2: Next, we construct the C*(¢, b) table for each
species node. Consider a single species branch which, as
noted above, has O(k) gene tree nodes. Therefore, the



Mawhorter et al. BMC Bioinformatics 2019, 20(Suppl 20):639

time required to generate all possible sub-locus maps,
sub-partial orders, and the events that they induce is
bounded by a function of k. Computing A for a single tile
and C*(¢,b) across all tiles requires repeatedly applying
@, each of which takes time O(p(k)) by Lemma 5 (since
m = 1). Therefore, the total time to construct the C5(¢, b)
table over all species is bounded by O(g(k)m) for some
function g (k).

Step 3: The dynamic programming step constructs the
F5(¢, -) table. The number of top loci patterns (and bottom
loci patterns) for any species is bounded by some function
r(k), and thus the size of the table is bounded by r(k)m.
If s is a leaf, then computing F*(¢, -) takes constant time.
Otherwise, computing F*(¢, -) requires intermediate vari-
ables F5(t,b) = F* (b,") ® F*" (b, ) ® C(t, b). Each F(t, b)
can be computed in time O(p(k)m6) by Lemma 4, and
there are up to r(k) such variables. Similarly, computing
Fi(t,-) = @pbyerLp(s)F* (¢, b) requires applying @ over
all possible bottom loci. Each @ operation can be com-
puted in time O(p(k)m®) by Lemma 5, and there are up
to r(k) such operations. Since there are m species nodes,
the total time to construct the F*(t, -) table is bounded by
O(t(k)m”) for some function (k).

Therefore, the total running time is bounded by
O(km? + q(k)ym + t(kym”), which is O(f (k)m”) for some
function f (k). O

Theorem 2 Given a Pareto-optimal set of LCTs, the
Equivalent Region Partition Problem can be solved in time
O((g%(kym* log(g(k)m)) for some function g(k).

Proof By Lemma 1, the number of distinct descriptors
in a Pareto-optimal set is bounded by O(g(k)m?). Thus,
from the proof of Theorem 3.3 in Libeskind-Hadas et al.
[14], it follows that the regions can be computed in time
0(g% (kym* log(g(k)m)). O

Theorems 1 and 2 together show that the Equivalent
Region Partition problem is fixed-parameter tractable. If
DLCparETO tracks only event counts rather than full
descriptors, as events are not needed for the ERP problem,
then its running time is bounded by O(f (k)m° log(km))
for some (different) function f (k).

Computing event support

While the number of distinct MPRs can grow exponen-
tially with m and #n [11], the total number of distinct
events is bounded by O(/(k)m) for some function /(k)
(Lemma 2). To identify well-supported events, we con-
sider two definitions. Given a descriptor with LCT count
Kk, an event is said to have region support 5,0 < s < 1
(with respect to the region) if the event is found in at least
a fraction s (inclusive) of LCTs. Given an event cost space
with k regions, an event is said to have consensus support
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5,0 < s < 1 (with respect to the event cost space) if the
event is found in any LCT in at least a fraction s (inclu-
sive) of the regions. Note that these are only some of many
possible measures of event support.

Results and discussion

Setup

To demonstrate the utility of our algorithm, we ana-
lyzed a biological dataset of 5351 gene families across
16 fungal genomes [16]. Gene trees were reconstructed
using RAXML [18] then corrected using TreeFix [19].
We ran DLCparETO using duplication and loss costs
ranging from 0.2 to 5 (relative to the unit cost of
coalescence), then aggregated results across all gene
families. The specific range of event costs can affect
the number of regions and the level of event sup-
port. Furthermore, for species that are closely related,
we might expect that duplications and losses are more
costly than coalescences. Therefore, we also investi-
gated a “clamped” cost range, with duplication and loss
costs ranging from 1 to 5 (relative to the unit cost of
coalescence).

Experiments were performed on a 64-core cluster con-
sisting of four AMD Opteron 6276 CPUs, each with 16
cores at 2.3GHz, and a total of 512GB of DDR3-1600
RAM. The results here exclude 14 (~ 0.26%) gene families
for which DLCparETO used more than the allocated 12 h
or 8GB of RAM; such gene families are often very large
or highly incongruent to the species tree. The remaining
gene families had mean (median, max) leaf sets of 15.2
(16, 84) genes, with a standard deviation (sd) of 7.2 genes.
In general, k, the maximum number of nodes at the top
or bottom of any species branch was small (mean 1.5, sd
0.8, median 1, max 9), so the algorithm ran to completion
quickly (mean 1.11 sec, sd 25.95 sec, median 0.09 sec, max
24.68 min).

Despite the different underlying evolutionary models,
we compared our results to similar analysis on the DTL
model [14], which considered a subset of 3399 gene
families from 20 randomly sampled species across the tree
of life [20]. The gene families had mean (median, max)
leaf sets of 8.9 (6, 73) genes, with a standard deviation
of 8.4 genes, and experiments considered transfer and
loss costs ranging from 0.5 to 2 (relative to the unit cost
of duplication). Previous analyses of multiple optima for
a single setting of event costs suggested that the space
of MPRs under the two models can be both similar and
different [11, 21].

Number of equivalent regions

Under the DLC model, the majority (68.6%; clamped:
87.2%) of gene families induce one Pareto-optimal event
count and thus one region, suggesting that, for this
dataset, a single setting of event costs may be sufficient.
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Fig. 6 Event support for the real fungal dataset. a For all gene families, the number y of equivalent regions compared to the number x of extant
genes (all regions, black circles; positive area regions, red plus sign; zero area regions, blue multiplication sign). b Event support as measured by the
fraction of MPRs. Coordinate (x,y) indicates that fraction y of events are found in at least fraction x of MPRs, with the plot being left-continuous
(such that the highest y for each x should be read). An event is included if it is found in any MPR across the range of event costs, and the same event
in multiple regions is treated as separate events. Over all gene families, 142,051 speciations; 33,376 duplications; 18,373 losses; 10,030 coalescence at
speciations; and 984 coalescence at duplications are inferred. € Event support as measured by the fraction of regions. An event is included if it is
found in any MPR across the range of event costs, and the same event in multiple regions is treated as the same event. Over all gene families, 81,965
speciations; 15,929 duplications; 10,554 losses; 5475 coalescence at speciations; and 537 coalescence at duplications are inferred

However, a small minority (7.3%, clamped: 8.1%) of fam-
ilies induce at least one region with zero area (e.g. lines
or points); such regions would be difficult to discover
through an ad-hoc choice of event costs. These results are
in stark contrast to the DTL model, in which few (14.2%)
families induce a single region and most (54.1%) families
have at least one region with zero area.

But, as in the DTL model, the number of regions grows
as a function of tree size (Fig. 6a), suggesting that a single
cost setting can pose a problem for larger datasets. One
possible explanation for this growth is that larger gene
trees allow for more incongruence with the species tree
and thus more ways to explain this incongruence through
different reconciliations.

Event support within a region

Many events have high region support (Fig. 6b). Includ-
ing events that are found in any MPR across the range of
event costs and treating the same event in multiple regions
as separate events, we inferred 204,814 events across all
gene families. Of these, 79.3% are fully supported (that is,
found in all MPRs in its region) and 97.2% have at least
50% support.

However, in many applications, we are interested only
in the history of speciations, duplications, and losses
and consider deep coalescences as nuisance events. For
example, orthologous and paralogous pairs of genes are
determined from speciations and duplications, respec-
tively. Disaggregated by event type, speciations are the
best supported, followed by losses, then coalescence at

speciations; at least 83.2% of these events are supported
regardless of threshold. In contrast, duplications and coa-
lescence at duplications are poorly supported. But a dupli-
cation in a species branch can yield two locus maps
that differ only in the lineages labeled with the mother
locus and daughter locus; these are treated as two distinct
duplications in our analysis. If we treat these duplica-
tions as the same event, as they result in the same sets of
paralogs, then duplication support increases dramatically
to levels similar to all other event types except coales-
cence at duplications. Using clamped costs increased sup-
port for speciations, losses, and coalescence at speciations
and had little effect on duplications and coalescence at
duplications.

These results support those of Du et al. [11], which
investigated five settings of event costs and relied on
100 uniformly sampled MPRs per setting. Our analysis
depends neither on sampling the event costs nor MPRs
and thus presents a fuller picture of event support.

Event support across regions
Many events also have high consensus support though at
lower levels than region support (Fig. 6¢). Of the 114,460
events inferred across all gene families, 64.5% are fully
supported (that is, found in at least one MPR across all
regions) and 88.4% have at least 50% support.
Disaggregated by event type, across most support
thresholds, speciations are the best supported, fol-
lowed by losses, duplications, coalescence at specia-
tions, and coalescence at duplications. However, unlike
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for region support, ignoring mother and daughter loci
for duplications had little effect. Using clamped costs
decreased support for speciations and duplications but
increased support for losses and had little effect on
coalescences.

Interestingly, events have much higher support under
the DLC model than the DTL model. In the lat-
ter, only 10.3% of events are fully supported and
45.7% have at least 50% support. While the DTL
model also found speciations to be the most supported
type of event, duplications are better supported than
losses.

Conclusions

In this work, we have presented an algorithm for under-
standing the relationship between event costs and max-
imum parsimony reconciliations under the DLC model.
This algorithm allows users to systematically explore
event costs over a range of biologically realistic parame-
ters. If many gene families induce a single Pareto-optimal
event count over the range, as in our case study, users
can be certain that using a single event cost setting is
sufficient when inferring MPRs. Alternatively, gene fami-
lies that induce several Pareto-optimal event counts may
require sampling multiple event cost settings.

In addition, our algorithm allows users to gain insight
into event support. In our case study on a biological
dataset of 16 fungi, we found that speciations, and thus
orthologs, tend to be robust both across MPRs within a
single region and across regions within a given range of
events costs. While coalescence events had low support
under both definitions, these types of events are often
of less interest as they do not contribute to the duplica-
tion and loss history of a gene family. More research is
needed to determine whether these results generalize to
other datasets.

While we have focused on MPRs in this work, future
development might allow for suboptimal reconciliations,
which can be beneficial when the true evolutionary his-
tory of a gene family is not parsimonious. For example,
To et al. [15] showed how to compute e-Pareto-optimal
reconciliations, which allowed for an “over-cost” €.
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