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Abstract

Background: Drug-drug interactions (DDIs) are a major concern in patients’ medication. It's unfeasible to identify all
potential DDIs using experimental methods which are time-consuming and expensive. Computational methods
provide an effective strategy, however, facing challenges due to the lack of experimentally verified negative samples.

Results: To address this problem, we propose a novel positive-unlabeled learning method named DDI-PULearn for
large-scale drug-drug-interaction predictions. DDI-PULearn first generates seeds of reliable negatives via OCSVM
(one-class support vector machine) under a high-recall constraint and via the cosine-similarity based KNN (k-nearest
neighbors) as well. Then trained with all the labeled positives (i.e, the validated DDIs) and the generated seed
negatives, DDI-PULearn employs an iterative SVM to identify a set of entire reliable negatives from the unlabeled
samples (i.e, the unobserved DDIs). Following that, DDI-PULearn represents all the labeled positives and the identified
negatives as vectors of abundant drug properties by a similarity-based method. Finally, DDI-PULearn transforms these
vectors into a lower-dimensional space via PCA (principal component analysis) and utilizes the compressed vectors as
input for binary classifications. The performance of DDI-PULearn is evaluated on simulative prediction for 149,878
possible interactions between 548 drugs, comparing with two baseline methods and five state-of-the-art methods.
Related experiment results show that the proposed method for the representation of DDIs characterizes them
accurately. DDI-PULearn achieves superior performance owing to the identified reliable negatives, outperforming all

novel DDIs.

other methods significantly. In addition, the predicted novel DDIs suggest that DDI-PULearn is capable to identify

Conclusions: The results demonstrate that positive-unlabeled learning paves a new way to tackle the problem
caused by the lack of experimentally verified negatives in the computational prediction of DDlIs.
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Background

Drug-drug interactions refer to the efficacy change of one
drug caused by a co-administration of another drug. DDIs
may occur when two or more drugs are taken together
or concomitantly. DDIs account for around one-third of
all adverse drug reactions [1-3], leading to significant
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morbidity and mortality worldwide [4]. Currently a few
DDIs are identified via wet-lab experiments, however, a
large number of DDIs remain unknown [5]. Thus, there is
an urgent need to detect potential DDIs to reduce patients’
risks and economic costs.

Conducting experimental trials to detect potential
interactions between a great number of drug pairs is
unrealistic due to the huge time and monetary cost.
Recently, several computational methods have been suc-
cessfully applied to detect DDIs. Here, we categorize these
methods roughly into three categories: similarity-based
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methods, knowledge-based methods, and classification-
based methods.

The similarity-based methods assume that drugs with
similar properties tend to interact with the same drug
[6]. Based on this assumption, different drug similarity
measures have been designed employing various drug
properties. Vilar et al. measured the drug similarity as the
Tanimoto coefficient between molecular fingerprints [6]
and between interaction profile fingerprints of drug pairs
[4]. Gottlieb et al. [7] built their DDI predictive model
by integrating seven drug similarity measures, namely
chemical structure similarity, ligand similarity, side-effect
similarity, annotation similarity, sequence similarity,
closeness similarity in the protein-protein network, and
Gene Ontology similarity. By using the drug-drug similar-
ity indirectly, Zhang et al. [8] designed a label propagation
framework to predict DDIs based on drug chemical struc-
tures, labeled side-effects, and off-labeled side-effects.
Similarity-based methods have achieved remarkable pre-
diction performance, however, interactions for drugs
lacking similarity information cannot be predicted. In
addition, the assumption of similarity-based methods
has one limit: dissimilar drugs may interact with the
same drug.

The knowledge-based methods detect DDIs from sci-
entific literature [9], electronic medical records[10], and
the Food and Drug Administration Adverse Event Report-
ing System (FAERS) [11, 12]. He et al. [9] presented a
Stacked generalization-based approach for automatic DDI
extraction from biomedical literature. Tatonetti et al. [11]
identified drug interactions and effects from FAERS using
statistical methods. They found that interaction between
paroxetine and pravastatin increased blood glucose levels.
Knowledge-based methods rely on the accumulation of
post-marketing clinical evidence. Consequently, they are
incapable to detect all DDIs and cannot warn the public
of the potentially dangerous DDIs before drugs reach the
market.

Classification-based methods formulate DDI prediction
as a binary classification task. Cami et al. [13] repre-
sented drug-drug pairs as feature vectors using three
types of covariates from their constructed pharmacoin-
teraction network. Then they defined the presence or
absence of interactions as labels and finally built logis-
tic regression models for predictions. Cheng et al. [5]
encoded each drug pair as a 4-dimensional vector of
four different similarities, and employed five classical
prediction algorithms for predictions. Compared with
similarity-based methods and knowledge-based methods,
classification-based methods don’t have the assumption
limitation or dependence on evidence accumulation. Nev-
ertheless, two classes of data are required for classification
methods: positive samples and negative samples. Exist-
ing classification-based methods used drug-pairs known
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to interact as positive samples, and other unlabeled drug-
pairs as negative samples [5, 13]. These unlabeled drug
pairs may include a considerable number of real positive
samples which can degrade the prediction performance.

From the above survey, it is understood that similarity-
based methods and knowledge-based methods are lim-
ited to their application ranges, while classification-based
methods are lack of reliable negative samples. In this
work, we explore an advanced learning technique named
positive-unlabeled learning (PU learning) to solve the
problem of lacking negative samples for the classification-
based methods.

PU learning and our new ideas

PU learning is to learn from the positive samples and
unlabeled samples. PU learning has been successfully
applied in several bioinformatic research fields, such
as disease-gene association identification [14, 15], drug
target detection [16] and glycosylation site prediction
[17], and achieved remarkable performances. However,
this advanced learning technique has not been explored
enough in the prediction of drug interactions.

Conventional PU learning algorithms usually consist of
two steps: the first step is to identify reliable negative sam-
ples from the unlabeled samples; the second step is to
construct classifiers based on positive samples and identi-
fied reliable negative samples for subsequent predictions.
The difference among different PU learning algorithms
lies in different strategies used in the first or second step.
In the first step, the spy strategy [18], 1-DNF [19], Rocchio
[20] and Naive Bayesian (NB) [21] are widely used. The spy
strategy selects a certain number of positive samples ran-
domly as spies and puts them into the unlabeled samples
first; then it determines the threshold of reliable negative
samples (RNSs) under the condition that most spies are
truly predicted as positives. The 1-DNF strategy extracts
the features of positive samples and then selects RNSs
which don’t have the positive features. Rocchio and NB
first label validated positive samples as +1 and unlabeled
samples -1 to train the Rocchio and NB classifier respec-
tively. Then the trained classifier is employed to classify
unlabeled samples. Those unlabeled samples which are
classified as negatives are taken as RNSs. In the second
step, Expectation Maximization (EM) and Support Vector
Machine (SVM) are commonly used. Most conventional
PU learning algorithms are designed for text classifica-
tion, thus there are barriers to apply them directly to DDI
predictions.

Apart from the above methods, clustering provides
another solution to identify likely negatives from the
unlabeled data. For example, Hameed et al. [22] success-
fully improved the clustering approach Self Organizing
Map (SOM) for drug interaction predictions. However,
they only obtained 589 inferred negatives after clustering,
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which is much less than the validated 6,036 positives
(i.e., validated DDIs), let alone all potential negatives
(C§48 — 6,036 = 143, 842) of their 548 drugs. Performing
cross-validation directly on the very few negatives are
incapable to convince readers of the generalization of
their methods. Inspired by the clustering process of
k-means a typical clustering method, we find a possibil-
ity to infer reliable negative samples via ranking of KNN.
If we treat “positives” and “negatives” as two clusters,
k-means clusters samples into “positives" if they are close
to positives. Samples far from positives will be clustered as
negatives. Therefore, we can use KNN to measure the dis-
tances between unlabeled samples and labeled positives.
Unlabeled samples far from positives are inferred
negatives.

One-class Support Vector Machine (OCSVM) [23] has
been widely used for classification in the absence of pos-
itive or negative samples [24]. It learns a hypersphere
to describe the training data and ensures most training
data are in the hypersphere. OCSVM requires one-class
data only, thus it is an ideal technique to identify reliable
negatives in the PU learning context.

In this work, we design a novel two-step PU learn-
ing approach for drug-drug interaction predictions (DDI-
PULearn hereafter). In the first step, DDI-PULearn infers
highly-reliable negative sample (RNS) seeds using two
techniques OCSVM and KNN. To be specific, DDI-
PULearn learns an OCSVM hypersphere from all labeled
positive samples (i.e., validated DDIs) with a high-recall
(> 0.95). Then DDI-PULearn predicts labels for all unla-
beled samples and adds the predicted negatives to the RNS
seeds. Meanwhile, DDI-PULearn infers several reliable
negative samples using the KNN strategy and adds them
to the RNS seeds. In the second step, DDI-PULearn iden-
tifies all reliable negatives from the remaining unlabeled
samples using SVM trained by the RNS seeds and labeled
positives iteratively. The labeled positives and identified
RNSs are finally used for prediction and validation. The
performance of DDI-PULearn is evaluated on simulated
DDI prediction for 548 drugs. Comparison experiments
with the two baseline methods and five state-of-the-art
methods both demonstrate the superior performance of
DDI-PULearn.

Results

We first report the number of components for PCA. Then
we present the prediction performances under different
representations of DDIs using multi-source drug property
data. Following that, we show the performance improve-
ment brought by reliable negative samples generated by
DDI-PULearn via comparing with randomly selected neg-
ative samples and all potential negative samples. We
also demonstrate the superior prediction performance
of DDI-PULearn by comparing with five state-of-the-
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art methods. Finally, we apply DDI-PULearn to predict
unobserved DDIs and verify the results in DrugBank.

Components for PCA

To obtain the best setting for the PCA component num-
ber (PCN), we tried the following settings: PCN € {1,
5, 10, 20, 30, 40, 50, 65, 80, 95, 110, 125, 140, 150, 160,
175, 200, 225, 250, 275, 300, 350, 400, 450, 500, 550, 600,
750, 800, 1000, 1250, 1750, 2000}. The F1-scores of DDI-
PULearn with different PCNs are illustrated in Fig. 1. It
can be observed that the Fl-score increases with PCN
when PCN < 50. Besides, the Fl-score values plateau
when the PCN is larger than 50. The same conclusion
can be drawn from the AUC results, as shown in Figure
S1 in Additional file 1. Based on the above observation
and considering the computational memory and time cost
(computational memory and time increase with PCN), we
set PCN as 50 for DDI-PULearn in our experiments.

Representation of DDIs using multi-source drug property
data

As mentioned in the “Feature vector representation for
DDIs” subsection, we perform the feature ranking analysis
to decide which drug property to use for DDI represen-
tation. Here, we conduct more experiments to confirm
the analysis results. Specifically, we use the drug chem-
ical substructures, drug targets and drug indications as
basic drug properties (BDPs) for representation. Then we
test the following 8 combinations of drug features for pre-
dictions: (1) BDPs; (2) BDPs + substituents; (3) BDPs +
targets; (4) BDPs + pathways; (5) BDPs + substituents
+ targets; (6) BDPs + substituents + pathways; (7) BDPs +
targets + pathways; (8) BDPs + substituents + targets +
pathways. Apart from the feature vector representation,
other details of the eight combinations are the same with
DDI-PULearn. Fig. 2 shows the bar charts of the pre-
diction results. It can be observed that all performance
evaluation indices (i.e., precision/recall/F1-score) vary
very slightly among the above 8 combinations. Employ-
ing more drug features for predictions bring redundant
information which doesn’t improve the prediction perfor-
mance. It indicates that drug properties including drug
substituents, drug targets and drug pathways play a minor
role in the DDI predictions while the basic drug properties
decide the prediction performance. The results further
confirm the conclusion drawn in the previous feature
ranking analysis. The detailed evaluation index values of
the predictions are listed in Table S1 in Additional file 1.

Performance improvement brought by identified reliable
negative samples

Existing classification-based models either use all poten-
tial negative samples (all-negatives hereafter) or ran-
dom negative samples (random-negatives hereafter) for
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Fig. 1 F1-scores of DDI-PULearn with different PCNs. The x-axis is the PCA component number and the y-axis is the F1-score. Panel (a) shows the
F1-scores for PCN between 1 and 2000, and Panel (b) is an amplification of the range [20,150] (amplification ratio = 5)
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DDI-PULearn as random-negatives. Besides the negative
samples, other details of prediction using all-negatives
and random-negatives are the same with DDI-PULearn.
To avoid bias, random-negatives are repeated 5 times
and the average results are used for the final evaluation.
Related prediction results are shown Table 1. It can
be clearly seen that the prediction performances are
significantly improved owing to the identified reliable
negative samples. For example, the Fl-score improve-
ment over random-negatives and all-negatives are 0.147
(20.47%) and 0.315 (57.27%). It suggests that a better
decision boundary has been learned with the identified
reliable negative samples.

Comparison with existing state-of-the-art methods

To further confirm the superior performance of DDI-
PULearn, we compare it with several state-of-the-art
methods reported in a recent study [25] using the same
dataset. Same as [25], we evaluated DDI-PULearn by 20
runs of 3-fold cross-validation and 5-fold cross-validation
under the same condition. The macro-averaging results of
the 20 runs are used for final evaluation. The comparison
results are listed in Table 2. Vilar’s substructure-based
method [6] and Vilar’s interaction-fingerprint-based
method [4] are two similarity-based methods proposed by
Vilar et al.; Zhang’s weighted average ensemble method,
Zhang’s L1 classifier ensemble method and Zhang’s L2
classifier ensemble method are three ensemble meth-
ods which integrate neighbor recommendation, random
walk and matrix perturbation by Zhang et al [25]. As
shown in Table 2, DDI-PULearn achieves better perfor-
mance than other state-of-the-art methods on all metrics.
For example, using 5-fold cross-validation, DDI-PULearn
outperforms the other five methods by 0.633 (276.6%),
0.415 (92.9%), 0.150 (21.1%), 0.139 (19.3%), 0.143 (19.9%)
in F1-score respectively.

We also compared the proposed method with Hameed’s
PU learning method [22]. Both our work research on
the 548 benchmark drugs. We inferred 45,026 reliable
negatives which cover all the 548 researched drugs. By
contrast, Hameed inferred 589 negatives and just cov-
ers only 256 researched drugs. To fairly compare with
Hameed’s method, we extracted the top 589 negatives in
terms of inference scores from our inferred negatives and
use the same strategy with Hameed to extract 589 random
positives (hereinafter referred to as DDI-PULearn-Top).

Table 1 Prediction performance comparison with the two
baseline methods, namely all-negatives and random-negatives

Method Precision Recall F1-score
DDI-PULearn 0.906 0.828 0.865
Random-negatives 0.765 0676 0.718
All-negatives 0.709 0449 0.550
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We also constructed 10 training sets using the 589
top inferred negatives and randomly selected 589 known
DDIs. The average performances of the 10 balanced
training samples from 5-fold cross-validation are shown
in Table 3. Note that SFR1 and SFR2 are two feature
representation methods used by Hameed et al. [22]. It can
be observed that DDI-PULearn-Top achieves comparable
performance with Hameed’s GSOM-based PU learning
methods. Specifically, DDI-PULearn-Top achieves better
recall and F1-score than Hameed’s method using SFRI.
It is slightly inferior to Hameed’s method using SFR2.
Comparing with Hameed’s PU learning methods, DDI-
PULearn has the following advantages: (1) DDI-PULearn
infers many more negatives (45,026 vs 589) which is
closer to the practical prediction task i.e., large-scale drug
interaction prediction. Hameed’s inferred negatives cover
part of researched drugs (256 from 589), thus only inter-
actions between the covered drugs are predicted and
evaluated. By contrast, our inferred negatives cover all
researched drugs, the possible interaction between all
researched drugs are predicted and evaluated. (2) The
key goal of DDI-PULearn and Hameed’s method is to
infer reliable negatives for classification. The 1178 evalu-
ation samples (589 positives + 589 negatives) constructed
by Hameed are quite few for the whole sample space
(Cg48 = 149,878). Consequently, classifiers may not
be able to learn enough knowledge to distinguish pos-
itive/negative from negative/positive for non-evaluation
samples (148,700 = 149,878-1,178) though they perform
well on the evaluation samples.

The above comparison results with existing state-of-
the-art methods and another PU Learning method both
demonstrate the superior performances and advantages
of the proposed positive-unlabeled learning method DDI-
PULearn.

Novel DDIs predicted by DDI-PULearn

We employ DDI-PULearn to predict labels for the 101,294
unobserved DDIs, which are not available in the bench-
mark dataset. In the prediction, a larger prediction score
of a drug pair suggests they have a higher interaction
probability. We can obtain a recommendation list of novel
DDIs by ranking them in descending order of their predic-
tion scores. Like other data mining results, it is unrealistic
to expect all highly ranked DDIs to be of value to domain
experts. Therefore, we shortlist the top 25 novel inter-
actions predicted by DDI-PULearn in Table 4. We fur-
ther verify them in the DrugBank database which stores
the latest DDI information. We highlight the confirmed
DDIs in bold font. From Table 4, we can see that a sig-
nificant ratio of predicted interactions is confirmed in
DrugBank (11 out of 25). It indicates that DDI-PULearn
does have the capability to predict novel drug-drug
interactions.



Zheng et al. BMC Bioinformatics 2019, 20(Suppl 19):661

Page 6 of 12

Table 2 Performances of DDI-PULearn and the benchmark methods evaluated by 20 runs of 3-fold cross-validation and 5-fold

cross-validation

Evaluation Method Precision Recall F1-score
3-fold CV Vilar's substructure-based method 0.145 0.535 0.229
Vilar's interaction-fingerprint-based method 0.377 0.553 0447
Zhang's weighted average ensemble method 0.782 0.703 0.740
Zhang's L1 classifier ensemble method 0.788 0.717 0.751
Zhang's L2 classifier ensemble method 0.784 0.712 0.746
DDI-PULearn 0.902 0.822 0.860
5-fold CV Vilar's substructure-based method 0.145 0.535 0.229
Vilar's interaction-fingerprint-based method 0.377 0.553 0447
Zhang's weighted average ensemble method 0.775 0.659 0.712
Zhang's L1 classifier ensemble method 0.785 0.670 0.723
Zhang's L2 classifier ensemble method 0.783 0.665 0.719
DDI-PULearn 0.904 0.824 0.862
Discussions likely to interact. It also utilizes the advanced one-class

Most existing methods are based on the closed-world
assumption, taking validated interacted drug pairs as pos-
itives and unlabeled drug pairs as negatives to perform
the prediction directly [4-7, 13]. However, drugs from
the unlabeled drug pairs still have considerable proba-
bilities to interact. It means that the assumed negatives
may include a considerable number of real positives which
are yet unknown. As a result, classifiers trained with
unlabeled drug pairs as negatives cannot learn a good
boundary to classify true positives and true negatives.
Instead of taking unlabeled drug pairs as negatives
directly, we develop a PU-Learning method to gener-
ate reliable negatives by learning from the positive and
unlabeled samples. The comparison experiments with
two baseline methods, five state-of-the-art methods, and
a PU-learning method demonstrate that DDI-PULearn
achieves superior performance. Investigation on the top-
predicted novel DDIs also shows the competence of
DDI-PULearn on predicting novel DDIs. The superior
performance of DDI-PULearn can be attributed to the fol-
lowing aspects: (1) In the first step of generating reliable
negative seeds, it takes advantage of the converse negative
proposition of the similarity-based methods (achieved
remarkable performance), i.e., dissimilar drugs are less

Table 3 Performance assessment of DDI-PULearn-Top and
Hameed's approaches using 10 training set and 5-fold
cross-validation

Hameed's GSOM-based PUL

Evaluation DDI-PULearn-Top

SFR1 SFR2
Precision 0.944 0.951 0.974
Recall 0.934 0.861 0.975
F1-score 0.939 0.904 0.974

learning technique OCSVM. The combination of the
above two techniques ensures that the most reliable neg-
ative seeds are generated. (2) In the second step, SVM
trained with validated positives and the generated nega-
tive seeds is employed to predict the remaining unlabeled
drug pairs. Then, the newly predicted negatives are added
to the negative set to train SVM for the next round pre-
diction. The process is repeated iteratively until no new
negatives are obtained. The initial training with reliable
negative seeds ensures the classification boundary is prop-
erly learnt and the iterative process extracts all possible
negatives. Through the above learning from the validated
positive samples and unlabeled samples, a better classifi-
cation boundary has been learnt.

Conclusions

In this work, we propose a novel positive-unlabeled learn-
ing method named DDI-PULearn for large-scale drug-
drug interaction predictions. DDI-PULearn first gener-
ates seeds of reliable negative samples from the unla-
beled samples using two techniques namely OCSVM
and KNN. Then trained with the generated seeds, DDI-
PULearn employs SVM to identify all reliable negative
samples iteratively. Following that, DDI-PULearn repre-
sents the labeled positive samples and identified nega-
tive samples as vectors by a similarity-based represen-
tation method using abundant drug properties. Finally,
the vectors are compressed via PCA and further used
as input for binary classifications. The innovation of
this work lies in the design of the novel PU-Learning
method and in the method for DDI representations. In
the experimental part, we discussed the determination
of PCA components number and different drug proper-
ties for DDI representations. We demonstrate the superior
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Table 4 Top 25 novel DDIs predicted by the proposed method DDI-PULearn

Rank Drug1 Drug1 Name Drug2 Drug2 Name Score
1 DB01137 Levofloxacin DB01182 Propafenone 1

2 DB00512 Vancomycin DB00704 Naltrexone 1

3 DB00704 Naltrexone DB00783 Estradiol 1

4 DB00773 Etoposide DB00783 Estradiol 1

5 DB01137 Levofloxacin DB00704 Naltrexone 1

6 DB00635 Prednisone DB00704 Naltrexone 1

7 DB00295 Morphine DB01037 Selegiline 0.975
8 DB01050 Ibuprofen DB00712 Flurbiprofen 0.975
9 DB00218 Moxifloxacin DB00328 Indomethacin 0.975
10 DB00213 Pantoprazole DB01189 Desflurane 0.975
11 DB00586 Diclofenac DB01037 Selegiline 0.975
12 DB00398 Sorafenib DB00445 Epirubicin 0.975
13 DB00724 Imiquimod DB00331 Metformin 0.975
14 DB00203 Sildenafil DB00457 Prazosin 0.975
15 DB00999 Hydrochlorothiazide DB00880 Chlorothiazide 0.975
16 DB00635 Prednisone DB00324 Fluorometholone 0.975
17 DB00704 Naltrexone DB00327 Hydromorphone 0.975
18 DB00295 Morphine DB00704 Naltrexone 0.975
19 DB00813 Fentanyl DB01232 Saquinavir 0.975
20 DB00624 Testosterone DB00959 Methylprednisolone 0.95
21 DB00959 Methylprednisolone DB00550 Propylthiouracil 095
22 DB01193 Acebutolol DB00264 Metoprolol 0.95
23 DB00295 Morphine DB00674 Galantamine 0.95
24 DB01137 Levofloxacin DB00323 Tolcapone 0.95
25 DB00591 Fluocinolone Acetonide DB00641 Simvastatin 0.95

(DDIs which are confirmed in DrugBank are highlighted in bold font.)

performance of DDI-PULearn by comparing it with two
baseline methods and five state-of-the-art methods. All
experimental results show that the DDI prediction perfor-
mance is significantly improved owing to DDI-PULearn.
Besides, results for prediction of novel DDIs suggest that
DDI-PULearn is competent to identify novel DDIs.
DDI-PULearn is useful in various areas and able to guide
drug development at different stages. For instance, at the
early stage of drug candidate selection, DDI-PULearn can
help to decide whether the drug molecules should be
dropped or kept for further study. In addition, warnings
about the potential interactions which may cause serious
side-effects can be given to the public on time.

Methods

Data resources

Drug properties

We extract drug properties from different data sources.
Drug chemical substructures and drug substituents are
extracted from DrugBank [26], a comprehensive drug
database. Drug targets are obtained by fusing drug-target

associations from both DrugBank and DrugCentral [27].
The drug-side-effect associations are downloaded from
SIDER [28], a large labeled side-effect database. The drug-
indication associations, drug-pathway associations, and
drug-gene associations are retrieved from the CTD (com-
parative toxicogenomics database) [29].

Drug-drug interactions

We use a recent benchmark dataset [25] collected from
TWOSIDES [30], a database which contains DDIs mined
from FAERS. It contains 548 drugs and 48,584 pairwise
drug-drug interactions. The specific drug list and all veri-
fied DDIs are available in Additional file 2.

Proposed methods

The framework of the proposed method is illustrated in
Fig. 3. It consists of five components listed as follows:
reliable negative sample identification, feature vector rep-
resentation for DDIs, PCA compression, DDI prediction,
and performance evaluation. First, reliable negative sam-
ples are generated using DDI-PULearn. Then both the
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labeled positive samples and the reliable negative sam-
ples are represented as vectors according to the drug
properties, such as chemical substructures, associated
side-effects, and indications. Next, the sample vectors are
compressed into a lower-dimension space using PCA. Fol-
lowing that, the compressed vectors together with their
labels are used as input for DDI prediction. Finally, the
prediction performance is evaluated according to the con-
fusion matrix.

Reliable negative sample identification

We propose a novel two-step strategy to generate reliable
negative samples. In the first step, we generate RNS seeds
from the unlabeled samples using OCSVM and KNN.
Then we employ SVM trained with labeled positive sam-
ples and RNS seeds to generate reliable negative samples

iteratively. Labeled positive samples are validated DDIs
and unlabeled samples are unobserved DDIs between
every two drugs which are not in labeled positive samples.
Fig. 4 details the flow for identification of reliable negative
samples.

A. RNS seed generation

In the first step, we employ two techniques namely
OCSVM and KNN to generate the RNS seeds. For
OCSVM, we feed it with all labeled positive samples and
optimize its parameters via 5-fold cross-validation. To
ensure that the majority of true DDIs are correctly pre-
dicted, a high recall (> 0.95) is required for OCSVM.
With the optimized parameter settings (nu: 0.05, gamma:
0.001), OCSVM achieves a recall of 0.951 and generates
1,602 RNS seeds from the 101,294 (C%,;-48,584) unla-
beled samples.
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As described in the next subsection, each DDI is repre-
sented as a 3,111-dimensional vector. We use the cosine
function as the similarity measure for KNN:

sim(ddi;, ddi;) = cosine(vector(ddi;), vector (ddi))

?:1111 [ vector,(ddi;) * vector(ddi))

13=1111 vector(ddi;)? x 2211111 vector;(ddij)?
(1)

where vector(ddi;) and vector(ddi;) are vectors of the
DDI/sample ddi; and ddi; respectively. The specific pro-
cess to generate RNS seeds using KNN is described in
Algorithm 1. After optimizing, we set k as 5 and the
threshold as 4.026. Using the KNN strategy, we obtain
5000 RNS seeds. Merging the RNS seeds generated by
OCSVM and KNN, we finally obtain 6602 RNS seeds (see
Table S6 in Additional file 2).
B. Iterative SVM for RNS identification

In the second step, we run SVM trained by labeled
positive samples and RNS seeds iteratively to identify all
reliable negatives from the remaining unlabeled data. The
pseudo-code is shown in Algorithm 2. We aim to identify
all reliable negative samples from the unlabeled data, thus
we use the last SVM classifier at convergence as the best
classifier instead of selecting a good classifier from the
classifiers built by SVM. Through the iteration, we finally
obtained 45,026 reliable negative samples.

Feature vector representation for DDIs

We collected a variety of drug properties which may
help to improve the prediction, namely drug chemical
substructures, drug substituents, drug targets, drug side-
effects, drug indications, drug-associated pathways, and
drug-associated genes. We investigate which drug prop-
erty to use for drug representation by feature impor-
tance ranking using Random Forrest. The implementation
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Algorithm 1 Generating reliable negative sample seeds
using KNN
Input positive samples P, unlabeled samples U, threshold
T, the number of nearest neighbors K.
1: seeds = {};
2: for u; € U do
3 forp;j e Pdo

4 Computing the similarity sim (u;, p;);

5. end for

6 Select k nearest neighbors n;(j = 1,2..,k,n; € P)
for u;;

7. Compute the accumulative similarity asim(u;) for
u;: asim(u;) = Z]]le sim(u;, nj)
8: ifasim(u;) < T then

9: seeds = seeds U u; ;
10 end if
11: end for

Output The reliable negative sample seeds seeds.

details and experiment results are described in Additional
file 1. The feature ranking analysis shows that drug prop-
erties including drug chemical substructures, drug tar-
gets, and drug indications play a leading role in DDI
prediction, thus, we decide to employ them for drug
representation. Specifically, we represent each drug as a
3111-dimensional feature vector using 881 drug chemi-
cal substructures, 1620 side-effects, and 610 indications.
The drug chemical substructures correspond to 881 sub-
structures defined in the PubChem database [31]. The

Algorithm 2 Reliable negative samples extraction with
iterative SVM
Input positive samples P, unlabeled samples U, reliable
negative sample seeds seeds, reliable negative samples
RNSs, the remaining unlabeled samples RU (i.e., U —
seeds).
Initiate RNSs as seeds;
Assign label +1 to each sample in P;
Assign label -1 to each sample in RNSs;
while true do
Train a SVM classifier S using P and RNSs;
Classify RU using S;
Let the samples in RU classified as negatives be V;
if V == {} then
break;
else
11: RNSs = RNSsU V;
12: RU=RU-V;
13 end if
14: end while
Output The reliable negative samples RNSs.

R A A S > v

—
=4
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side-effects and indications are 1,620 unique side-effects
in SIDER [28], and 610 unique indications in DrugBank
[26] respectively. Each bit of the feature vector denotes the
absence/presence of the corresponding substructure/side-
effect/indication by 0/1. Further, we propose a similarity-
based representation for DDIs based on the following
formula:

vectory(drug;, dr Mg/) =
Jeaturei(drug;) + feature (drug;) @)
2

where feature; (drug;) and feature; (drug;) are the k-th bit
of the feature vectors of drug drug; and drug; respectively,
vectory is the k-th bit of vector for the DDI drug;-drug;.

PCA compression

There are 149,878 (C§48) possible DDIs between the 548
drugs used for experiments. Thus the size of the classi-
fication input could be around the order of magnitude
of billion (149,878 * 3,111). Such high dimensionality
inevitably incurs a huge computational cost. To speed up
the prediction process, we employ PCA to map the raw
vectors of DDIs into lower-dimension space. Specifically,
all training DDI vectors are used to fit the PCA first.
Then the fitted PCA is used to transform both the training
and testing DDI vectors into lower-dimensional vectors.
Finally, the compressed vectors are used as input to train
and validate the binary classifier.

DDl prediction

We formalize the DDI prediction task as a binary classifi-
cation problem to predict a DDI is true or not. The inputs
for the binary classifiers are the compressed vectors of
DDIs and their labels. Specifically, we label labeled posi-
tive samples (i.e., validated DDIs) as +1 and the generated
reliable negative samples as -1. Finally, we train and test
a binary classifier with the above vectors and labels. We
employ “Random Forrest" as the binary classifier in this
work.

Performance evaluation

5-fold CV (cross-validation) is performed to evaluate the
prediction performance: (i) DDIs in the gold standard set
are split into 5 equal-sized subsets; (ii) each subset is used
as the test set, and the remaining 4 subsets are taken as
the training set in turn to train the predictive models; (iii)
the final performance is evaluated on all results over 5-
folds. To avoid the bias of data split, 5 independent runs of
5-fold CV are implemented and average results are used
for final evaluation. Precision, recall, F1-score, and AUC
(area under the receiver operating characteristic curve)
are used as evaluation metrics.
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