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Abstract

Background: Studying multiple microRNAs (miRNAs) synergism in gene regulation could help to understand the
regulatory mechanisms of complicated human diseases caused by miRNAs. Several existing methods have been
presented to infer miRNA synergism. Most of the current methods assume that miRNAs with shared targets at the
sequence level are working synergistically. However, it is unclear if miRNAs with shared targets are working in
concert to regulate the targets or they individually regulate the targets at different time points or different
biological processes. A standard method to test the synergistic activities is to knock-down multiple miRNAs at the
same time and measure the changes in the target genes. However, this approach may not be practical as we
would have too many sets of miRNAs to test.

Results: n this paper, we present a novel framework called miRsyn for inferring miRNA synergism by using
a causal inference method that mimics the multiple-intervention experiments, e.g. knocking-down multiple
miRNAs, with observational data. Our results show that several miRNA-miRNA pairs that have shared targets
at the sequence level are not working synergistically at the expression level. Moreover, the identified miRNA
synergistic network is small-world and biologically meaningful, and a number of miRNA synergistic modules
are significantly enriched in breast cancer. Our further analyses also reveal that most of synergistic miRNA-
miRNA pairs show the same expression patterns. The comparison results indicate that the proposed
multiple-intervention causal inference method performs better than the single-intervention causal inference
method in identifying miRNA synergistic network.

Conclusions: Taken together, the results imply that miRsyn is a promising framework for identifying miRNA
synergism, and it could enhance the understanding of miRNA synergism in breast cancer.

Keywords: miRNA, miRNA synergistic network, miRNA synergistic module, Multiple intervention causal
inference, Breast cancer
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Background
MicroRNAs (miRNAs) are a class of short non-coding
RNAs with ~ 23 nucleotides (nts) in length. They play an
important regulatory role at the post-transcriptional level
by targeting messenger RNAs (mRNAs) for degradation
or translation repression [1]. Previous studies have dem-
onstrated that miRNAs play a crucial role in regulating
gene expression involved in diverse biological processes,
including cell proliferation, cell death, cell apoptosis and
human cancers [2–4]. Generally, the relationships between
miRNAs and their target genes are not one-to-one but
many-to-many, indicating cooperative regulation of miR-
NAs. The co-regulation of miRNAs has been accepted
and confirmed by cross-linking and immunoprecipitation
technologies, and may be related to human complex dis-
eases [5]. Therefore, studying miRNA synergism can
greatly help to understand the synergistic regulation
mechanism of miRNAs in human diseases.
Until now, a number of computational methods have

been proposed to identify miRNA synergism. These
methods can be divided into three different categories:
(1) sequence-based [6–8], (2) correlation-based [9–14],
and (3) causality-based [15]. In the first category, the se-
quence data mainly includes putative miRNA-target in-
teractions and protein-protein interactions (PPIs). For
each candidate miRNA-miRNA pair, the methods firstly
evaluate the significance of common target genes by
using a hypergeometric test. Then, by conducting Gene
Ontology (GO) [16] or Kyoto Encyclopedia of Genes
and Genomes (KEGG) [17] enrichment analysis of the
shared target genes, they determine whether a candidate
miRNA-miRNA pair is functionally synergistic or not.
The main limitation of the methods in this category is
that they only use static data in the study of miRNA syn-
ergism. In fact, the co-regulation between miRNAs is
usually dynamic in human cancers [18]. Methods in the
second category use expression data of miRNAs to iden-
tify differentially expressed miRNA synergistic network
or integrate matched miRNA and mRNA expression
data with sequence data to infer miRNA synergistic net-
works. However, the identified miRNA synergistic net-
works or modules using statistic correlation methods
may not reveal the causal relationships of gene regula-
tion. To address this issue, a causality-based method
[15] (the third category) has been presented to infer
miRNA-target causal relationships. The method only
simulates the causal effect in single-intervention experi-
ments, e.g. knocking-down a single miRNA each time.
However, miRNA co-regulation simultaneously involves
multiple miRNAs.
In general, the miRNA-miRNA synergistic pairs identi-

fied by several existing methods at the sequence level
may not crosstalk with each other to co-regulate target
genes at the expression level. Previous study [19] has

shown that miRNAs tend to synergistically control ex-
pression levels of target genes. It is necessary to integrate
expression data for identifying miRNA-miRNA synergis-
tic pairs at the expression level. Moreover, all existing
approaches don’t explicitly look at “simultaneous” co-
regulation of multiple miRNAs on the target genes, e.g.
causal effects of multiple synergistic miRNAs on the
shared target genes.
To address the above issues, in this work, we present a

framework called miRsyn for inferring miRNA syner-
gism from both sequence-based binding information and
expression data by simulating multiple-intervention ex-
periments, e.g. knocking-down multiple miRNAs at the
same time. We apply the proposed method to The Can-
cer Genome Atlas (TCGA) breast cancer dataset. The
results show that several miRNAs that have shared tar-
gets at the sequence level may not be working synergis-
tically at the expression level, and the miRNA synergistic
modules discovered are strongly related to breast cancer.
Our further analyses also reveal that most of synergistic
miRNA-miRNA pairs tend to be co-expressed, which
help make a rapid response to external disturbances. Fi-
nally, the comparison results demonstrate that multiple-
intervention causal inference method performs better
than single-intervention causal inference method in
studying miRNA synergism.

Methods
Overview of miRsyn
As illustrated in Fig. 1, miRsyn is a step-wise method for
identifying miRNA synergism. Firstly, given matched
miRNA and mRNA expression data, we use feature selec-
tion based on the Cox regression model [20] to identify sig-
nificant miRNAs and mRNAs. Then, by using multiple-
intervention causal inference method [21], we obtain joint
causal effects between the significant miRNAs and mRNAs.
At the same time, the putative miRNA-target binding infor-
mation is used to generate regulatory relationships between
significant miRNAs and mRNAs. By integrating joint causal
effects and binary relationships between significant miR-
NAs and mRNAs, we find a set of miRNAs with the max-
imum joint causal effect on each mRNA. The miRNAs in
each set of miRNAs synergistically regulate their target
mRNAs, and all synergistic miRNA-miRNA pairs are com-
bined to construct the miRNA synergistic network. To
identify miRNA synergistic modules, we firstly find a set of
bi-cliques with at least 2 miRNAs and mRNAs based on
putative miRNA-mRNA binding information. For each bi-
clique, the subset of bi-clique with the maximum joint
causal effect is regarded as a miRNA synergistic module. Fi-
nally, we conduct functional analysis of miRNA synergism
at both network and module levels.
In the following, we will describe the key steps in

detail.
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Fig. 1 (See legend on next page.)
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Estimating multiple-intervention effects
Let G = (V, E) be a graph including a set of vertices V
and a set of edges E ⊆V × V. Here, V = {X1, ..., Xp, Y1, ...,
Yq} is a set of random variables denoting the expression
levels of p miRNAs and q mRNAs, and E represents the
regulatory relationships between these variables. If a
graph G only contains directed edges and no cycles, the
graph is a Directed Acyclic Graph (DAG). In DAG G, if
there is an edge Xi→ Yj, Xi (i ∈ {1, ..., p}) is a parent of Yj

(j ∈ {1, ..., q}) and Yj is a child of Xi. The DAG G is a
causal DAG if and only if Xi is a direct cause of Yj [22].
Following the Markov Assumption that a node in a
DAG is conditionally independent of its non-
descendants, given its parents, a DAG encodes a distri-
bution, as a product of the conditional probabilities of
all nodes. A DAG can be read out as a set of conditional
independent relationships of variables. An equivalence
class of DAGs, which encodes the same conditional in-
dependencies in a given data, can be described by a com-
pleted partially directed acyclic graph (CPDAG) which
includes both directed edges and undirected edges [23].
Let’s assume that we have observational data (e.g. gene

expression data) that are multivariate Gaussian and
faithful to the true (but unknown) underlying causal
DAG without hidden variables. Under the assumption,
the Joint-IDA (Joint Intervention calculus when the
DAG is Absent) [21] estimates the multiset of possible
total joint effect of X ({X1, ..., Xp}) on Yj (j ∈ {1, ..., q}). The
total effect of X on Yj in a joint intervention on Xk (k ≠ i)
is denoted by (ef1j, ef2j, ..., efpj), where efij represents the
direct causal effect of Xi (i ∈ {1, ..., p}) on Yj, when keep-
ing intervention values of other variables Xk constant.
The joint effect (ef) of X on each of Yj is formally defined
as follows:

ef ¼
e f 11 e f 12 ⋯ e f 1q
e f 21 e f 22 ⋯ e f 2q
⋮ ⋮ ⋱ ⋮

ef p1 ef p2 ⋯ ef pq

2
664

3
775

¼
ef 11 ef 12 ⋯ e f 1q
e f 21 ef 22 ⋯ e f 2q
⋮ ⋮ ⋱ ⋮

ef p1 ef p2 ⋯ ef pq

0
BB@

1
CCA ¼ ef ij

� �
∈ℝp�q ð1Þ

wheree f ij ¼ E Y jjdo X1 ¼ x1; :::;Xi ¼ xi þ 1; :::;Xp ¼ xp
� �� �

−E Y jjdo X1 ¼ x1; :::;Xi ¼ xi; :::;Xp ¼ xp
� �� �

In the formula, do(.) is the ‘do’ operation to set Xi to a
value, e.g. (xi + 1) or xi (i ∈ {1, ..., p}), and this mimics a

real world manipulation by setting a variable to a value
xi. E[.] is the expectation of variable Yj when variable Xi

is manipulated and other variables Xk (k ≠ i) are held
constant.
Joint-IDA implemented in the R package pcalg [24]

can be directly used to calculate joint casual effect, but is
not applicable to gene expression datasets with thou-
sands of variables. We have implemented a parallelized
Joint-IDA algorithm in the R package, ParallelPC [25]
which uses a multiple-core CPU to speed up the runtime
of the Joint-IDA algorithm.
Let us consider a subset of miRNAs ({X1, ...,Xm}) where

m ≤ p. We are interested in the cumulative joint causal ef-
fect of the m miRNAs on mRNA Yj when the m miRNAs
are knocked off where other miRNAs are kept the inter-
vention values constant. The cumulative joint causal effect
(δj) of m miRNAs on each of Yj is defined in the following:

δ j ¼
Xm
i¼1

0−average Xið Þð Þe f ij ð2Þ

where efij represents the amount of Yj change due to a
unit change of Xi, average (Xi) denotes the average ex-
pression level of Xi in the expression data, and (0 − aver-
age(Xi)) indicates ‘knocking off’ miRNA Xi completely.
A DAG cannot be uniquely identified from data, and

instead, an equivalence class of DAGs is identified. We
estimate a multiset of possible cumulative joint causal
effects using the set of equivalent DAGs. The maximum
of cumulative joint causal effects in the multiset is re-
ported as the estimated cumulative joint causal effect.

Identifying miRNA synergistic network
After feature selection in the matched miRNA and
mRNA expression data, we obtain a list of significant p
miRNAs and q mRNAs. Given the putative miRNA-
target binding information, let A = {miR1, ...,miRp} be a
set of significant miRNAs that have binding sites with a
significant target mRNA mRj (j ∈ {1, ..., q}). Our aim is to
find a set of miRNAs A�

j ¼ fmiR1; :::;miRrg (j ∈ {1, ..., q},

r ≤ p), which has the maximum cumulative joint causal
effect on mRNA mRj. This is the estimated cumulative
joint causal effect of A�

j on the mRNA mRj when all

miRNAs in A�
j are knocked off at the same time in data.

In each set of A�
j , the miRNAs synergistically regulate

mRj, and form a miRNA-miRNA synergistic sub-
network. All miRNA-miRNA sub-networks are then in-

(See figure on previous page.)
Fig. 1 The workflow of miRsyn. The process contains three main steps. Firstly, we identify significant miRNAs and mRNAs using feature selection
from miRNA and mRNA expression data. Secondly, by integrating expression data of significant miRNAs and mRNAs and putative miRNA-target
interactions, we identify miRNA synergistic network and modules. Finally, we make a functional analysis of the identified miRNA synergistic
network and modules
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tegrated to maximal miRNA synergistic networks. Our
identified miRNA synergistic networks are different from
those obtained from existing methods, as we draw each
A�

j as a sub-network by simulating multiple gene knock-

down experiments.

Identifying miRNA synergistic modules
We firstly initialize the miRNA-mRNA bipartite network
between the p significant miRNAs and q significant
mRNAs by using putative miRNA-target binding infor-
mation. Then, we use the R package biclique [26] to find
all the bi-cliques from the miRNA-mRNA bipartite net-
work. The bi-cliques provide the candidate miRNA syn-
ergistic modules for testing the miRNA synergistic
activities. For a bi-clique, let C = {miR1, ...,miRr} (subset
of p significant miRNAs) and D = {mR1, ...,mRl} (subset
of p significant mRNAs) denote r (≥2) miRNAs and l
(≥2) mRNAs in the bi-clique. Based on the joint causal
effects of C on each mRNA of D, we find a set of
C∗ = {miR1, ...,miRr'} (subset of C) and D∗ = {mR1, ...,mRl'}
(subset of D) with the maximum cumulative joint causal
effect between C* on every mRNA in D*. The identified
(C*, D*) is regarded as a miRNA synergistic module
where the number of miRNAs or mRNAs is at least 2.

Topological and functional analysis of miRNA synergism
The topological analysis of miRNA synergism could help to
understand the internal organization of miRNA synergistic
network, e.g. power law degree distribution, the average clus-
tering coefficient and the average characteristic path length.
If the node degree in a biological network obeys a power law
curve (in the form of y= bxa) distribution with high value of
R2, the network is regarded to be scale-free. Here, the R2

value is a deterministic coefficient to measure the quality of a
power curve fit. The interval of R2 value is [0 1]. A larger R2

value indicates a better power law curve fit. The average clus-
tering coefficient is used to evaluate the dense neighborhood
of a biological network. In a small-world biological network,
the average characteristic path length is much larger than
that of random networks [27, 28]. The average characteristic
path length indicates the density of a biological network. In a
small-world biological network, the average characteristic
path length is smaller than that of random networks [28].
In this work, we obtain topological features (power

law degree distribution, the average clustering coefficient
and the average characteristic path length) of the
miRNA synergistic network by using the NetworkAnaly-
zer plugin [29] in Cytoscape [30]. For generating random
networks, we use the duplication model [31] of the Ran-
domNetworks plugin (https://github.com/svn2github/
cytoscape/tree/master/csplugins/trunk/soc/pjmcswee/
src/cytoscape/randomnetwork) in Cytoscape. We con-
struct 10,000 random instances by randomizing the

miRNA synergistic network, and calculate the average
clustering coefficient and the average characteristic path
length of networks.
We conduct functional enrichment analysis to investi-

gate the biological functions of miRNA synergism. For
the identified miRNA synergistic network, we use the
online tool miEAA [32] to infer the significantly
enriched or depleted biological processes, pathways and
diseases associated with synergistic miRNAs (p-value <
0.05). For the identified miRNA synergistic modules, we
focus on annotating breast cancer related miRNA syner-
gistic modules by conducting breast cancer enrichment
analysis. Here, we use a hypergeometric test to perform
breast cancer enrichment analysis. For each miRNA syn-
ergistic module, the significance p-value of breast cancer
genes is calculated as follows.

p−value ¼ 1−
Xx−1
i¼0

M
i

� 	
N−M
K−i

� 	

N
K

� 	 ð3Þ

In the formula, N is the number of significant genes
(including miRNAs and mRNAs) after feature selection,
M denotes the number of breast cancer genes in signifi-
cant genes, K represents the number of genes in each
miRNA synergistic module, and x is the number of
breast cancer genes in each miRNA synergistic module.
The miRNA synergistic modules with p-value < 0.05 are
regarded as breast cancer related modules.

Results
Data source
We obtain the matched breast cancer expression data of
miRNAs and mRNAs and the clinical information of
breast cancer samples from TCGA [33]. Firstly, we re-
move all the male samples for breast cancer because this
is a relative minority event. For the matched miRNA
and mRNA expression data, the genes with missing
values across the samples (> 30%) is removed. The
remaining missing values are imputed using the k-near-
est neighbours (KNN) algorithm from the impute R
package [34]. Then, we conduct log2(x + 1) transform-
ation and z-score normalization for the expression levels
of miRNAs and mRNAs. In addition, we use the miRBa-
seConverter R package [35] to convert miRNA names to
the latest version of miRBase. Finally, we use the FSby-
Cox function (a feature selection based on Cox regres-
sion model) from the CancerSubtypes R package [36] to
identify significant miRNAs and mRNAs. After the fea-
ture selection, we identify expression data of 79 miRNAs
and 1314 mRNAs in 753 breast cancer samples at a sig-
nificant level (p-value < 0.05) in total.
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For the putative miRNA-target interactions, we use
the experimentally validated interactions from miRTar-
Base v7.0 [37]. A list of breast cancer related miRNAs
are obtained from HMDD v3.0 [38], miR2Disease [39],
miRCancer [40] and oncomiRDB [41]. A list of breast
cancer related genes is obtained from DisGeNET v5.0
[42] and COSMIC v86 [43].

MiRNA synergistic network is small-world and biologically
meaningful
By following the steps of Fig. 1, we have identified a list
of 702 miRNA-miRNA synergistic pairs between 78
miRNAs (details can be seen in Additional file 1). These
miRNA-miRNA synergistic pairs are integrated into a
miRNA synergistic network. Out of the 78 miRNAs, the
number of breast cancer related miRNAs is 39 (red
nodes in Fig. 2). The hub miRNAs with higher degrees
in miRNA synergistic network tend to be essential. In
this work, 8 miRNAs with higher degrees (about 10% of
miRNAs in miRNA synergistic network) are regarded as
hub miRNAs. Except one hub miRNA (miR-186-5p), 7
hub miRNAs (miR-10a-5p, and miR-150-5p, miR-192-
5p, miR-26a-5p, miR-301a-3p, miR-484, miR-98-5p) are
breast cancer related miRNAs. This result indicates that
most of hub miRNAs are breast cancer causal miRNAs.
We define that breast cancer related miRNA-miRNA
pairs are those in which the two synergistic parties are
breast cancer related miRNAs. As a result, we obtain a
list of 269 breast cancer related miRNA-miRNA pairs
(details can be seen in Additional file 1).
As shown in Fig. 2 (table at the bottom of the figure),

the distribution of node degrees of the miRNA synergis-
tic network do not follow power law distribution with
R2 = 0.192. This result indicates that the identified
miRNA synergistic network is not scale-free. However,
the miRNA synergistic network exhibits dense local
neighborhoods with the average clustering coefficient of
0.528, which is much larger than that of random net-
works (0.178 ± 0.037). In addition, the miRNAs in the
network are closely connected with the average charac-
teristic path length of 1.837, which is smaller than that
of random networks (2.511 ± 0.048). Altogether, the
dense local neighborhoods and the small average charac-
teristic path length imply that the miRNA synergistic
network is small-world, and can be used to predict
miRNA synergism [27, 28].
To investigate the potential biological processes, pathways

and diseases related to the synergistic miRNAs, we conduct
functional enrichment analysis of them. As shown in Table 1,
the synergistic miRNAs are significantly enriched in several
biological processes, pathways and diseases associated with
breast cancer, such as cell cycle (GO0007050, GO0007093)
[44],cell division (GO0051781) [45], cell apoptosis (GO
0002903, GO0042981, GO0043065, hsa04210) [46], cell

migration (GO0030334, GO0010595, GO0030335,) [47], cell
differentiation (GO0045595, GO0045446,) [48], cell prolifera-
tion (GO0050678, GO0072091) [49], signaling pathway
(P00038, P00056, WP304) [50] and Breast Neoplasms. The
detail information of miRNA enrichment analysis results can
be seen in Additional file 2. This result demonstrates that the
miRNA synergistic network is closely associated with the
biological condition of breast cancer dataset, and is biologic-
ally meaningful.

A number of miRNA synergistic modules are significantly
enriched in breast cancer
We have identified 361 miRNA synergistic modules by
following the steps in Fig. 1 (details in Additional file 3).
To understand whether the identified miRNA synergistic
modules are closely associated with breast cancer, we
conduct breast cancer enrichment analysis of these mod-
ules. As a result, the number of miRNA synergistic mod-
ules significantly enriched in breast cancer is 72 (p-value
< 0.05), indicating that a number of miRNA synergistic
modules is closely related to the biological condition of
breast cancer dataset (details in Additional file 3).

Most of synergistic miRNA-miRNA pairs show the same
expression patterns
In this study, we use Pearson correlation of each synergis-
tic miRNA-miRNA pair to measure the co-expression
level. A synergistic miRNA-miRNA pair with significantly
positive correlation (p-value < 0.05) is regarded as a co-
expressed pair. Out of 702 synergistic miRNA-miRNA
pairs, we discover that 499 synergistic miRNA-miRNA
pairs are co-expressed (details in Additional file 4). This
result indicates that most of synergistic miRNA-miRNA
pairs (~ 71.08%) show similar expression patterns. It also
implies that most miRNAs with similar expression pat-
terns would like to collaborate with each other to co-
regulate target genes. The result is consistent with previ-
ous studies [7, 51].

Several synergistic miRNA-mRNA pairs at the sequence
level are not working synergistically at the expression
level
At the sequence level, we only use putative miRNA-
target interactions to construct miRNA synergistic net-
work. In this work, we use the DmirSRN motif in [15] to
generate miRNA synergistic regulatory network. Conse-
quently, we find that 1313 miRNA-miRNA pairs can dir-
ectly regulate the same target by cooperating with each
other at the sequence level (details in Additional file 5).
Out of 1313 synergistic miRNA-miRNA pairs at the se-
quence level, 611 miRNA-miRNA pairs are not working
synergistically at the expression level by comparing with
the miRNA synergistic network generated by miRsyn
(details in Additional file 5). This result implies that
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miRNA-miRNA pairs that have shared targets at the se-
quence level may not work synergistically at the expres-
sion level.

Comparison results
There are several existing methods to infer miRNA syn-
ergistic network by using different types of datasets.
However, to have a fair comparison (i.e. using the same

data types and similar inference method for estimating
causal effects of miRNAs on mRNAs), we focus the
comparison on one existing method mirSRN [15] only.
The comparison result of our method miRsyn with

mirSRN is shown in Fig. 3. The detailed results of
mirSRN can be seen in Additional file 6. In terms of
the identified miRNA synergistic pairs (Fig. 3a), the
number of miRNA synergistic pairs predicted by

Fig. 2 Visualization of miRNA synergistic network generated by Cytoscape. The breast cancer related miRNA nodes are colored in red, and the
non breast cancer related miRNA nodes are colored in white. The dash lines denote synergistic relationships
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miRsyn (702) is more than that by mirSRN (239).
The majority of the identified miRNA synergistic
pairs by mirSRN (163) are predicted by miRsyn. As
for the significantly enriched terms (Gene Ontology,
Pathways and Diseases) associated with the identified
miRNA synergistic network (Fig. 3b), the identified
miRNA synergistic network from miRsyn is signifi-
cantly enriched in more number of functional terms
excepting the terms of Diseases.
For the comparison in the percentage of breast cancer

miRNAs and miRNA synergistic pairs (Fig. 3c), the con-
structed miRNA synergistic network by mirSRN con-
tains higher percentage of breast cancer miRNAs.
However, the constructed miRNA synergistic network
by mirSRN involves higher percentage of breast cancer
miRNA synergistic pairs. Since the dense local neighbor-
hoods and the small average characteristic path length
can be exploited to predict miRNA synergism, Fig. 3c
implies that miRsyn is more suitable than mirSRN to
identify miRNA synergism.
As shown in Fig. 3d, most of synergistic miRNA-

miRNA pairs identified by both miRsyn (~ 71.08%, 499
out of 702) and mirSRN (~ 82.43%, 197 out of 239) all
show the same expression patterns. This comparison

result indicates that the findings from miRsyn and
mirSRN are consistent with each other. Although there
is still no ground-truth for validating miRNA-miRNA
synergistic pairs, we can use putative high-confidence
miRNA-miRNA from the third-party database. In this
work, we use the PmmR database [52] to compare the
overlap with putative miRNA synergistic pairs between
miRSyn and mirSRN. The score (the interval is [0 1]) in
the PmmR database indicates the strength of each
miRNA-miRNA synergistic pair, and a larger score de-
notes a stronger strength. Under different score cutoffs
(range from 0.50 to 0.70 with a step of 0.05), the overlap
of miRsyn is always larger than that of mirSRN (Fig. 3e).
This result indicates that several synergistic miRNA-
miRNA pairs predicted by miRsyn (missed by mirSRN)
still overlap with PmmR database.
In sum, the above comparison results indicate miRsyn

is more suitable than mirSRN in studying miRNA
synergism.

Discussion
It is known that human complex diseases such as can-
cers are affected by multiple miRNAs rather than indi-
vidual miRNA. Therefore, identifying miRNA synergism

Table 1 A portion of enriched or depleted biological processes, pathways and diseases associated with breast cancer by using
miRNA enrichment analysis

Category Subcategory Enrichment p-value #miRNAs

Gene Ontology GO0007050:cell cycle arrest enriched 3.079E-02 27

GO0007093:mitotic cell cycle checkpoint enriched 8.732E-03 10

GO0051781:positive regulation of cell division enriched 1.146E-02 16

GO0002903:negative regulation of b cell
apoptotic process

depleted 3.023E-02 3

GO0042981:regulation of apoptotic process enriched 2.025E-02 21

GO0043065:positive regulation of apoptotic
process

enriched 7.562E-03 27

GO0030334:regulation of cell migration enriched 3.296E-02 14

GO0010595:positive regulation of endothelial
cell migration

enriched 2.851E-02 12

GO0030335:positive regulation of cell migration enriched 2.327E-02 20

GO0045595:regulation of cell differentiation enriched 3.939E-02 10

GO0045446:endothelial cell differentiation depleted 3.330E-04 2

GO0050678:regulation of epithelial cell
proliferation

enriched 3.845E-02 3

GO0072091:regulation of stem cell proliferation enriched 3.497E-02 2

GO0010719:negative regulation of epithelial to
mesenchymal transition

depleted 4.996E-02 3

Pathways hsa04210:Apoptosis enriched 3.859E-02 22

P00038:JAK STAT signaling pathway enriched 4.995E-03 2

P00056:VEGF signaling pathway enriched 3.376E-02 15

WP304:Kit receptor signaling pathway enriched 7.517E-03 18

Diseases Breast Neoplasms enriched 7.184E-03 11
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is important to understand the regulatory mechanisms
of human complex diseases.
In this work, we have proposed a framework called

miRsyn to identify miRNA synergism from both se-
quence and expression data. By using multiple-
intervention causal inference, we simulated the causal
effects of multiple miRNAs on target genes in the
multiple-intervention experiments. To study miRNA
synergism, we have conducted analysis at both net-
work and module levels.
Topological analysis has shown that the constructed

miRNA synergistic network is not scale-free, but small-
world. The small-worldness may help the synergism of
miRNAs to quickly adapt to a new biological environ-
ment caused by disturbances. In addition, most of syner-
gistic miRNA-miRNA pairs show the same expression
patterns, which allows for a rapid response to external
disturbances.

We have also discovered that some miRNA-miRNA
pairs at the sequence level are not working synergistic-
ally at the expression level. This result implies that it is
necessary to study miRNA synergism from heteroge-
neous data sources. To further reveal the potential func-
tions, we conducted functional enrichment analysis of
synergistic miRNAs. The miRNA enrichment analysis
results display that the identified miRNA synergistic net-
work is directly or indirectly associated with the bio-
logical condition of breast cancer dataset. Moreover, by
conducting breast cancer enrichment analysis, we have
found that several miRNA synergistic modules are sig-
nificantly enriched in breast cancer.
We compared our method miRsyn with mirSRN in dif-

ferent terms, including the number of synergistic miRNA
pairs, the number of significantly enriched terms, the per-
centage of breast cancer miRNAs and miRNA synergistic
pairs, clustering coefficient and characteristic path length,

Fig. 3 Comparison results between miRsyn and mirSRN. a The number of miRNA synergistic pairs. b The number of significantly enriched terms.
c The percentage of breast cancer miRNAs and miRNA synergistic pairs, clustering coefficient and characteristic path length. d The number of co-
expression and non co-expression miRNA synergistic pairs. e The overlap with putative miRNA synergistic pairs under different score cutoffs
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the number of co-expression and non co-expression
miRNA synergistic pairs, and the overlap with putative
miRNA synergistic pairs under different score cutoffs. The
comparison results show that miRsyn (simulating multiple
gene knock-down experiments) is more suitable than
mirSRN (simulating single gene knock-down experiments)
to identify miRNA synergism. For this current work, in
order to have a fair comparison (i.e. using the same data
types and similar inference method for estimating causal
effects of miRNAs on mRNAs), we focus the comparison
on one existing method mirSRN only. However, it is help-
ful to compare miRsyn to other different methods as well.
In future, to further show the performance of miRsyn in
studying miRNA synergism, we will conduct more com-
prehensive comparison.

Conclusions
Taken altogether, this work provides a novel framework
to identify miRNA synergism that can be applied in vari-
able biological fields. The presented results from the
proposed method could provide insights to understand
the synergistic roles of miRNAs in breast cancer. We be-
lieve that the presented method is applicable to the
study of miRNA synergism associated with other human
complex diseases.
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