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Abstract

Background: A lack of reproducibility has been repeatedly criticized in computational research. High throughput
sequencing (HTS) data analysis is a complex multi-step process. For most of the steps a range of bioinformatic tools is
available and for most tools manifold parameters need to be set. Due to this complexity, HTS data analysis is
particularly prone to reproducibility and consistency issues. We have defined four criteria that in our opinion ensure a
minimal degree of reproducible research for HTS data analysis. A series of workflow management systems is available
for assisting complex multi-step data analyses. However, to the best of our knowledge, none of the currently available
work flow management systems satisfies all four criteria for reproducible HTS analysis.

Results: Here we present uap, a workflow management system dedicated to robust, consistent, and reproducible
HTS data analysis. uap is optimized for the application to omics data, but can be easily extended to other complex
analyses. It is available under the GNU GPL v3 license at https://github.com/yigbt/uap.

Conclusions: uap is a freely available tool that enables researchers to easily adhere to reproducible research
principles for HTS data analyses.
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Background
Next generation or high throughput sequencing (HTS)
methods that rely on massively parallel DNA sequenc-
ing have opened a new era of molecular life sciences. A
continuous growth in sequencing throughput, precision,
length of the sequencing reads, and increasing automation
and miniaturization led to a huge advantage in manual
efforts and costs per experiment compared to traditional
Sanger sequencing. HTS has thus become a mainstay in
many fields of biology and biomedicine: Apart from de
novo genome sequencing, HTS is not only increasingly
replacing othermassively parallel techniques likemicroar-
rays in transcriptomics or epigenomics, but also allows
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for new approaches e.g. in microbial ecology, population
genetics, clinical diagnostics, or breeding. As a conse-
quence, the amounts of HTS-generated data are exploding
inmany disciplines, associated with challenges for storage,
transfer, curation and particularly reproducible analysis of
these data [1].
HTS data analysis is a multi-step process and fairly

complex compared to the analysis of other biological
data. Analysis of e.g. gene expression microarray data is
involving image processing and statistical analysis of the
expression signal. Analysis of a comparable transcriptome
sequencing (RNA-seq) data set involves – apart from the
initial base calling – at least clipping of adapter and low
quality sequences, mapping to a reference genome, count-
ing ofmapped reads per annotation element and statistical
analysis and may include many other steps like transcript
de novo assembly or analysis of differential splicing. For
most of these steps a selection from a range of available
bioinformatic tools needs to be made and for most tools a
variety of parameters needs to be set.
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In general, an HTS data analysis can be described as
a directed acyclic graph (DAG) like structure. We call
a node in the DAG a step. Steps may depend on pre-
viously computed results (produced by preceding steps)
and/or branch out to subsequent parts of the analysis.
Results of individual steps also may be merged again in
later steps and processed further. See Fig. 1 for a sketch of
a prototypic HTS analysis.
Independent replication is a fundamental principle for

evaluating published findings. If a complete replication is
not feasible e.g. due to the access to samples or cost and
effort for HTS experiments, reproducing the analysis from
raw data to published claims is the second best alternative
[2]. The degree of reproducibility of biomedical research

Fig. 1 Sketch of a prototypic DAG describing the analysis of
unmapped HTS reads. HTS data analysis typically follows a DAG-like
structure. Nodes of the DAG are called steps and may depend on
preceding steps and/or branch out to subsequent parts of the
analysis. Results of individual steps may be merged again in later
steps and processed further

has been criticized [3] and a ”reproducibility crisis” has
been diagnosed recently [4]. Given the complexity of HTS
data analyses outlined above, reproducibility is particu-
larly dependent on a detailed reporting of analysis details.
However, a critical analysis of published HTS-based geno-
typing studies revealed that less than a third of the studies
analyzed provided sufficient information to reproduce the
mapping step [1].
Several appeals have been made to alleviate these repro-

ducibility issues in computer science and computational
biology. Roger Peng emphasized the necessity of linking
executable analysis code and data as the gold standard sec-
ond to full replication [2]. Sandve and colleagues called
for adhering to ”ten simple rules for reproducible compu-
tational research”, which fully apply to HTS data analysis
[5]. Finally, Grüning and coauthors defined a technology
stack for reproducible research and formulate guidelines
that particularly consider the numerical reproducibility of
computation in the life sciences [6].
In our opinion, a minimal degree of reproducible

research in managing HTS data analyses requires a tool
which ensures that (i) the dependencies between analysis
steps and intermediate results are correctly maintained,
(ii) analysis steps are successfully completed prior to exe-
cution of subsequent steps, (iii) all tools, their versions
and full parameter sets (including standard parameters
which are usually not set when starting the tool from the
commandline) are logged, (iv), the consistency between
the code defining the analysis and the currently available
results is ensured.
A series of different bioinformatic workflow manage-

ment systems (WMS) is available to support complex
DAG-like analyses. WMS that are appropriate for HTS
analyses are in part general purpose systems, in part
specific for HTS or even designed to address individual
aspects of HTS data analysis. Also, differentWMS designs
require various levels of experience from the users,
while providing different degrees of flexibility. WMS
approaches like Ruffus [7] or SnakeMake [8] allow
the implementation of highly individual analyses, either
via domain-specific programming languages or a general-
purpose programming language. iRAP [9], RseqFlow
[10], or MAP-RSeq [11] belong to a group of WMS
that implement a single specific type of HTS analysis.
Several WMS encapsulate the individual steps of an anal-
ysis within modules and allow for their free combination,
e.g. Galaxy [12], Unipro UGENE [13], KNIME [14], or
Taverna [15] – many of which come with a graphical
user interface. Finally, a group of lightweight modularized
WMS aims at a modular, customizable, command-line-
based approach, which includes e.g. bcbio-nextgen
[16], Bpipe [17], or nextflow [18]. Several of these
WMS rely on logging detailed information of used tools’
versions and issued commands. However, to the best of
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our knowledge, none of the published WMS satisfies all
four criteria that we defined for maintaining a minimal
degree of reproducible research in HTS data analysis.
We compared the essential features, particularly regard-
ing reproducibility, of a set of actively maintained, flexible,
and modular WMS in more detail (Table 1, Additional file
1: Table S1).
Here, we introduce the workflow management system

uap (Universal Analysis Pipeline) that may be used to
implement any DAG-like data analysis workflow, but is
primarily aimed at HTS data analysis. It is constructed
to execute, control, and keep track of the analysis of
large data sets. uap encapsulates the usage of (not nec-
essarily bioinformatic) tools and handles data flow and
processing of the complete analysis. Produced data is
tightly linked with the code specifying the analysis. Thus,
it enables users to perform reproducible, robust, and
consistent data analyses. We provide complete work-
flows for handling genomic data and analyzing RNA-Seq
and Chromatin Immuno-Precipitation DNA-Sequencing
(ChIP-seq) data, which can be used as templates that
allow for easy customization. As we are also integrating
steps for downloading published sequencing raw data (e.g.
from SRA), uap enables users to efficiently reproduce the
data analysis of published studies. The provided work-
flows have been optimized for minimal I/O load on high
performance computing (HPC) environments. Although,
initially designed for HTS data analysis, the plugin archi-
tecture of uap allows for the expansion to any kind of data
analysis.

Implementation
uap is a workflow management software (WMS) imple-
mented in Python. It provides user-friendly access to a
range of bioinformatic analyses of large datasets, such as
high throughput sequencing data. Each analysis is com-
pletely described by an individual configuration file in
YAML1 format. The steps of the analysis and their depen-
dencies as well as the required tools, parametrization and
locations in the file system are specified there. Based on
these settings uap constructs a directed acyclic graph
(DAG) that represents the workflow of the analysis.

Analysis as a directed acyclic graph: The DAG repre-
sents single analysis steps as nodes and pairwise depen-
dencies between steps as directed edges. A step is a
blueprint for a particular analysis with defined input and
output data. The passing of input data to a step and the
generation of a particular type of output data is mod-
eled as connections. They control the data flow between
steps by grouping output files and providing them to
down-stream steps. uap distinguishes between source

1http://yaml.org/

and processing steps. Source steps emit data into the work-
flow and hand the files over to downstream processing
steps via output connections. The user is free to categorize
the input data files for a workflow into user specified
groups to create separate output locations for each cate-
gory. Processing steps, on the other hand, receive data from
upstream steps via input connections, define a sequence
of execution commands and assign output file locations
for each input connection. The entirety of these configu-
rations of a step for a particular set of input connections
is called a run. It can be interpreted as an instance of a
step and is the atomic unit of the analysis. Additional file
1: Figure S1 shows the DAG including its runs rendered
by uap based on the configuration file for the analysis of
a published data set.

Plug-in architecture: Steps encapsulate the usage of a
tool in a single python class, which allows users to easily
customize uap by adding steps. Every new step inherits
from a super class, defines incoming and outgoing con-
nections, the required tools, and has to implement the
runs() method. A step can individually be optimized
for efficient use of CPU and memory usage. For allowing
a flexible accommodation to different high performance
computing environments, uap supports a step-specific
adaptation of the environment, e.g. for setting variables,
or automatic loading and unloading of software modules.
Additional file 1: Figure S3 sketches how new processing
steps are defined.

Enforcing consistency and integrity: When computing
on large data sets, partial processing of large files due to
premature termination of tools may remain undetected
without stringent monitoring of processes and poses a
severe threat to data integrity. In uap, runs are there-
fore executed in a temporary directory and monitored
throughout execution. The overall workflow is not com-
promised in case a single run fails. Result files are only
moved to their final location if all processes of a run exited
gracefully and all expected output files exist.
uap automatically re-schedules runs if it detects failed

processes or missing files. Also, changes in the configu-
ration trigger re-scheduling of the affected runs and all
dependent runs in the DAG.

Maintaining reproducibility: uap tightly links analysis
code and resulting data by hashing over the complete
sequence of commands including parameter specifica-
tions of a run and appending the key to the output path.
Thus, any changes to the analysis code alter the expected
output location, which allows uap to check whether anal-
ysis code and output correspond to each other.
At execution time, an annotation file in YAML format is

captured for each run that contains the complete content

http://yaml.org/
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of the configuration at this point. Hence, an executed run
is documented with the releases of all used software and
the invoked command line with all parameter settings. In
addition, memory and CPU usage of each process, check-
sums of result files, as well as the last kB of stdout and
stderr output are reported. The annotation file is stored
next to the result files of a run.

Process flow: Initially, uap reads the configuration, gen-
erates the respective DAG, and defines all commands and
output file names. Throughout this initiation process uap
inspects the planned analysis for potential errors. The
graph is tested to be acyclic, all required tools (in defined
releases) are tested for their availability and the status of
all steps is determined. This initiation phase is executed
early, i.e. before submitting runs to a compute cluster. uap
thus implements a failing fast technique. This is an impor-
tant feature when working with large amounts of data on

HPC systems where software is dynamically loaded and
erroneous configurations might otherwise only become
apparent after hours of computation. Figure 2 illustrates
uap’s process flow, error reporting, and the link between
configuration and result files.
Subsequently, uap can start runs, display the com-

mands of runs, show the state of the runs, and ren-
der execution graphs. Execution graphs are useful tools
to inspect the performance of an analysis, e.g. to iden-
tify resource bottlenecks in a pipeline of commands.
Additional file 1: Figure S2 shows such an execution graph.
Figure 3 provides an overview of the main principles uap
is built on.

Results
uap is a workflow management system dedicated to data
consistency and adoption of a Reproducible Research
paradigm in HTS data analysis. uap runs on UNIX-

Fig. 2 uap’s process flow, error reporting, and the link between the analysis code and result files. uap implements a failing fast approach: the DAG
is built from the configuration file, tested to be acyclic, all required tools are tested for their availability and the status of all steps is determined.
Subsequently, uap can start runs, display the commands of runs, show the state of the runs, and render execution graphs. Runs are executed in
temporary directories and monitored throughout execution. Result files are only generated at their final location if all processes of a run exited
gracefully and all expected output files exist. Analysis code and resulting data are tightly linked by hashing over the complete sequence of
commands and parameters of a run and appending the key to the output path. Each run generates an annotation file in YAML format that captures
the configuration, software versions and releases, the invoked command line, all parameters, memory and CPU usage of each process involved,
checksums of the result files, as well as the last kB of stdout and stderr
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Fig. 3 Sketch of the main principles uap is built on. a An analysis with uap comprises three parts: (i) the uap source code itself, implemented in
Python - it contains the complete framework of uap and 2 classes for the implementation of source and processing steps. These classes are used to
wrap any tool that is part of the analysis, enabling an easy extension of the uap’s repertoire of steps; (ii) the uap configuration in YAML format. It
contains all necessary information to run and reproduce the analysis given the data; and (iii) the uap results - organized in one folder per step in
the output directory. The special folder temp contains the expected results until the computation of the step has finished successfully, and keeps
the intermediate results and log files upon failure. b The progress or state of an analysis can be monitored with a call to uap status. It
determines the state of each individual step in dependence of the state(s) of its previous step(s) and provides this information to the user

like operating systems and can interact with batch
queuing systems like the Sun/Oracle/Univa grid engines
(SGE/OGE/UGE) and SLURM [23] to submit analyses to
high performance computing systems. uap is distributed
under the GNU GPL v3 license and is publicly avail-
able at https://github.com/yigbt/uap. Its documentation
is hosted at http://uap.readthedocs.org/. A docker con-
tainer with a core set of tools is available at https://hub.
docker.com/r/yigbt/uap/tags

uap is distributed with predefined workflows for (i)
genome sequence download and index generation for
read mapping programs, (ii) transcriptome sequencing
(RNA-seq) data analysis, and (iii) Chromatin Immuno-
Precipitation DNA-Sequencing (ChIP-Seq) data analysis.
Further, we provide small test data sets enabling a quick
start for each of these workflows. An additional example
using a larger data set is provided via code for download-
ing and analyzing a publicly available ChIP-Seq data set

https://github.com/yigbt/uap
http://uap.readthedocs.org/
https://hub.docker.com/r/yigbt/uap/tags
https://hub.docker.com/r/yigbt/uap/tags
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(Barski et al. [24]). The provided workflows are intended
to serve as an easy entry point into a uap analysis as well
as a template for similar analyses, e.g. for other species or
with another set of tools.

Preparing genomic data for HTS analysis: An impor-
tant prerequisite for HTS projects where a reference
genome is available is aligning (mapping) the sequencing
reads to this genome. Most mapping software requires a
specific data structure (index) of the genome to efficiently
solve this alignment problem. Indices have to be gener-
ated once, prior to any mapping procedure. We provide
uap configuration files for the bwa [25], bowtie [26]
and segemehl [27] mapping programs and samtools
(fasta indexing) of the a) Mycoplasma genitalium,
and b) Homo sapiens genome. Genomic sequences
can be downloaded automatically prior to index
generation.

Transcriptome assembly from RNA-Seq data: Tran-
scriptome sequencing identifies and estimates the quan-
tity of RNA in biological samples. Beyond quantification of
known transcripts based on overlapping sequence reads,
RNA-seq allows the assembly of novel transcripts. We
provide a uap configuration file for combining split-read
mapping with de novo transcript assembly. uap reads
the sequencing data either from an Illumina sequencing
run folder, or a set of fastq files, applies quality con-
trol, removes adapter sequences, and maps the reads to
a genome using tophat2 [28] and segemehl [27, 29].
The mapped reads from tophat2 are directly processed
by cufflinks [30] for de novo transcript assembly.
Split-reads mapped with segemehl are prepared for
cufflinks using an adapter script and then also pro-
cessed with cufflinks. The configuration also contains
a step to determine the number of mapped reads per
transcript applying htseq-count [31].

Identification of enriched regions from ChIP-Seq
data: ChIP sequencing is a method that integrates chro-
matin immunoprecipitation (ChIP) and high-throughput
DNA sequencing to identify sites of protein-DNA inter-
actions. The provided uap-configuration file for this task
initially resembles the RNA-Seq workflow. Here, reads
are expected to correspond to genomic DNA and the
mapping is done without considering split-reads using
bowtie2 [26]. Mapped reads are subsequently sorted,
duplicates removed, and enriched regions are detected
using MACS2 [32].

Conclusions
The critique on a lack of reproducibility in science and
a growing awareness that many reported facts do not

seem to hold up to repeated investigation has mean-
while reached a broader audience beyond the scien-
tific community (e.g. [33–35]). In our opinion, HTS
data analysis is particularly prone to consistency and
reproducibility issues – especially due to the complex-
ity of the analysis, the involved data volume, and the
broad range of available tools and their multitude of
parameters.
Workflow management systems are indispensable for

reproducibly controlling more complex analyses, like HTS
data analysis. Published workflow management systems
for HTS data analysis are either highly flexible and made
for experienced programmers or lack a lot of flexibil-
ity but can be used intuitively and some are specific to
a certain type of analysis. In the introduction we listed
four minimal requirements that we consider essential for
ensuring reproducibility and consistency of HTS data
analyses. Additionally, but beyond the programmatic con-
trol of a of a WMS, using versioned external data like
genome sequences or annotation is key for reproducible
analysis. None of the published systems we are aware
of, however, completely satisfies these criteria. uap has
been designed to fulfill these. One critical requirement is
linking analysis code and generated data. While Repro-
ducible Research in statistics [36] uses tools like Sweave
[37], knitR [38], or Jupyter [39] to combine analysis code
and resulting data in one output file, such a strategy is
not feasible for most steps of an HTS analysis due to
the size of generated data. uap therefore relies on hash-
ing over the complete sequence of commands including
parameters of a run and appending the key to the output
path. In addition, uap performs logging and process mon-
itoring, supports different cluster management systems,
creates recovery points, plots execution graphs, manages
job dependencies, and is extensible to any kind of multi-
step analysis. It provides pre-built steps for the prepara-
tion of genomic data and the analysis of RNA-Seq and
ChIP-Seq data.
Among the many different flavors of WMS uap is

clearly easier to operate for users with limited program-
ming experience than systems based on domain specific
programming languages, while offering a lot more flexi-
bility than single purpose tools. Based on the comparison
of tools in Additional file 1: Table S1, the tools most ded-
icated to reproducible research and providing the most
similar set of features compared to uap are Galaxy and
Nextflow.
In our opinion, Galaxy [40] and uap address dif-

ferent user groups and tasks and we use both WMS
in our research environment. Galaxy is great for pro-
viding predefined workflows to users without experi-
ence in programming and working on the command
line. It allows these users to adapt parameters and exe-
cute such workflows on their data. For users working
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frequently with large HTS data sets, adapting work-
flows to a larger extent or duplicating branches of the
DAG for performing variants of the analysis in paral-
lel is much more efficiently performed in uap. Galaxy
does not link data and code in the sense of uap. But
as any change to parameters in a Galaxy workflow
triggers re-execution of the sub-workflow below, this is
not necessary. If many changes throughout a workflow
have to be made, this behavior of Galaxy may be hin-
dering. Obviously, running HTS analyses on Galaxy
requires a Galaxy server integrated with an HPC envi-
ronment, which is not trivial to set up and demands
continuous maintenance. Starting from scratch, setting
up HTS analysis is significantly less effort using uap
than Galaxy.
Nextflow is a powerful WMS dedicated to scalability

and reproducibility [18]. Its approach to reproducibil-
ity relies on a tight integration with github and the
support of scalable containerization of pipelines using
e.g. Docker. Nextflow and uap share several con-
cepts, e.g. using temporary files for intermediate results
or analyzing the workflow DAG to enable failing fast.
Intermediate results of an HTS analysis can consume
large amounts of storage space. uap therefore provides
a means for volatilization of intermediate results with-
out breaking dependencies in the DAG - a feature which
does not seem to be available in Nextflow. Logging
is somewhat limited in Nextflow compared to uap,
but Nextflow provides a broader support for HPC
environments including also support for cloud comput-
ing. Nextflow’s approach to reproducibility is pow-
erful when software from Github is used, as it enables
the user to request a specific commit, or when the
tools used are publicly available as a container. How-
ever, when a tool is run in ’native task support’ like
the Kallisto example provided in [18], uap is more
stringent in logging version and the full set (including
default) of parameters. Where uap and Nextflow dif-
fer most clearly regarding reproducibility is linking data
and code, as to our understanding based on publica-
tions and the online documentation this is not available
in Nextflow.
In summary, we are convinced that reproducible

research principles need to be advanced for HTS data
analysis and that uap is a highly useful system for facing
this challenge.

Availability and requirements
Project name: uap
Project home page: https://github.com/yigbt/uap
Operating system(s): Linux.
Programming language: Python.
Other requirements: virtualenv, git, and graphviz.

License: GNU GPL v3.
Any restrictions to use by non-academics: None.

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s12859-019-3219-1.

Additional file 1: This file includes supplemental tables and figures.
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