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Abstract
Background: Galled trees are studied as a recombination model in theoretical population genetics. This class of
phylogenetic networks has been generalized to tree-child networks and other network classes by relaxing a structural
condition imposed on galled trees. Although these networks are simple, their topological structures have yet to be
fully understood.
Results: It is well-known that all phylogenetic trees on n taxa can be generated by the insertion of the n-th taxa to
each edge of all the phylogenetic trees on n − 1 taxa. We prove that all tree-child (resp. normal) networks with k
reticulate nodes on n taxa can be uniquely generated via three operations from all the tree-child (resp. normal)
networks with k − 1 or k reticulate nodes on n − 1 taxa. Applying this result to counting rooted phylogenetic networks,
we show that there are exactly (2n)!

2n(n−1)! − 2n−1n! binary phylogenetic networks with one reticulate node on n taxa.

Conclusions: The work makes two contributions to understand normal networks. One is a generalization of an
enumeration procedure for phylogenetic trees into one for normal networks. Another is simple formulas for counting
normal networks and phylogenetic networks that have only one reticulate node.
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Background
Phylogenetic networks have been used to date both ver-
tical and horizontal genetic transfers in evolutionary
genomics and population genetics in the past two decades
[1–3]. A rooted phylogenetic network (RPN) is a directed
acyclic digraph in which all the sink nodes are of inde-
gree 1 and a unique source node is designated as the root,
where the former represent a set of taxa (e.g, species,
genes, or individuals in a population) and the latter rep-
resents the least common ancestor of the taxa. Moreover,
the other nodes in a RPN are divided into tree nodes
and reticulate nodes, where reticulate nodes represent
reticulate evolutionary events such as horizontal genetic
transfers and genetic recombination.

The topological properties of RPNs are much more
complicated than phylogenetic trees [2, 4, 5]. There-
fore, different mathematical issues arise in the study of
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RPNs. First, phylogenetic reconstruction problems are
often NP-hard even for trees [6, 7]. As such, a phyloge-
netic reconstruction method often uses nearest neighbor
interchanges (NNIs) or other rearrangement operations to
search for an optimal tree or network [8, 9]. Recently, different
variants of NNI have been proposed for RPNs [10–16].

Second, to develop efficient algorithms for NP-complete
problems on RPNs, simple classes of RPNs have been
introduced, including galled trees [17, 18], tree-child net-
works (TCNs) [19], normal networks [20], reticulation-
visible networks [4] and tree-based networks [21, 22] (see
also [5, 23]). For instance, a RPN is a TCN if every non-
leaf node has a child that is a tree node or a leaf. Although
these network classes have been intensively investigated,
their topological structures remain unclear [5, 24]. How to
efficiently enumerate and count normal networks remains
unclear [25–30].

This work makes two contributions to understanding
TCNs and normal networks. It is a well-known fact that
all phylogenetic trees on n taxa can be generated by
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inserting the n-th taxa in every edge of all the phyloge-
netic trees on n − 1 taxa. We prove that all TCNs with
k reticulate nodes on n taxa can be uniquely generated
via three operations from TCNs with k − 1 or k reticu-
late nodes on n − 1 taxa (Theorem 1, “Generating TCNs
and normal networks” section). Using this fact, we obtain
recurrence formulas for counting TCNs and normal net-
works (“Counting formulas” section). In particular, simple
formulas are given for the number of RPNs and normal
networks with one reticulate node, respectively.

Methods
Basic notation
A RPN over a finite set of taxa X is an acyclic digraph such that:

• there is a unique node of indegree 0 and outdegree 1,
called the root ;

• there are exactly |X| nodes of outdegree 0 and
indegree 1, called the leaves of the RPN, each being
labeled with a unique taxon in X;

• each non-leaf/non-root node is either a reticulate
node that is of indegree 2 and outdegree 1, or a tree
node that is of indegree 1 and outdegree 2; and

• there are no parallel edges between a pair of nodes.

Two RPNs are drawn in Fig. 1, where each edge is directed
away from the root and both the root and edge orientation
are omitted. For a RPN N, we use V(N), R(N), T (N) and
E(N) to denote the set of all nodes, the set of reticulate
nodes and the set of tree nodes and the set of directed
edges for N, respectively.

Let u ∈ V(N) and v ∈ V(N). The node u is said to be
a parent (resp. a child) of v if (u, v) ∈ E(N) (resp. (v, u) ∈
E(N)). Every reticulate node r has a unique child, named
c(r), whereas every tree node t has a unique parent, named
p(t). Furthermore, u is an ancestor of v or, equivalently, v
is below u if there is a direct path from the network root to
v that contains u. We say that u and v are incomparable if
neither of them is an ancestor of the other.

Fig. 1 Two tree-child networks on {1, 2, 3, 4, 5}, where reticulate and
tree nodes are drawn as filled and unfilled circles, respectively. Only
the right network is normal. Here, edge downward orientation is
omitted

Let e = (u, v) ∈ E(N). It is a reticulate edge if v is a
reticulate node and a tree edge otherwise. Hence, a tree
edge leads to either a tree node or a leaf.

A phylogenetic tree is simply a RPN with no reticulate
nodes.

A TCN is a RPN in which every non-leaf node has a
child that is a tree node or a leaf or, equivalently, there is
a path from every non-leaf node to some leaf that consists
only of tree edges. Both RPNs in Fig. 1 are tree-child.

A normal network is a TCN in which every reticulate
node satisfies the following condition:

(The normal condition) The two parents are
incomparable.

The first PRN in Fig. 1 is not normal, as a parent of the
left most reticulate node is an ancestor of the other in the
network.

Generating TCNs and normal networks
We define the following rearrangement operations for
TCNs N on [ 1, n], which are illustrated in Fig. 2:

• Leaf insertion For a tree edge e = (u, v) ∈ E(N),
insert a new node w to subdivide e and attach Leaf
n + 1 below w as its child. The resulting network is
denoted by Leaf-Insert(N , e, n + 1), in which w is a
tree node.

• Reticulation insertion For a pair of tree edges
e1 = (u1, v1) and e2 = (u2, v2) of N, which are not
necessarily distinct, insert a new node w1 to
subdivide e1 and a new node w2 to subdivide e2,
attach a new reticulate node r as the common child
of w1 and w2 and make Leaf (n + 1) to be the child of
r. In this case, we say that r straddles e1 and e2. We
use Ret-Insert(N , e1, e2, n + 1) to denote the resulting
network. We simply write Ret-Insert(N , e, n + 1) if
e1 = e2 = e.

• Child rotation Let r be a reticulate node with
parents u ∈ T (N) and v. If u is not an ancestor of v,
exchange the unique child of r and the other child of
u. The resulting network is denoted by
C-Rotate(N , u, r).

Note that a child rotation is a special case of the rNNI
rearrangement introduced by Gambette et al. in [12]. Let
T CNk(n) denote the set of TCNs with k reticulations on
[ 1, n].

Proposition 1 Let M ∈ T CNk(n) and let e1 and e2 be
two tree edges of M. Then,

Ret-Insert (M, e1, e2, n + 1) ∈ T CNk+1(n + 1),
Ret-Insert(M, e1, n + 1) ∈ T CNk+1(n + 1).
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Fig. 2 Insertion and child rotations for tree-child networks. a Leaf 3 is attached to a tree edge. b The reticulation insertion is applied to attach a new
reticulate node r onto two tree edges. The child rotation swaps the tree node w (yellow) and Leaf 4. Here, green nodes and edges are added nodes

Proof The second statement is a special case of the first.
Let e1 = (u, v) and e2 = (x, y). Since e1 and e2 are tree
edges, both v and y are tree nodes or leaves. Let r be the
added reticulate node. Then the parents of r have v and
y as their child, respectively, the nodes u and x have the
parents of r as their tree node child; Leaf n + 1 is the tree
child r. Additionally, all the other nodes have the same
children as in M. Therefore, Ret-Insert (M, e1, e2, n + 1) is
a TCN.

Proposition 2 Let M ∈ T CNk+1(n + 1). Assume that
r ∈ R(M) and its parents are u and v such that u is not an
ancestor of v in M. Then,

C-Rotate (M, u, r) ∈ T CNk+1(n + 1).

Proof Let M′ = C-Rotate (M, u, r). Since u is a parent of
r and M is tree-child, u is a tree node. Let w be the other
child of u and let z be the unique child of r. Since M is tree-
child, z and w are tree nodes (see Fig. 2). The tree node z
becomes the child of u Therefore, every node also has a
child that is a tree node or a leaf in M′.

By definition, w becomes a child of r and z becomes a
tree node child of u in M′. If M′ contains a directed cycle
C, C must contain v and w, implying that u is an ances-
tor of v in M, a contradiction. Therefore, M′ is acyclic and
M′ ∈ T CNk+1(n + 1).

Proposition 3 Let N ∈ T CNk+1(n + 1).
(i) If Leaf (n + 1) is the child of a reticulate node r, N can

then be obtained from an M ∈ T CNk(n) via a reticulation
insertion.

(ii) If Leaf (n + 1) is the child of a tree node t and the
sibling of n+1 is also a tree node, N can then obtained from
an M ∈ T CNk+1(n) via a leaf insertion.

(iii) If Leaf (n+1) is a child of a tree node t and the sibling
of n + 1 is a reticulate node, N can then be obtained from
an M ∈ T CNk+1(n + 1) via a child rotation.

Proof (i) Let r have parents u1 and u2 in N. Since N
is a TCN, u1 and u2 are tree nodes and so are their
children other than r. Let wi and vi be the parent and
the child of ui such that vi �= r, respectively, for each
i = 1, 2. Since r is a reticulate node, v1 and v2 are
tree nodes. Without loss of generality, we assume that
u2 is not the parent of u1. There are two cases for
consideration.

If u1 is the parent of u2, then u1 = w2 and u2 = v1
(Fig. 3a). Removing Leaf (n + 1), u1 and u2 (together
with incident edges) and adding an edge e = (w1, v2)
produce a TCN M with k reticulations such that N =
Ret-Insert (M, e, n + 1).

If u1 is not the parent of u2, then, w1 �= u2 (Fig. 3b).
After removing Leaf n + 1, u1 and u2 (together with
incident edges) and adding two edges ei = (wi, vi)
(i = 1, 2), we obtain a TCN M such that N =
Ret-Insert (M, e1, e2, n + 1).

(ii) Let u be the parent of t and let v be the sibling of
Leaf n + 1 (Fig. 3c). By assumption, v is a tree node. After
removing t and Leaf (n+1) (together with incident edges)
and adding e = (u, v), we obtain a TCN M ∈ T CNk+1(n)

such that N = Leaf-Insert (M, (u, v), n + 1).
(iii) Let y be the sibling of n + 1 that is a retic-

ulate node (Fig. 3d). Let z be the child of y and let
M = C-Rotate (N , t, y). Since z is below y and y is
below t in N, neither attaching the tree node z below t
nor attaching Leaf (n + 1) below y generates a directed
cycle in M. Hence, M ∈ T CNk+1(n + 1) in which Leaf
(n + 1) is the child of a reticulate node y such that
N = C-Rotate (M, t, y).
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Fig. 3 An illustration of the proof of Proposition 3. a The reticulate
node parent r of n + 1 has two adjacent parents. b The reticulate
node parent r of n + 1 has two non-adjacent parents. c The parent
and sibling of n + 1 are both a tree node. d The parent of n + 1 is a
tree node, whereas the sibling of n + 1 is a reticulate node

Proposition 4 Let N1, N2 ∈ T CNk(n).
(i) Leaf-Insert (N1, e1, n + 1) is identical to

Leaf-Insert (N2, e2, n + 1) iff N1 = N2 and e1 = e2.
(ii) Ret-Insert

(
N1, e1, e′

1, n + 1
)

is identical to
Ret-Insert

(
N2, e2, e′

2, n + 1
)

iff N1 = N2.

(iii) Assume the parent of Leaf n is a reticulate node
yi in Ni for i = 1, 2. C-Rotate (N1, x1, y1) is identical to
C-Rotate (N2, x2, y2) iff N1 = N2.

Proof (i) Let Ni ∈ T CNk(n) and ei ∈ V(Ni), i =
1, 2. Let M1 = Leaf-Insert (N1, e1, n + 1) and M2 =
Leaf-Insert (N2, e2, n + 1) such that M1 = M2. Then,
there exists a node mapping φ from M1 to M2 such that (i)
it maps a leaf in M1 to the same leaf and (ii) (φ(u), φ(v)) ∈
E(M2) if and only if (u, v) ∈ E(M1). Since n + 1 is inserted
as a leaf, φ maps the parent p1 of (n+1) in M1 to the parent
p2 of n + 1 in M2, implying that φ induces an isomor-
phic mapping from N1 to N2. This proves the necessity
condition. The sufficient condition is straightforward.

(ii) and (iii) Both statement can be proved similarly. The
proposition is proved.

Figure 4 show how to generate the left TCN given in Fig. 1.

Results
Main theorems
Taken together, Propositions 1–4 imply the following
theorem.

Theorem 1 Each TCN of T CNk+1(n + 1) can be
obtained from either (i) a unique TCN of T CNk+1(n) by
attaching Leaf n + 1 to a tree edge or (ii) a unique TCN
N ∈ T CNk(n) by applying one of the following operations:

(a) Insertion of a reticulate node r with the child Leaf
(n + 1) into a tree edge or straddling two tree edges;

(b) Insert r into a tree edge (u, v), as described in (a), and
then conduct the child rotation to switch the child of
r and the tree node child of v.

(c) Insert r straddling two tree edges e′ = (u′, v′) and
e′′ = (u′′, v′′), as described in (a), and then conduct
the child rotation to switch the child of r and the tree
node child of v′′ (resp. v′) if u′′ (resp. u′) is not an
ancestor of u′ (resp. u′′).

If we restrict the operations on normal networks, we
obtain all the normal networks in T CNk+1(n + 1). How-
ever, inserting a reticulate node and then applying the
child rotation may lead to a scenario that a reticulation
no longer satisfy the normal condition (Fig. 5). Hence,
the child-rotation operation should be taken after some
verification when all normal networks are enumerated.

Theorem 2 Each normal network of T CNk+1(n + 1)

can be obtained from either (i) a unique normal network
in T CNk+1(n) by attaching Leaf n + 1 to a tree edge or (ii)
a unique normal network N ∈ T CNk(n) by applying one
of the following operations for each pair of incomparable
edges e1 = (u1, v1) and e2 = (u2, v2) in N:
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Fig. 4 Illustration how to generate the left TCN in Figure 1 from a tree on 2 taxa

(a) Insert a reticulate node r with the child (n + 1)

straddling e1 and e2. Let pi be the tree node inserted
into ei for i = 1, 2.

(b) Insert r as described in (a) and then conduct the child
rotation to make v1 to be the child of r and n + 1 the
child of p1, respectively, unless a reticulate edge (x, y)
exists in N (Fig. 5) such that:

(b.1) y is below v1;
(b.2) x is not an ancestor of v1;
(b.3) x is an ancestor of v2.

(c) Insert r as described in (a) and then conduct the child
rotation to make v2 to be the child of r and n + 1 the
child of p2, respectively, unless a reticulate edge (x, y)
exists in N such that:

(c.1) y is below v2;
(c.2) x is not an ancestor of v2;
(c.3) x is an ancestor of v1.

Proof The statement for normal networks is based on
the fact that if N is obtained from N ′ vis one of the three
operations given in Theorem 1, that the normality of N
implies the normality of N ′.

The conditions in (b) and (c) are used to exclude the
child rotations that make the normal condition invalid for
some existing reticulate nodes in the generated TCN.

Counting formulas
Let N be a TCN. For a pair of edges (u1, v1) and (u2, v2)
of N, they are incomparable if neither of v1 and v2 is
an ancestor of the other. Let u(N) be the number of
unordered pairs of incomparable edges in N and let:

un−1,k−1 =
∑

N∈T CNk−1(n−1)

u(N). (1)

Define an,k to be |T CNk(n)|, 0 ≤ k < n and bn,k to be
the number of normal networks in TCNk(n), 0 ≤ k < n.

Theorem 3 (i) The an,k can be calculated through the
following recurrence formula:

an,k = (2n + k − 3){an−1,k + (2n + k − 4)an−1,k−1}
+un−1,k−1, (2)

where a2,0 = 1 and un−1,k−1 is defined in Eq. (1).
(ii) The bn,1 can be calculated through the following

recurrence formula:

bn,n−1 = 0,
bn,1 = (2n − 2)bn−1,1 + 3un−1,0 n > 2, (3)

where un−1,0 is the total number of unordered pairs of
incomparable edges in all the phylogenetic trees on n − 1
taxa.

Proof (i) The unique tree on two taxa is a TCN and thus
a2,0 = 1.
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Fig. 5 Illustration the undesired condition in Theorem 2 that prevents
from applying s a child rotation. Here, the reticulate node r and its
child Leaf 4 are first inserted into the tree edges entering v1 and v2(i.e.
2) in a normal network (top), generating a normal network (middle).
But, child rotation to left leads to a tree-child network that is no longer
normal (bottom), in which y does not satisfy the normal condition

Each TCN of T CNk(n − 1) has 2n + k − 3 tree edges
and Leaf n can be attached to each of these edges. The
first term of the right hand side of Eq. (2) counts the TCNs
obtained by applying the leaf insertion in Theorem 1.

Consider N ∈ T CNk−1(n − 1). N has n − 1 leaves, n +
k − 3 tree nodes, and thus 2n + k − 4 tree edges. The
reticulation insertion can be used on a single edge or a pair
of edges in N. Thus, we can insert a reticulate node r with
the child Leaf n in 2n+k−4+(2n+k−4

2
) = (2n+k−3)(2n+

k − 4)/2 possible ways. After the insertion of r in a tree
edge (u, v), we can apply a child rotation to exchange Leaf
n with v, as u is not an ancestor of v after r was inserted.
Similarly, after r is connected to a pair of edges e1 and e2,
we can apply a child rotation once if one edge is below the
other and in two possible ways if neither is an ancestor of
the other.

In summary, for each unordered pair of tree edges
(e1, e2), we can generate three different tree child net-
works with k reticulations on [ 1, n] if they are incompara-
ble and two otherwise. Thus, we have the second and third
terms of the formula.

(ii) The fact that bn,n−1 = 0 was first proved by
Bickner [25].

In the case that n > 2 and k ≤ n − 2, Eq. (3) for bn,1
follows from the following two facts:

• Only two incomparable edges in normal networks in
T CNk−1(n − 1) can be used to generate normal
networks in T CNk(n);

• For each unordered pair of incomparable edges in a
tree on [ 1, n − 1], three normal networks can be
obtained by applying insertion of reticulate node and
two child rotations.

Unfortunately, we do not know how to obtain a simple
formula for bn,k in general. By Theorem 3, one still can
compute the number of normal networks with k reticulate
nodes on [ 1, n], bn,k , by enumeration. For each 1 ≤ k ≤
n − 2 and 3 ≤ n ≤ 7, bn,k is listed in Table 1.

It is challenging to obtain a simple formula for counting
un,k for arbitrary k. But we can find a closed formula for
un,0 and thus obtain a recurrence formula for an,1 and bn,1.

Table 1 Counts of the normal networks with k reticulations on
[ n], 1 ≤ k ≤ n − 2 and 3 ≤ n ≤ 7

k\n 3 4 5 6 7 8

1 3 54 855 14,040 248,535 4,787,370

2 48 2310 78,120 2,377,620 70,749,000

3 1920 184,680 11,038,530 536,524,830

4 146,520 23,797,302 2,217,404,379

5 16,198,764 3,802,965,091

6 2,479,006,101
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Lemma 1 For any n ≥ 2, the total number of unordered
pairs of incomparable edges in all the phylogenetic trees on
n taxa is:

un,0 = (n + 1)(2n)!
2n(n)!

− 2nn! (4)

Proof Let T be a phylogenetic tree on [ 1, n − 1] and let
O(T) denote the set of ordered pairs of comparable edges
in T, where that (x, y) ∈ O(T) means the edge x is above
the edge y. Then, it is not hard to verify:

O(T) = ∪e∈E(T){(e, x) | x ∈ E(T) s.t. e is above x}
= ∪e∈E(T){(y, e) | y ∈ E(T) s.t. e is below y}

Assume T ′ is obtained from T by attaching Leaf n in an
edge e = (u, v). In T ′, the parent w of Leaf n is the tree
node inserted in e, implying that e is subdivided into two
edges of T ′:

e1 = (u, w), e2 = (w, v),

and

E(T ′) = {e1, e2, (w, n)} ∪ E(T) − {e}.
Thus,

O(T ′) = {(e1, e2), (e1, (w, n))}
∪{(x, y) ∈ O(T) | x �= y, x �= e �= y}
∪{(e′, e1), (e′, e2), (e′, (w, n)) | (e′, e) ∈ O(T)}
∪{(e1, e′′), (e2, e′′) | (e, e′′) ∈ O(T)}.

Hence,

|O(T ′)|
= |O(T)| + 2 + 2|{(x, e) | x ∈ E(T) : (x, e) ∈ O(T)}|

+|{(e, y) | y ∈ E(T) s.t. y is below e}|.
Since T has 2n − 3 edges,

∑

T ′∈LI(T ,n)

|O(T ′)| = (|E(T)| + 3)|O(T)| + 2|E(T)|

= 2n × O(T) + 2(2n − 3). (5)

where LI(T , n) denotes the set of 2n − 3 phylogenetic
trees that are obtained by a Leaf-Insertion on T.

Let cn be the total number of unordered pairs of compa-
rable edges in all the phylogenetic trees on n taxa. Clearly,
c2 = 2. Since there are (2n−4)!

2n−2(n−2)! phylogenetic trees with
n−1 leaves, which each have 2n−3 edges, Eq. (5) implies:

cn = 2ncn−1 + 2(2n − 2)!
2n−1(n − 1)!

or, equivalently,
1
n!

cn = 2
(

1
(n − 1)!

cn−1

)
+ (2n − 2)!

2n−2n! (n − 1)!
.

Therefore,

cn = n! 2n
n−1∑

k=1

1
(k + 1)!

(2k)!
22k(k)!

= n! 2n−1

π

n−1∑

k=1

∫ 4

0

(x
4

)k
(

4 − x
x

)1/2
dx

= n! 2n+1

π

∫ 1

0
(1 − xn−1)

(
x

1 − x

)1/2
dx

= 2nn! − (2n)!
2n−1n!

,

where (2k)!
(k+1)!k! is the k-th Catalan number Ck that is equal

to the integral appearing above ([31]). Since there are
(2n−2)!

2n−1(n−1)! phylogenetic trees on [ 1, n] each having (2n−1)

edges,

un,0 = (2n − 2)!
2n−1(n − 1)!

(
2n − 1

2

)
− cn

= (2n − 2)!
2n−1(n − 1)!

(n − 1)(2n − 1) + (2n)!
2n−1n!

− 2nn!

= (n + 1)(2n)!
2nn!

− 2nn! .

Theorem 4 For any n ≥ 3, the numbers of TCNs and
normal networks with exactly one reticulate node on n
taxa are:

an,1 = (2n)!
2n(n − 1)!

− 2n−1n! (6)

and

bn,1 = (n + 2)(2n)!
2nn!

− 3 · 2n−1n! , (7)

respectively.

Proof Since an−1,0 = (2n−4)!
2n−2(n−2)! , by Theorem 3,

an,1 = 2(n − 1)an−1,1 + (3n − 2)(2n − 3)!
2n−2(n − 2)!

− 2n−1(n − 1)!

or, equivalently,

an,1
(n − 1)!

= 2
(

an−1,1
(n − 2)!

)
+ (3n − 2)(2n − 2)!

2n−1((n − 1)! )2 − 2n−1

Therefore, since a2,1 = 2,
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an,1
(n − 1)!

= 2n−2
(

a2,1
(2 − 1)!

)

+
n−2∑

i=1

(3n − 3i + 1)(2n − 2i)!
2n−2i+1((n − i)! )2 − 2n−1(n − 2)

=
n−2∑

i=1

(3n − 3i + 1)(2n − 2i)!
2n−2i+1((n − i)! )2 − 2n−1(n − 3)

= 2n−1
n−2∑

i=1

(3(n − i) + 1)(2(n − i))!
22(n−i)((n − i)! )2 − 2n−1(n − 3)

= 2n−1
n−1∑

k=2

(3k + 1)(2k)!
22k(k! )2 − 2n−1(n − 3)

= 2n−1
n−1∑

k=1

(
2k
k

)
3k + 1

4k − 2n−1(n − 1).

By induction, we can show that
∑n

k=0
(2k

k
)
4−k = (2n+1)!

22n(n!)2

and
∑n

k=0
(2k

k
)
k4−k = (2n+1)!

3·22nn!(n−1)! . Continuing the above
calculation, we obtain:

an,1
(n − 1)!

=
{

(2n − 1)!
2(n−1)(n − 1)!

[
1

(n − 2)!
+ 1

(n − 1)!

]
− n

}
.

This proves Eq. (6).
Similarly, by Theorem 3 and Lemma 1, we have:

bn,1 = 2(n − 1)bn−1,1

+3 ·
(

n(2n − 3)!
2n−2(n − 2)!

− 2n−1(n − 1)!
)

or, equivalently,

bn,1
(n − 1)!

= 2
bn−1,1

(n − 2)!
+ 3

(
2n − 3
n − 1

)
n

2n−2 − 3 · 2n−1.

Since b2,1 = 0,

bn,1
(n − 1)!

= 2n−2 b2,1
(2 − 1)!

+3 · 2n ·
n−2∑

i=1

(
2n − 2i − 1

n − i

)
n − i + 1

22n−2i

−3 · 2n−1(n − 2)

= 3 · 2n ·
n−1∑

k=1

(
2k − 1

k

)
k + 1
22k − 3 · 2n−1(n − 1)

= 3 · 2n−1 ·
n−1∑

k=1

(
2k
k

)
k + 1
22k − 3 · 2n−1(n − 1)

= (n + 2)(2n)!
2nn!

− 3 · 2n−1n! .

This proves Eq. (7).

Remark 1 Every RPN with exactly one reticulate node is
a TCN. Therefore, an,1 is actually the number of RPNs with
one reticulate node.

Conclusions
It is well-known that all phylogenetic trees on n taxa can
be generated by the insertion of the n-th taxa in each edge
of all the phylogenetic trees on the first n − 1 taxa. The
main result of this work is a generalization of this fact
into TCNs. This leads to a simple procedure for enumer-
ating both normal networks and TCNs, the C-code for
which is available upon request. It is fast enough to count
all the normal networks on eight taxa. Recently, Cardona
et al. introduced a novel operation to enumerate TCNs.
Their program was successfully used to compute the exact
number of tree-child networks on six taxa. Although our
program is faster than theirs, it still cannot be used to
count TCNs on eight taxa on a PC.

Another contribution of this work is Eq. (6) and (7) for
counting RPNs with exactly one reticulate node. Semple
and Steel [30] presented formulas for counting unrooted
networks with one reticulate node. Since an unrooted net-
works can be oriented into a different number of RPNs, it
is note clear how to use their results to derive a formula for
the count of RPNs. Bouvel et al. [26] presented a formula
for counting RPNs with one reticulate node. Our formula
is much simpler than the formula given in [26].

Lastly, the following problem is open:
Is there a simple formula like Eq. (6) for the count of

TCNs with k reticulate nodes on n taxa for each k > 1?

Abbreviations
NNI: Nearest neighbor interchange; RPN: Rooted phylogenetic network; TCN:
Tree-child network
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