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Abstract

Background: Cancer arises through accumulation of somatically acquired genetic mutations. An important
question is to delineate the temporal order of somatic mutations during carcinogenesis, which contributes to better
understanding of cancer biology and facilitates identification of new therapeutic targets. Although a number of
statistical and computational methods have been proposed to estimate the temporal order of mutations, they do not
account for the differences in the functional impacts of mutations and thus are likely to be obscured by the presence
of passenger mutations that do not contribute to cancer progression. In addition, many methods infer the order of
mutations at the gene level, which have limited power due to the low mutation rate in most genes.

Results: In this paper, we develop a Probabilistic Approach for estimating the Temporal Order of Pathway mutations
by leveraging functional Annotations of mutations (PATOPA). PATOPA infers the order of mutations at the pathway
level, wherein it uses a probabilistic method to characterize the likelihood of mutational events from different
pathways occurring in a certain order. The functional impact of each mutation is incorporated to weigh more on a
mutation that is more integral to tumor development. A maximum likelihood method is used to estimate parameters
and infer the probability of one pathway being mutated prior to another. Simulation studies and analysis of whole
exome sequencing data from The Cancer Genome Atlas (TCGA) demonstrate that PATOPA is able to accurately
estimate the temporal order of pathway mutations and provides new biological insights on carcinogenesis of
colorectal and lung cancers.

Conclusions: PATOPA provides a useful tool to estimate temporal order of mutations at the pathway level while
leveraging functional annotations of mutations.
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Background
Carcinogenesis is a complex process which involves
somatic mutations in a number of key biological pathways
and processes. Better understanding the temporal order of
somatic mutation occurrences is very important to study
the biological mechanism of cancer development and to
inform new therapeutic targets. For some cancer types,
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the temporal order of mutations have been well studied.
For example, colorectal cancer is frequently initiated by
mutations that affect theWnt signaling pathway, and then
progress upon subsequent mutations in genes involved in
MAPK, PI3K, TGF-beta, and p53 signaling pathways [1].
However, for many other cancer types, temporal orders of
mutations are still largely unknown.
Large-scale somaticmutation profiling via whole-exome

or whole-genome sequencing has provided an unprece-
dented opportunity for using statistical and computa-
tional methods to study carcinogenesis. A number of
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methods have been developed to infer temporal order
of somatic mutations based on cross-sectional genomic
sequencing data. One class of methods use a single onco-
genetic tree or a mixture of trees to characterize tem-
poral order of mutations [2–4]. A stringent constraint
of these methods is that they preclude the possibility of
convergence of different paths when different mutations
yield the same outcome. A more flexible class of meth-
ods [5–11] consider progression networks, which do not
assume a tree-like dependency structure among mutations.
However, these methods still require full modeling of
the dependency structure among mutations. As an alter-
native, Youn and Simon [12] proposed a probabilistic
method to directly estimate the order of mutations with-
out an explicit modeling of the dependency structure.
All the aforementioned methods infer tumor progres-

sion at the gene level. However, different patients have
mutations in different genes and mutation rates for most
genes are very low. Therefore, the power of gene level
analysis is usually low. One main reason for this muta-
tional heterogeneity is the mutual exclusivity of gene
mutations in a biological pathway [13, 14]. Different
patients may have different driver mutations from the
same pathway with a converged phenotype of perturbing
the pathway. Therefore, studying temporal order of muta-
tions at the pathway level rather than individual gene level
is biologicallymoremeaningful. Further, themutation rate
of a pathway is much higher than that of an individual
gene so pathway analysis provides a stronger signal on co-
occurrence of mutations in different samples, which is the
primary information used in tumor progression inference.
Because of these advantages, there has been a growing
interest to develop methods to perform temporal order
analysis at the pathway level [11, 15–17].
A major limitation of current methods is that all muta-

tions are treated equally. A gene or pathway is considered
to be functionally altered as long as a non-synonymous
mutation occurs in the gene or pathway. However, many
non-synonymous mutations are passenger mutations that
do not contribute to cancer progression. Failing to control
for such noise may lead to spurious results. The impact of
passenger mutations may get worse at the pathway level
because of an elevated noise level due to the increased
number of mutations [16]. One approach for dealing
with the noise is to incorporate functional annotation of
each mutation in the analysis. Quantification of the func-
tional impact of a mutation has been well studied. Sev-
eral bioinformatics tools, such as SIFT [18], PolyPhen-2
[19] , Mutation Assessor [20], and PROVBEAN [21], have
been developed to predict the potential effect of a muta-
tion on the stability and function of human proteins.
These prediction tools output a probabilistic score to
quantify the likelihood for a mutation to be “functional,”
i.e. having an effect on the molecular function causing

diseases. Incorporating such information should enhance
the accuracy of temporal order analysis of mutations.
In this paper, we propose PATOPA, a probabilistic

method to characterize the temporal order of mutations
at the pathway level. PATOPA incorporates the functional
annotation of each mutation and weigh more on muta-
tions that are likely to be functional. To our knowledge,
this is the first attempt to incorporate functional impact
into mutation temporal order analysis. Simulation stud-
ies are performed to evaluate the accuracy of PATOPA
on estimating the temporal order of pathway mutations
and to assess the effect of functional impact scores on the
estimation. PATOPA has been applied to colorectal and
lung whole exome sequencing datasets from TCGA.

Results
PATOPA overview
An overview of PATOPA is provided in Fig. 1. We start
from profiles of non-silent somatic mutations along with
their associated pathway and functional annotation infor-
mation for a cohort of patients at various stages of a
certain type of cancer. We perform the temporal order
analysis at the pathway level instead of individual gene
level. A pathway is considered as being functionally
altered only if at least one functional mutation has
occurred. We use a probabilistic model to estimate a piv-
otal probability matrix P on the ordering of functional
mutational events, where the (k, i) element of the matrix,
pk,i, indicates the probability of the kth functional muta-
tion occurring in the ith pathway. Based on this pivotal
probability matrix, we calculate the temporal order proba-
bility of one pathway being altered before or after another
pathway. Finally, we use a partial order plot to summarize
the temporal order of all the pathways.
The idea of PATOPA can be illustrated by an example

of determining the temporal order of pathways A and B in
Fig. 1. Notice that all patients who have mutations in path-
way B (patients 2, 3 and 5) also have mutations in pathway
A. On the other side, patients 1 and 4 only have mutations
in pathway A, but not in pathway B. As we assume driver
mutations occur in a sequence, such data would suggest
that pathway A is likely to be alterred before pathway B
during carcinogenesis. This idea was originated by Youn
and Simon [12]. In this paper, we make two major exten-
sions. The first extension is to consider the temporal order
at the pathway level instead of gene level, which substan-
tially increases the power. As shown in Fig. 1, themutation
frequency of an individual gene is low. For example, genes
A2 and B3 only have onemutation each, and themutations
are in different patients. Therefore, there is no sufficient
information to confidently determine the temporal order
of mutations in these two genes. In contrast, when pooling
genes from the same pathway together, the mutation fre-
quency increases substantially for both pathways so that
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Fig. 1 Overview of PATOPA. Suppose we are to determine the temporal order of alterations in four pathways, A, B, C and D. The mutation data for
pathways A, containing genes A1, A2, A3, and B, containing genes B1, B2, B3, are illustrated in the figure using colors, where a darker color indicates a
mutation that is more likely to be functional and a lighter color indicates a mutation that is less likely to be functional based on functional
annotation. PATOPA integrates the mutation data, pathway information, and functional annotations to estimate a pivotal probability matrix P,
where the (k, i) element of the matrix indicates the probability of the kth functional mutation occurring in the ith pathway. Based on P, we infer the
temporal order of the four pathways, where P(A < B) is the probability of A being altered before B and P(B < A) is the probability of B being altered
before A. Based on those probabilities, a partial order plot is constructed to show the carcinogenesis process, where the thickness of an edge from A
to B is determined by P(A < B)

the temporal order estimation becomesmore feasible. The
second extension is to incorporate functional annotation
information to improve the inference. As shown in Fig. 1,
patient 5 has mutations in both pathways A and B. If
we ignore functional annotation information, data from
this patient is not informative to indicate the order of the
two pathways. However, based on functional annotation,
the mutation in pathway A is likely a functional muta-
tion while the one in pathway B is likely a non-functional
mutation.With this added piece of information, data from
this patient is useful to support that pathway A is alterred
before pathway B.

Optimization for computational efficiency
PATOPA involves estimation of the parameter matrix P,
where the size of the matrix is determined by the num-
ber of pathways and the number of functional muta-
tion events. Without control of these two numbers,
P can contain a large number of parameters, which makes
the estimation computationally intensive. We used the
following two approaches to reduce number of param-
eters in P. Firstly, we performed our analysis for each
pair of pathways seperately to estimate P and temporal

order probabilities. This approach substantially reduces
the number of columns in P, and therefore is compu-
tationally much more efficient. To examine the perfor-
mance of this approach, we used TCGA rectal cancer
data and analyzed 9 key cancer pathways from the Kyoto
Encyclopedia of Genes and Genome (KEGG) database
[22]. A more detailed description of the dataset and path-
way information is provided in the “Real data analysis”
section. The left panel of Fig. 2 compares the estimated
temporal order probabilities from analyzing each pair of
pathways at a time versus all pathways together. The dif-
ferences were small with most of the values less than 0.1.
Therefore, we used this pairwise analysis approach in the
rest of the paper.
Secondly, we set pk,i = pK ,i for k > K and estimated an

averaged distribution for mutations occurring after the K-
th step. To choose an appropriate K value, we again used
the TCGA rectal cancer data and compared estimated
temporal order probabilities between adjacent K values
for 36 pairs of the 9 key pathways. Figure 2 right panel
shows that the estimated temporal order probabilities
became very stable for K ≥ 4. In addition, for each pair
of pathways, we calculated the probability distribution of



Wang et al. BMC Bioinformatics          (2019) 20:620 Page 4 of 12

0.
00

0.
05

0.
10

0.
15

D
iff

er
en

ce
 in

 e
st

im
at

ed
 p

ro
ba

bi
lit

y

2 3 4 5

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

K

D
iff

er
en

ce
 in

 e
st

im
at

ed
 p

ro
ba

bi
lit

y

Fig. 2 Validity of approaches to improve computational efficacy. Left panel: difference in estimated temporal order probabilities from analyzing
each pair of pathways at a time versus all pathways together; right panel: difference in estimated temporal order probabilities between adjacent K
values, where each boxplot indicates the distribution of difference in estimated probabilities between K and K − 1 across all the 36 pairs of key
pathways based on TCGA rectal cancer data

number of functional mutations they would contain (see
Additional file 1: Figure S10). The probability of having
more than 4 functional mutations for most pairs of path-
ways was very small. Therefore, we set K = 4 in our
subsequent analyses.

Simulation studies
Evaluating the estimation accuracy of the temporal order of
pathwaymutations
Simulation studies were conducted to evaluate the per-
formance of PATOPA in determining the temporal order
of two pathways, A and B. Our goal was to use sim-
ulated datasets that we knew the true pathway order
probabilities to investigate whether PATOPA was able to
uncover those probabilities when analyzing the datasets.
To mimic real world situation, we set the true path-
way order probabilities based on TCGA rectal cancer
mutation data from the p53 signaling (our pathway A, 8
genes) and cell cycle (our pathway B, 89 genes) pathways.
Specifically, we applied PATOPA to TCGA rectal can-
cer data to estimate pk,A and pk,B, the probability that
the kth functional mutation was from pathways A and B,
respectively. We also calculated the probabilities of path-
way A being altered before (P(A < B)), simultaneously
with (P(A = B)), and after (P(A > B)) pathway B being
altered. These probability values were set as true val-
ues to simulate data based on the following procedure.
Firstly, the number of functional and non-functional
mutations in a patient were generated based on the empir-
ical distributions in TCGA rectal cancer data, respectively.
Secondly, functional mutations were assigned to pathways
in a temporal order, where the kth functional mutation

was assigned to pathway A with probability pk,A, or to
pathway B with probability pk,B. Thirdly, non-functional
mutations were randomly assigned to the two pathways
with probabilities qi, the probability that a randomly sam-
pled non-functional mutation is from pathway i for i =
A or B. Fourthly, the functional impact score of each gene
mutation was assigned as the conditional probability of
observing this specific mutation given that there was a
functional/non-functional mutation in the pathway that
this gene belonged to.
We simulated data of sample size 50, 100, 200 or

400 with 100 replicates at each sample size. We applied
PATOPA to simulated datasets to estimate P(A < B),
P(A = B) and P(A > B). To quantify the differ-
ence between true probability values we set when sim-
ulating the data and estimated probability values from
PATOPA, we define the bias as the mean absolute dif-
ference between true and estimated probability values
across 100 simulations. As shown in Table 1, the bias was
small, indicating that PATOPA was able to accurately esti-
mate those probabilities. In addition, the bias decreased

Table 1 Estimation accuracy of PATOPA. Numbers presented are
the bias, i.e. the difference between the estimated and true
values averaged across 100 simulation replicates

Sample size P(A > B) P(A = B) P(A < B)

50 0.074 0.069 0.041

100 0.048 0.045 0.028

200 0.038 0.034 0.021

400 0.021 0.020 0.013
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as the sample size increased, indicating that PATOPA had
increased precision in estimating those probabilities when
more data were available.

Evaluating the effect of functional impact scores
We performed another set of simulations to assess the
effect of functional impact score on the estimation of
temporal order probabilities. Under the same simulation
setting described in the previous subsection, we increased
or decreased the PolyPhen-2 scores of all mutations in the
p53 signaling pathway (pathway A). The resulting prob-
abilities are presented in Fig. 3. It shows the trend that
when PolyPhen-2 scores of mutations in pathway A were
decreased, P(A < B) decreased and P(A > B) increased.
Specifically, when functional impact scores of all pathway
A mutations were decreased by 0.5, P(A < B) decreased
to 0.25. When scores were increased by 0.5, P(A < B)

increased to 0.7. The results demonstrate the substantial
impact of functional impact score that can lead to distinct
inference on the temporal order of pathways.

Real data analysis
To further evaluate the performance of PATOPA, we
applied it to TCGA whole exome sequencing data for
colorectal and lung cancer data. We considered 9 key can-
cer pathways in our analysis. In addition to the canonical
molecular signaling pathways of wingless-related inte-
gration site (WNT), mitogen-activated protein kinase
(MAPK), phosphoinositide 3-kinase (PI3K), transforming
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Fig. 3 Effect of functional impact scores on the inference of temporal
order of pathway mutations. PolyPhen-2 scores of all mutations in
pathway A were changed by a certain amount and the corresponding
estimated temporal order probabilities were presented

growth factor beta (TGF-beta), p53 and vascular endothe-
lial growth factor (VEGF), we also included pathways
involving the processes of apoptosis, adherens junction
and cell cycle. The apoptosis pathway is an indicator of
turnover of both normal and tumor cells; the adherens
junction pathway is an important factor for tumor
invasion; and the cell cycle pathway suggests the pro-
cess of cell growth in the tumor. Genes in each of the 9
pathways, which are listed in Additional file 1: Table S1,
were determined based on the KEGG database [22] with
manual curation.

Analysis of TCGA colorectal cancer data
The TCGA project provided the whole exome sequencing
data of 461 colon and 172 rectal tumor samples. Since we
aimed to better understand the similarity and difference of
carcinogenesis between colon and rectal cancers, we ana-
lyzed these two datasets separately. For each cancer type,
we deleted the top 16% hyper-mutated samples because
the carcinogenesis process of these tumors involve differ-
ent sequences of genetic events [23]. We applied PATOPA
to estimate temporal order probabilities of each pair of
pathways and the results are summarized by partial order
plots (Figs. 4 and 5). The comparison between the orders
PATOPA found from seperate analysis of rectal cancer and
colon cancer mutation data and those reported in the lit-
erature for colorectal combined tumor [1] is presented in
Figure S11 in Additional file 1. Most of the inferred tem-
poral orders of pathway mutations were consistent with
cancer research literature. Specifically, the estimated tem-
poral orders of WNT - MAPK - PI3K - p53 signaling
pathways for rectal cancer and WNT - MAPK - PI3K -
TGF-beta signaling pathways for colon cancer were the
same as the known sequences of biological events in col-
orectal cancer [1]. Interestingly, the TGF-beta pathway
were placed before the MAPK pathway from our analy-
sis of rectal cancer alone (Fig. 4), and the p53 signaling
pathway was placed before the PI3K and TGF-beta sig-
naling pathways from our analysis of colon cancer alone
(Fig. 5), which are cancer type-specific and distinct from
the biological evidence for “colorectal” combined tumor
[1]. This might be due to the lack of biological evidence
from the isolated rectal and colon cancer samples sepa-
rately and the traditional method for tissue collection and
analysis from colorectal cancer patients. Also, traditional
biological analysis only considered very limited number of
gene mutations in each pathway, while PATOPA analysis
considered all of the available mutations in each defined
pathway.
To better illustrate how the incorporation of functional

impact scores benefited our analysis, we studied the dis-
tribution of PolyPhen-2 scores for each pathway using
TCGA rectal and colon cancer datasets, see Figure S12 in
Additional file 1. The Wnt signaling pathway had more
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Wnt signaling pathway

TGF-beta signaling pathway

MAPK signaling pathway

Cell cycle

PI3K-Akt signaling pathway

Apoptosis

Adherens junction

p53 signaling pathway

VEGF signaling pathway

Fig. 4 Estimated order of pathway alterations based on TCGA rectal cancer dataset. Estimated temporal order probabilities from PATOPA are
summarized using a partial order plot [24]. Each node corresponds to a pathway we analyzed. The nodes/pathways are ordered based on the
temporal order probabilities estimated from PATOPA. The thickness of a directed edge is proportional to the probability that the head node is
mutated after the tail node. Pathways with similar temporal order probabilities are clustered together, where the clustering results are indicated by
different colors of node borders. For better visualization, edges with probability less than 0.4 are removed from this figure

mutations with high PolyPhen-2 scores than the MAPK
and p53 signaling pathways, which supports our model
inference that theWnt signaling pathway was altered prior
to the MAPK and p53 signaling pathways. Our model
is based on the idea that only mutations affecting pro-
tein functions should be used to infer mutational order
of pathways. Since the PolyPhen-2 score quantifies the
probability of each mutation being functional, pathways
having more mutations with high PolyPhen-2 scores tend
to be ordered earlier than pathways having fewer such
mutations.

Analysis of TCGA lung cancer data
Non-small cell lung cancer is another significant cancer
type to our interest, which is primarily composed of two
clinically and pathologically different subtype groups, i.e.
lung adenocarcinoma and lung squamous cell carcinoma.

We applied PATOPA to the whole-exome sequencing
data of 585 lung adenocarcinoma samples and 504 lung
squamous cell carcinoma samples in TCGA. The result-
ing partial order plots are shown in Fig. 6 and Fig. 7.
The mutations in the MAPK signaling pathway ranked on
the top of lung adenocarcinoma. This is not surprising as
KRAS is the most frequently mutated gene in the lung
adenocarcinoma but less frequent in the lung squamous
cell carcinoma [25, 26]. In both lung adenocarcinoma and
squamous cell carcinoma, the mutations of the Wnt sig-
naling ranked just below the MAPK signaling. It has been
reported that activation of both Wnt signaling and KRAS
dramatically enhanced lung carcinogenesis [27]. However,
from biological evidences, the most prevalent mutations
found in lung cancer are those of p53 signaling path-
way. Interestingly, we notice that mutation of the p53
pathway appeared to be in distinct positions of orders
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Wnt signaling pathway

MAPK signaling pathway p53 signaling pathway

PI3K-Akt signaling pathway

Apoptosis

TGF-beta signaling pathway

VEGF signaling pathway

Adherens junction

Cell cycle

Fig. 5 Estimated order of pathway alterations based on TCGA colon cancer dataset. Estimated temporal order probabilities from PATOPA are
summarized using a partial order plot [24]. Each node corresponds to a pathway we analyzed. The nodes/pathways are ordered based on the
temporal order probabilities estimated from PATOPA. The thickness of a directed edge is proportional to the probability that the head node is
mutated after the tail node. Pathways with similar temporal order probabilities are clustered together, where the clustering results are indicated by
different colors of node borders. For better visualization, edges with probability less than 0.4 are removed from this figure

in lung adenocarcinoma and squamous cell carcinoma.
While p53 pathway mutation was downstream of most
of the other pathway mutations in lung adenocarcinoma,
it was at the upstream of all signaling pathway muta-
tions in lung squamous cell carcinoma (Fig. 6 and Fig. 7).
Previous findings suggest that p53 pathway mutations are
involved in 80% of lung squamous cell carcinoma, while
the mutations are involved in 50% of lung adenocarci-
noma [28] . Our model explains the possibility that in lung
squamous cell carcinoma, p53 pathway plays a more fun-
damental role in initiating the tumor cell growth than in
lung adenocarcinoma.

Comparison to othermethod
We compared PATOPA with an existing method, H-CBN
[15]. We focused our comparison on colorectal cancer, for
which the temporal order of pathway alterations is bet-
ter understood in cancer research literature. We applied
H-CBN to TCGA rectal and colon data. The obtained
pathway order estimates are provided in Additional file 1:
Figure S13. For rectal cancer, H-CBN was able to infer
that Wnt pathway was alterred before MAPK path-
way, and MAPK pathway was alterred before PI3K-Akt
pathway. However, it was unable to determine the orders
of Wnt/MAPK/PI3K and p53 and TGF-beta pathways.

Therefore, temporal orders inferred by PATOPA were
closer to the cancer research literature than those inferred
by H-CBN. For colon cancer, H-CBN was able to infer
the orders of MAPK and PI3K pathways, and MAPK and
p53 pathways. However, H-CBN was unable to determine
the order of MAPK/PI3K/p53 and Wnt and TGF-beta
pathways. Therefore, the results from H-CBN were less
informative that those from PATOPA.

Discussion
Inferring temporal order of driver mutations during car-
cinogenesis is an important task in the analysis of whole
genome/exome sequencing data. Considering mutations
at the pathway level rather than individual gene level
is biologically meaningful and can substantially increase
the power of the analysis. We focused on 9 KEGG
cancer-related pathways in our data analysis. But our
method is generally applicable to study alterations of
other biological pathways or gene sets including de novo
driver gene sets identified from computational algorithms
[14, 29].
In our analysis, we used PolyPhen-2 score [19] to

characterize the probability of each mutation being
functional. Other scores, such as SIFT [18], Mutation
Assessor [20] and PROVBEAN [21], can also be used
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MAPK signaling pathway

Wnt signaling pathway

Apoptosis

TGF-beta signaling pathway

Cell cycle

PI3K-Akt signaling pathway

Adherens junction

p53 signaling pathway

VEGF signaling pathway

Fig. 6 Estimated order of pathway alterations based on TCGA lung adenocarcinoma dataset. Estimated temporal order probabilities from PATOPA
are summarized using a partial order plot [24]. Each node corresponds to a pathway we analyzed. The nodes/pathways are ordered based on the
temporal order probabilities estimated from PATOPA. The thickness of a directed edge is proportional to the probability that the head node is
mutated after the tail node. Pathways with similar temporal order probabilities are clustered together, where the clustering results are indicated by
different colors of node borders. For better visualization, edges with probability less than 0.4 are removed from this figure

alternatively. One limitation of our analysis is that we only
considered single nucleotide variants and did not include
copy number variants. Incorporating copy number vari-
ants into the analysis is our future work.
Our data analysis did not account for cancer sub-

types [30–33]. It would be interesting to perform the
analysis within each cancer subtype separately and com-
pare the temporal order of pathway alterations between
different subtypes. Such analysis may identify subtype-
specific pathway alteration orders and better understand
the development process of a certain cancer subtype,
although the sample size may be a limiting factor of the
power of the analysis.
PATOPA infers temporal order of pathway mutations

based onmutation frequencies across a cohort of patients.
It does not account for the intra-tumor heterogeneity
[34, 35], which may limit the method’s ability to dis-
cern temporal order of pathway mutations in some cases.

Recent advances in bioinformatic tools enables us to
reconstruct the evolutionary history and population fre-
quency of the subclonal lineages of tumor cells based on
single- or multi-region sequencing of samples from an
individual patient [36–38]. In addition, emerging single-
cell sequencing technologies [39–41] have the promise
of revealing tumor heterogeneity at a much higher
resolution. Tumor evolutionary lineage can be recon-
structed [42, 43] based on single-cell sequencing data.
Incorporating intra-tumor heterogeneity and tumor evo-
lution information may substantially improve the estima-
tion of pathway mutation orders, which is an important
direction of future research.

Conclusions
In this article, we have proposed PATOPA, a new
probabilistic method for inferring the temporal order
of pathway mutations during carcinogenesis based on
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Cell cycle
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Fig. 7 Estimated order of pathway alterations based on TCGA lung squamous cell carcinoma dataset. Estimated temporal order probabilities from
PATOPA are summarized using a partial order plot [24]. Each node corresponds to a pathway we analyzed. The nodes/pathways are ordered based
on the temporal order probabilities estimated from PATOPA. The thickness of a directed edge is proportional to the probability that the head node
is mutated after the tail node. Pathways with similar temporal order probabilities are clustered together, where the clustering results are indicated
by different colors of node borders. For better visualization, edges with probability less than 0.4 are removed from this figure

whole genome/exome sequencing data and functional
impact scores of mutations. The method can be a use-
ful tool to help researchers better understand the pro-
cess of tumor development. The result obtained by
applying our method to TCGA rectal cancer whole-
exome sequencing data is mostly consistent with the
multi-step process of colorectal carcinogenesis estab-
lished by previous research, which provides a degree
of validation of the ability of our method to recover
mutation order of pathways from a cross-sectional
dataset.

Methods
A probabilistic approach
Our goal is to determine the order ofN pathways. We first
consider the case that all the pathways do not have any
gene in overlap. An extension of our method to the case of
overlapping pathways is provided at the end of this subsec-
tion. Let Y j

i be the observed number of non-synonymous
mutations in pathway i of patient j for i = 1, . . . ,N ,
j = 1, . . . ,M, and mj = ∑N

i=1 Y
j
i be the total number of

non-silent mutations in patient j. Let Sjk indicate whether
the kth mutation is functional (Sjk=1) or not (Sjk=0) for
k = 1, . . . ,mj, and nj = ∑mj

k=1 S
j
k be the total number of

functional mutations in patient j. Based on the law of total

probability, the probability of observing the set of Y j
i can

be expressed as

P(Y j
1, . . . ,Y

j
N )

=� P(Y j
1, . . . ,Y

j
N |Sj1, ..., Sjmj ,mj)P(Sj1, ..., S

j
mj |mj)P(mj),

(1)

where the summation is over all possible sequences of
Sj1, ...S

j
mj . We next describe how to calculate each of the

three terms in the summation. For the first term, let Dj
k

denote the unknown identity of the pathway mutated as
the kth functional event, and Nj

v denote the unknown
identity of the pathway mutated as the vth nondamaging
event in patient j. We have

P(Y j
1, . . . ,Y

j
N |Sj1, ...Sjmj ,mj)

= �P(Dj
1 = i1, . . . ,D

j
nj = inj ,N

j
1 = inj+1, . . . ,N

j
mj−nj = imj |Sj1,

. . . , Sjmj ,mj)

= �P(Dj
1 = i1, . . . ,D

j
nj = inj |Sj1, . . . , Sjmj ,mj)

× P(Nj
1 = inj+1, . . . ,N

j
mj−nj = imj |Sj1, . . . , Sjmj ,mj),

(2)

where the summation is over all possible orders of path-
way identities of functional and non-functionalmutations,
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(i1, . . . , imj), that are consistent with the observed set of
mutations (Y j

1, . . . ,Y
j
N ), and the last equation is obtained

by assuming the occurrences of functional mutations and
non-functional mutations are independent. For functional
mutations, let pk,ik be the probability that the kth func-
tional mutation occurs in the ikth pathway and assume
that pk,ik is independent of pl,il for l �= k. The pk,ik ’s are our
parameters of interest. For non-functional mutations, as
their orderings are most likely random, we assume equal
probablity for each order of non-functional mutations
in a given patient. Let qi be the probability that a ran-
domly sampled non-functional mutation is from pathway
i, equation (2) can be re-written as

�

( nj∏

k=1
pk,ik

)⎛

⎝
mj∏

l=nj+1
qil

⎞

⎠ .

In practice, we estimate qi by an average
across samples, i.e. (

∑
j E

j
i)/(

∑
j
∑

z E
j
z), where

Ejz = ∑
k:the kth mutation is from pathway z(1 − rk) is the

expected number of non-functional mutations in pathway
z for patient j and rk = P(Sjk = 1) is the functional impact
score of the kth mutation that can be obtained from
software such as PolyPhen-2 [19].
For the second term in equation (1), we assume Sjk is

independent of Sjl for l �= k. We have P(Sj1, ..., S
j
mj |mj) =

mj∏

k=1
rS

j
k

k (1−rk)1−Sjk . For the third term in equation (1), since

the marginal probability P(mj) is independent of pk,ik , it
can be ignored in the likelihood function. Therefore, the
likelihood function can be written as

∏

j
�

⎧
⎨

⎩
�

( nj∏

k=1
pk,ik

) ⎛

⎝
mj∏

l=nj+1
qil

⎞

⎠

⎫
⎬

⎭

{ mj∏

k=1
rS

j
k

k (1 − rk)1−Sjk

}

.

(3)

An estimate of pk,ik is obtained by maximizing the likeli-
hood, see the “Parameter estimation” section. Finally, the
probability of pathway A being alterred prior to pathway
B, denoted by P(A < B), is

P(A< B) = �{(i1,...,in)∈GA<B}

( n∏

k=1
pk,ik

)

, n = max
j∈{1,...,m}{mj}

where GA<B is the subset of pathway mutation sequences
satisfying that the first functional mutation in A occurs
before the first functional mutation in B occurs.
The aforementioned method requires that the pathways

have no overlap. However, many pathways in biological
databases, such as KEGG [22], have overlapped genes. In
such situation, we regroup the genes into mutually exclu-
sive gene sets to run the analysis. Consider an example of

two pathways, A and B, with an overlapped subset A ∩ B.
We regroup the genes into three mutually exclusive sets:
A′ = A ∩ Bc, AB = A ∩ B, and B′ = Ac ∩ B, and perform
the analysis on those three sets. Functional mutations in
A′ and B′ are able to delineate the temporal order of A and
B. Functional mutations in AB are considered as altering
bothA andB simultaneously and are used to estimate such
probability, i.e. P(A = B).

Visualization
We visualize the result of our analysis of each cancer
type with a partial order plot [24]. Each nodes in the plot
corresponds to a pathway. Nodes are ordered based on
estimated temporal order probabilities using the layered
graph drawing method in Graphviz (version 1.3.1) [44],
where pathways likely to be mutated at early stage are
placed on the top while pathways likely to be mutated at
late stage are placed at the bottom. The thickness of a
directed edge is proportional to the probability that the
head node (pathway) is mutated before the tail node (path-
way). For better visualization, edges with probabilities less
than a threshold value are removed from the plot. In addi-
tion, we cluster pathways using the correlation clustering
algorithm [45], which aims to find a clustering that simul-
taneously maximizes the similarities (the probability that
the order of two pathways cannot be determined) between
clusters and minimizes the dissimilarities (the probabili-
ties that the order of the two pathways can be determined)
between clusters. The clustering results are presented by
colors of the node borders.

Parameter estimation
The estimator of pk,i is obtained by maximizing the like-
lihood function (3). Since the pk,i’s need to satisfy the
constraints 0 ≤ pk,i ≤ 1 and �N

i=1pk,i = 1, we consider the
following parameter transformation:

pk,ik = exp(ωk,ik )
mj−1∑

l=1
exp(ωl,il ) + 1

, k = 1, ...,mj − 1 and pmj ,imj

= 1
mj−1∑

l=1
exp(ωl,il ) + 1

where ωk,ik ’s are unconstrained parameters whose esti-
mates are obtained by the Nelder and Mead method.

Pathway definition
We consider 9 key cancer pathways from the KEGG
database [22] in our real data analysis. To minimize over-
laps between pathways, the pathway genes connected
by “O or e” (transcriptional regulation), “- - -” (indirect
regulation) or "||” (cell membrane) are separated. Only
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the “core” pathway genes are selected. For the apopto-
sis pathway, PI3K and RAS were excluded but TP53 was
included. This is because PI3K and RAS pathway regu-
late the transcription of apoptosis genes, while TP53 not
only regulates transcription, but also has transcription-
independent function in apoptosis. For the PI3K-Akt
signaling pathway, all genes downstream of AKT were
excluded because they belong to other pathways that are
defined as independent pathways in the KEGG database.
The defined gene sets for each pathway are listed in Table
S1 in Additional file 2 and displayed in Figures S1-S9 in
Additional file 1.

Availability and requirements
Project name: PATOPA
Project home page: https://github.com/MarkeyBBSRF/
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