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Background: Studies on multiple modalities of omics data such as transcriptomics, genomics and proteomics are
growing in popularity, since they allow us to investigate complex mechanisms across molecular layers. It is widely
recognized that integrative omics analysis holds the promise to unlock novel and actionable biological insights into
health and disease. Integration of multi-omics data remains challenging, however, and requires combination of
several software tools and extensive technical expertise to account for the properties of heterogeneous data.
Results: This paper presents the miodin R package, which provides a streamlined workflow-based syntax for multi-
omics data analysis. The package allows users to perform analysis of omics data either across experiments on the
same samples (vertical integration), or across studies on the same variables (horizontal integration). Workflows have
been designed to promote transparent data analysis and reduce the technical expertise required to perform low-

Conclusions: The miodin package is implemented in R and is freely available for use and extension under the GPL-
3 license. Package source, reference documentation and user manual are available at https://gitlab.com/algoromics/
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Background

With the advances in high-throughput biotechnology over
the past two decades, we now have access to an unprece-
dented wealth of data for many omics modalities. In this
era of biomedical big data, the primary research challenges
are how to integrate and analyze large-scale data of
different types and sources to gain new insights into the
complex mechanisms behind health and disease [1-4]. In
a study by Woo et al, DNA copy-number variation,
methylation and gene expression were profiled in a cohort
of hepatocellular carcinoma (HCC) patients. Integrative
omics analysis revealed three molecular subtypes of HCC
with differences in prognostic outcomes [5]. Zhu et al.
performed a comprehensive pan-cancer integrative ana-
lysis showing that a combination of clinical variables with
molecular profiles improved prognostic power in 7 of the
14 cancer types studied [6]. Lau et al. carried out a cardiac
hypertrophy study in mice based on transcriptomics, pro-
teomics and protein turnover data. The combination of

Correspondence: benjamin.ulfenborg@his.se
School of Bioscience, University of Skovde, Skovde, Sweden

K BMC

multi-omics data revealed complementary insights into
the pathogenesis of the disease [7]. These and other
studies show that the integrative approach deliver novel
biological insights. Advanced bioinformatics tools and al-
gorithms have been developed that can analyze multiple
modalities of omics data [8—10], but performing transpar-
ent and reproducible integrative analysis remains a signifi-
cant challenge. Notably, considerable technical expertise is
required to use many tools and combine them into a
coherent pipeline.

Bioconductor is one of the largest open source projects
for analysis of omics data [11], hosting more than 1600
software packages as of release 3.8. Many experimental
techniques (e.g. microarrays, sequencing and mass spec-
trometry) and omics data types (e.g. genomics, tran-
scriptomics and proteomics) are supported [12-20]. To
perform data analysis, the project hosts many packages for
different workflow steps, such has import, annotation,
pre-processing, quality control, statistical analysis, bio-
logical interpretation and visualization [12, 21-26]. By
promoting a common set of data structures, package
interoperability, version control, extensive documentation
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and high development standards, the project contributes
significantly to distributing R software in bioinformatics.
Furthermore, Bioconductor hosts experimental data,
workflows, tutorials and other materials to facilitate learn-
ing, usage and combination of packages. With its large
and active community, Bioconductor continues to expand
to meet the future challenges in multi-omics data analysis.

Given the functionality it provides, Bioconductor is an
obvious choice when selecting software for performing
integrative multi-omics data analysis. However, even for
seasoned bioinformaticians a lot of technical expertise
and work is required to combine packages into coherent
pipelines. Knowing which packages to use is an issue
when working with new techniques and data, since there
are several possible packages available for a given prob-
lem. Learning how to use several packages takes time,
given the need to be familiar with the logic behind data
structures along with multiple functions and their pa-
rameters. Another challenge is the growth in complexity
of the analysis scripts, where code is required to perform
every analysis step, including import, pre-processing,
quality control, statistical analysis and interpretation.
This problem is exacerbated when working with multi-
omics data and performing integrated analysis, where
several steps are needed for every experimental tech-
nique and data type. This increases the risk of clerical
errors and results in low transparency in terms of what
processing and analysis steps that have been performed.

A related problem in omics data analysis is the lack of
a systematic way to specify generic study designs in
analysis scripts. Issues may include what experimental
variables to analyze, how to define sample groups and
statistical comparisons, how samples are paired, how to
correct for batch effects and how to collapse replicates
by mean. This can be performed ad hoc with e.g. vari-
ables and indexing operations, but this is error prone
and gives low transparency when dealing with large
datasets, multiple data types and more complex designs.
Another general problem is the reproducibility of bio-
informatics workflows [27, 28], i.e. to ensure that the
same results are obtained when running a workflow on
the same data with the same steps and parameters. This
has been addressed by Nextflow [29] and related soft-
ware, which are used to construct workflows and
support Docker technology [30] for deployment. This
technology ensures that the analysis environment re-
mains the same and protects against numeric instability
across different systems. The BiocImageBuilder [31] is a
tool designed to promote reproducibility of Bioconduc-
tor workflows by building a Docker image configured
with all necessary software. The image also supports
JupyterHub [32] and Binder [33] for private and public
deployment of Jupyter notebooks for sharing and rerun-
ning the analysis.
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Several tools and techniques have been developed for
integrative analysis of multi-omics data [34, 35]. One
popular approach is matrix factorization, where the ob-
jective is to infer latent factors that explain interpatient
variance within and across omics modalities. Multi-
Omics Factor Analysis (MOFA) is an unsupervised
matrix factorization technique that is a generalization of
Principle Component Analysis to several data matrices.
Two strengths of MOFA are that it can integrate data
from different distributions and handle missing data
[36]. The mixOmics package [37] provides both un-
supervised and supervised methods based on Partial
Least Squares and Canonical Correlation Analysis, with
generalizations to multi-block data. Another powerful
approach to data integration is graph-based clustering of
samples, which has been applied to disease subtype
discovery. In Similarity Network Fusion, single-omics
patient similarity networks are constructed, followed by
iterative exchange of information to generate a fused
multi-omics patient network [38]. Another technique re-
lies on permutation-based clustering and was developed
to identify robust patient partitions. This method inte-
grates data by detecting the agreement between omics-
specific patient connectivity [39].

To address the challenges of multi-omics data analysis,
the miodin (Multl-Omics Data INtegration) R package
was developed. The package provides a software infra-
structure to build data analysis workflows that import,
process and analyze multi-omics data. Workflows accom-
modate data from different omics modalities, including
transcriptomics, genomics, epigenomics and proteomics,
and from different experimental techniques (microarrays,
sequencing and mass spectrometry). The package allows
users to integrate omics data from different experiments
on the same samples (vertical integration) or across stud-
ies on the same variables (horizontal integration). Further-
more, the user is provided with an expressive vocabulary
for declaring the experimental study design, to render this
explicit within the analysis script and reduce the risk of
clerical errors. A key design goal when developing miodin
was to streamline data analysis, by providing a clean syn-
tax for building workflows and minimizing the extent of
technical expertise required to combine multiple software
packages. The motivation behind this was to promote
transparent biomedical data science.

Implementation

Package overview

The miodin package was implemented following the S4
object-oriented programming paradigm. Infrastructure func-
tionality is supported by 16 S4 classes for which a common
set of standard generics (base API) has been defined. Apart
from the base classes, a number of workflow module classes
have been developed, which serve as the building blocks of
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workflows. On top of the base API is a high-level user API
consisting of convenience operators + and % > % along with
helper functions to simply manipulation of objects (Fig. 1).
The user API has been developed to reduce the learning
curve for the package and minimize the number of classes,
functions and parameters the user needs to learn.

Data analysis with miodin follows an intuitive three-step
process illustrated in Fig. 2. The user first initializes a project,
a study and a workflow. The project serves as a placeholder
for all other objects and the study is used to declare the study
design, including what samples and assays to analyze, and the
experimental variables of interest, if any. The miodin package
implements an expressive study design vocabulary and several
convenience functions for common designs, such as case-
control and time series experiments. These allow the user to
declare all information required for data analysis in one place,
thus reducing the risk of clerical errors in the analysis script
and the amount of information the user must provide during
the analysis itself. The workflow is used to build the data ana-
lysis procedure as a set of sequentially connected workflow
modules that carry out specific tasks, such as data import or
processing. The analysis is performed by executing the work-
flow, which generates datasets and results. These can be
inspected, exported and used for further analysis.

Study design vocabulary
Information related to a study is managed using the
MiodinStudy class. The study design can be declared
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manually by instantiating an empty study and using
helper functions that add different properties to the de-
sign (Table 1) or using convenience functions available
for some of the most common designs (Table 2).

The purpose of declaring the study design is for the
user to give an explicit definition on what samples are
included (in a sample table), what assays or experimental
data files to analyze (in an assay table), what sample
groups exist and which groups to compare during the
analysis. The benefits of this are that the user can pro-
vide all this information in one place in the analysis
script and that no variable manipulation is needed on
the user’s part. Furthermore, when the user adds sample
and assay tables these are automatically validated against
the declared study design to detect potential clerical er-
rors that might otherwise disturb the downstream ana-
lysis. For detailed examples how to declare the study
design, see the miodin user manual in the GitLab reposi-
tory (https://gitlab.com/algoromics/miodin).

Workflow syntax

When the study design has been declared the next step
is to define the data analysis workflow. A workflow is
built by instantiating the MiodinWorkflow class and
adding workflow modules to it, each one performing a
specific task. Workflow modules are added to the work-
flow object by + operator and a module-specific instanti-
ation function. To feed the output from one module as

]
|
: + studyDesignCaseControl :
1
User API : workflowModule :
: %>9% studySampleTable i
\\ /
= e |
: add export |
Base AP| ! get :
| getProp |
: mshow I
| setProp |
|
\\ ]
P \\
‘ MiodinProject ’ [ MiodinStudy ’ &AiodinWorkflow

I
1
|
|
S4 classes :
|
|
\

‘ MiodinDataset ’ ‘MiodinDataPort

Fig. 1 Package design. The miodin package provides a software infrastructure for data analysis implemented as a set of S4 classes. The base API
contains standard generics for object manipulation and the user API provides convenience functions to facilitate package usage
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Fig. 2 Data analysis in miodin. The user starts by defining a project, a study and a workflow. The study contains the design of the experiment
and the workflow is defined by instantiating analysis modules, which generate datasets and analysis results upon execution. The user can then

input to the next, they can be combined using the pipe
operator % > %.
mw <- MiodinWorkflow("DataAnalysisFlow")
mw <- mw +
importMicroarrayData(...) %>%
processMicroarrayData(...) %>%
performOmicsModeling(...)
mw <- execute(mw)

This script initializes a workflow called DataAnalysis-
Flow with three workflow modules. Module parameters
have been omitted for brevity. The first module imports
microarray data, the second processes the output from
the first module, and the final module performs statis-
tical testing on the processed data.

The analysis is carried out by calling the execute
method. This syntax allows the user to define streamlined
data analysis workflows, enhancing readability of the ana-
lysis script compared to longer chunks of code. Workflow
modules have names starting with verbs denoting their

Table 1 Study design helper functions

Function Description

studySamplingPoints  Set the sampling points (e.g. time points)

studyFactor Define a factor (experimental variable)
studyGroup Define a sample group based on existing factors
studyContrast Define a contrast (sample group comparison)
studySampleTable Add a table with sample annotation data
studyAssayTable Add a table with assay annotation data

function, making them easier to remember and improving
analysis transparency. To further improve transparency,
the analysis workflow automatically documents each pro-
cessing and analysis step, including a description of what
was done, what function was called, the name and version
of the package, names and values of parameters, and how
this affected the data. These can be inspected and
exported as part of the dataset, thus addressing the issues
of provenance [27], which is one important aspect of
reproducibility.

Package features

The workflow modules available as of miodin version
04.1 are described in Table 3. Import, processing and
analysis of data is supported for different experimental
techniques and omics data types as given in Table 4. For
microarrays, raw data from Affymetrix arrays (CEL for-
mat) and Illumina arrays (IDAT format) is supported, in-
cluding transcriptomics, genomics (SNP) and methylation
data. Processed data is also supported for microarrays,
sequencing (RNA-seq counts) and mass spectrometry
(protein quantification). Workflow modules store data in
instances of the MiodinDataset class, which inherits from
MultiDataSet [40]. The MultiDataSet class provides func-
tions to combine data from different omics-specific ob-
jects (e.g. ExpressionSet and SummarizedExperiment) and
recover the original objects later on. MiodinDataset in-
cludes additional slots to hold processed data, interactions,
quality control reports, processing protocols and auxiliary
data. Table 5 lists the R package dependencies of miodin
used for bioinformatics analysis.
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Table 2 Common study design functions
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Function

Description

studyDesignCaseControl
studyDesignMultipleGroups
studyDesignRepeatedMeasures

studyDesignTwoFactors

Single factor dividing samples into two groups
Single factor dividing samples into multiple groups
Single factor and multiple sampling points

Two factors and multiple sampling points

Omics data integration

The miodin package can be used for analysis single-omics
data, though by design the package is intended to stream-
line multi-omics data integration and analysis. Two case
studies were carried out to illustrate how horizontal inte-
gration (across studies) and vertical integration (across
omics modalities) can be performed. For demonstration
purposes, data used in the case studies were pre-processed
and included in the companion package miodindata prior
to analysis with miodin. For horizontal integration, three
lung cancer transcriptomics datasets with accession num-
ber E-GEOD-27262 [41], E-GEOD-19188 [42] and E-
GEOD-40791 [43] were downloaded from ArrrayExpress
[44]. Probes were mapped to genes with NetAffx file HG-
U133-Plus-2-NA36 and each dataset was filtered to in-
clude only the first 2000 genes. Vertical integration was
carried out using breast cancer data from the curatedTC-
GAData package [45]. RNA-seq gene and miRNA count
data as well as 450 k methylation data were included in
the analysis. RNA-seq gene and methylation data were
filtered to include only the 5000 top-variance features.

Results

Horizontal integration: meta-analysis on lung cancer
transcriptomics data

To perform meta-analysis in miodin, a study design must
be declared for every dataset included in the analysis. This
implies defining a sample table and assay table (as data
frames) and calling the appropriate study design function.

Table 3 Workflow modules

The three transcriptomics datasets used here (referred to
as Wei2012, Hou2010 and Zhang2012) have case-control
designs and were declared using studyDesignCaseControl
(see Additional file 1). The Wei2012 dataset contained 50
samples; 25 from stage 1 lung adenocarcinoma tissue and
25 paired samples from adjacent normal tissue [41]. Sam-
ple pairedness was specified with the paired argument to
the study design function, naming a column in the sample
table containing information of how samples are paired.
The Hou2010 dataset contained 156 samples (91 tumors
and 65 healthy controls) and Zhang2012 contained 194
samples (94 tumors and 100 healthy controls).

When the study design had been declared, a workflow
was built to import and process transcriptomics data.
The workflow imported data from the miodindata pack-
age using importProcessedData followed by processMi-
croarrayData to remove genes with an expression below
5 in all samples. The three datasets were integrated
using integrateAssays and linear modeling with limma
[19] was carried out with performOmicsModeling. This
module identifies differentially expressed genes in each
individual dataset and by setting metaAnalysis to TRUE
an additional step is performed to reveal concordant re-
sults between the datasets. The final results are stored as
a Venn diagram accompanied by data frames, which can be
exported to disk (data frames are exported as Excel sheets).
The Venn diagram is shown in Fig. 3 and the list of differ-
entially expressed genes is provided in Additional file 2.
The analysis script is available in Additional file 1.

Function

Description

downloadRepositoryData
importMicroarrayData
importProcessedData
processMicroarrayData
processSequencingData
processMassSpecData
integrateAssays
performFactorAnalysis
performHypothesisTest
performLinearModeling

performOmicsModeling

Downloads data from an online repository

Imports raw microarray data from Affymetrix and Illumina arrays
Imports processed RNA, SNP, methylation and protein data
Pre-processes microarray data

Pre-processes sequencing data

Pre-processes mass spectrometry data

Integrates several datasets into one

Performs factor analysis by matrix factorization

Performs hypothesis testing

Performs generalized linear modeling with snpStats

Performs modeling with limma, DMRcate or edgeR depending on the input object
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Table 4 Supported experimental techniques and data types

RNA SNP Methylation Protein
Microarray Raw and processed Raw and processed Raw and processed
Sequencing Processed
Mass spectrometry Processed

Vertical integration: exploratory data analysis on multi-
omics data

The TCGA data used for vertical integration contained
338 breast cancer samples, for which survival status (alive
or diseased) was available. To perform vertical integration,
a case-control study design was declared and one assay
table for each omics modality was added, specifying the
data files to import. A workflow was built to import data
with importProcessedData, followed processSequencing-
Data to perform RNA-seq count filtering and variance
stabilization with DESeq2 [46]. Methylation data was
processed with processMicroarrayData to remove probes
flagged as problematic by DMRcate [47] and non-CpG
probes. The multi-omics data was integrated with integra-
teAssays and integrative analysis carried out by fitting a
MOFA model to the data with performFactorAnalysis.
The analysis script is available in Additional file 3.

Table 5 Package dependencies

Package
AffyCompatible

Description

Annotation of Affymetrix microarrays

ArrayExpress Access to the ArrayExpress online repository

crlmm Genotyping of microarray SNP data

DESeq?2 Processing of RNA-seq data

DMRcate Statistical analysis of methylation data

edgeR Statistical analysis of RNA-seq data

ff Store large in-memory datasets on disk

limma Statistical analysis of microarray RNA data

minfi Import and normalization of microarray
methylation data

mixOmics Methods for integrative analysis of multi-omics
data

MOFA Integrative analysis by multi-omics factor
analysis

MSnbase Import of proteomics data

MultiDataSet Data integration of multi-omics data

oligo Import and normalization of microarray RNA
data

RefFreeEWAS Correction for cell type composition in
methylation data

SNPRelate Processing SNP data

snpStats Statistical analysis of SNP data

SummarizedExperiment  Import of RNA-seq data

wateRmelon Normalization of microarray methylation data

The results from performFactorAnalysis include the
fitted model object and plots to assess the model in terms
of variance explained, sample clustering (Fig. 4) and the
top features in the first factor (Fig. 5). Plots for other
factors can be rendered and further downstream analysis
carried out with the model object. Jupyter notebooks for
reproducing the horizontal and vertical analyses are pro-
vided in GitLab (https://gitlab.com/algoromics/miodin-
notebooks), with the option to run on Binder [33].

Discussion
Multi-omics experiments are indispensable for studying
biological systems across molecular layers. In order to
capitalize on the availability of high-throughput data and
perform integrative analyses, analysts need to develop
complex pipelines that can incorporate methods for im-
port, processing and integration of different data types.
Thanks to the rapid development of new bioinformatics
tools, a large number of methods and software packages
exist for various analysis problems. The difficulty lies in
constructing a workflow that ensures transparency, scal-
ability, reproducibility and tracking of data provenance
during the analysis. A transparent workflow should reveal
what main computational steps are performed and with
what parameters. This helps the analyst to understand
what happens to the data and how to interpret the results.
Scalability implies that the workflow should cope with
very large datasets, e.g. when analyzing genome-wide
DNA variants or methylation patterns. To address this, it
should be possible to deploy the workflow on high-
performance computer resources. Reproducibility implies
that the workflow will generate the same results, given the
same input data, when the analysis is rerun. Many results
in the biomedical literature cannot be reproduced [48] and
a major difficulty behind this is differences in the local exe-
cution environment, e.g. software dependencies and pack-
age versions [49]. Tracking of provenance is related to
reproducibility and requires capture of information on what
software packages have been used, versions, parameters
and data produced during workflow execution [27, 50].
With the miodin package, users can build streamlined
analysis workflows that address the aforementioned con-
cerns. Transparency is achieved with a clean syntax
where the user only needs to specify the main steps as
workflow modules, along with any necessary parameters.
This makes analysis script much shorter compared to
when the same analysis is implemented from scratch,
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Fig. 3 Venn diagram of the number of genes identified as differentially expressed in the Wei2012, Hou2010 and Zhang 2012 datasets
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since the necessary programming logic is wrapped in the
modules. The steps of the workflow become visible to the
analyst without having to interpret every command in a
large chunk of code. Scalability is supported by translating
a miodin workflow into a Nextflow [29] script, which can
be deployed as a job on high-performance computer clus-
ters. This is enabled by simply setting deployAsJob = TRUE
when calling execute on the workflow, provided that Next-
flow is installed (see the user manual for details). Job pro-
gress can be monitored in R with jobStatus and the
workflow configured to notify the user by email when the
job is finished.

To ensure workflow reproducibility, a Docker image
called miodin-notebook was configured and uploaded to
DockerHub. The image can be downloaded and used to
run miodin locally or when deploying workflows as jobs.
Nextflow supports Docker, so the user only needs to
specify the name of the image with jobContainer when exe-
cuting the workflow. By running the analysis within a pre-
configured container, the software environment remains
constant across different systems and ensures that results
can be reproduced exactly. This makes it simple to exter-
nally verify the results without spending time on configur-
ing dependencies. Tracking data provenance also becomes
easy with miodin, since the workflow modules that import,
process and analyze data will automatically add steps to the
dataset’s processing protocol. These can be inspected in R
or exported to Excel sheets by calling export on the dataset.
This helps the analyst understand how processing steps
have affected the data and to adjust parameters if necessary,
prior to downstream analysis.

Several future developments are planned to enhance the
functionality of the miodin package. Firstly, additional omics
data types and platforms (e.g. raw sequencing and proteo-
mics data, metabolomics, single cell, qPCR) will be sup-
ported. Secondly, several statistical and high-level analysis
methods (e.g. clustering, classification, networks, annotation
enrichment) will be implemented. Thirdly, workflow mod-
ules will be added for obtaining data from additional public
repositories for omics, interaction and annotation data.

Conclusions

This paper presented the miodin package, which provides
an infrastructure for integration and analysis of multi-
omics data. Key features include a high-level user API, an
expressive vocabulary for declaring study designs, stream-
lined workflows and support for multiple omics data types
and platforms. The package has been designed to promote
transparent data analysis and supports scalability, reprodu-
cibility and tracking provenance during workflow execu-
tion. Jupyter notebooks are available online and can also be
executed on Binder, which provides an accessible web-
based interface for developing and testing workflows. To
ensure the research community benefits from miodin, the
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software package with extensive documentation is made
freely available on GitLab under the GPL-3 license.

Availability and requirements
Project name: miodin
Project home page: https://gitlab.com/algoromics/
miodin
Operating system(s): Windows, Linux, MacOS
Programming language: R
Other requirements: Python
License: GNU General Public License v3.0
Any restrictions to use by non-academics: No
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Supplementary information accompanies this paper at https://doi.org/10.
1186/512859-019-3224-4.

Additional file 1. Horizontal integration analysis script. R script for
performing horizontal integration as presented in the paper.

Additional file 2. Differentially expressed genes from meta-analysis. List
of genes found differentially expressed in horizontal integration analysis.

Additional file 3. Vertical integration analysis script. R script for
performing vertical integration as presented in the paper.

Abbreviations
HCC: Hepatocellular carcinoma; LF: Latent factor; MOFA: Multi-omics factor
analysis; TCGA: The Cancer Genome Atlas

Acknowledgements

Preparation of data for vertical integration was performed on resources
provided by the Swedish National Infrastructure for Computing (SNIC) at
Uppsala Multidisciplinary Center for Advanced Computational Science
(UPPMAX).

Authors’ contributions
The author read and approved the final manuscript.

Funding

This work has been supported by the Knowledge Foundation [grant number
20160293 and 20170302] and the Systems Biology Research Centre at
University of Skovde, Skovde, Sweden. Funders had no role in the
development of the software, generation of results or writing of the
manuscript.

Availability of data and materials

Source code and user manual for the miodin package are available on
GitLab (https://gitlab.com/algoromics/miodin). Additional file 1 contains the
analysis script for horizontal integration. Additional file 2 contains the list of
differentially expressed genes identified in horizontal integration analysis.
Additional file 3 contains the analysis script for vertical integration. Processed
datasets used for analysis are available as part of the miodindata companion
package, also available on GitLab (https://gitlab.com/algoromics/miodindata).
Source datasets for horizontal integration are available from ArrayExpress
with accession numbers E-GEOD-27262, E-GEOD-19188 and E-GEOD-40791.
Source datasets for vertical integration are available in the curatedTCGAData
package from Bioconductor, https://doi.org/10.18129/B9.bioc.
curatedTCGAData.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.


https://gitlab.com/algoromics/miodin
https://gitlab.com/algoromics/miodin
https://doi.org/10.1186/s12859-019-3224-4
https://doi.org/10.1186/s12859-019-3224-4
https://gitlab.com/algoromics/miodin
https://gitlab.com/algoromics/miodindata
https://doi.org/10.18129/B9.bioc.curatedTCGAData
https://doi.org/10.18129/B9.bioc.curatedTCGAData

Ulfenborg BMC Bioinformatics

(2019) 20:649

Competing interests
The author declares that he has no competing interests.

Received: 14 March 2019 Accepted: 14 November 2019
Published online: 10 December 2019

References

1.

20.

21.

22.

23.

24.

25.

Joyce AR, Palsson B@. The model organism as a system: integrating “omics”
data sets. Nat Rev Mol Cell Biol. 2006;7(3):198-210.

Ebrahim A, Brunk E, Tan J, O'Brien EJ, Kim D, Szubin R, et al. Multi-omic data
integration enables discovery of hidden biological regularities. Nat
Commun. 2016;7:1-9.

Berger B, Peng J, Singh M. Computational solutions for omics data. Nat Rev
Genet. 2013,8(9):1385-95.

Karczewski KJ, Snyder MP. Integrative omics for health and disease. Nat Rev
Genet. 2018;19(5):29-39.

Woo HG, Choi JH, Yoon S, Jee BA, Cho EJ, Lee JH, et al. Integrative analysis
of genomic and epigenomic regulation of the transcriptome in liver cancer.
Nat Commun. 2017;8(1):839.

Zhu B, Song N, Shen R, Arora A, Machiela MJ, Song L, et al. Integrating
clinical and multiple Omics data for prognostic assessment across human
cancers. Sci Rep. 2017;7(1):1-13.

Lau E, Cao Q, Lam MPY, Wang J, Ng DCM, Bleakley BJ, et al. Integrated
omics dissection of proteome dynamics during cardiac remodeling. Nat
Commun. 2018;9(1):120.

Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, Mesirov JP. GenePattern 2.0.
Nat Genet. 2006;38(5):500.

Fisch KM, Mei3ner T, Gioia L, Ducom JC, Carland TM, Loguercio S, et al.
Omics pipe: a community-based framework for reproducible multi-omics
data analysis. Bioinformatics. 2015;31(11):1724-8.

Afgan E, Baker D, Batut B, Van Den Beek M, Bouvier D, Cech M, et al. The
galaxy platform for accessible, reproducible and collaborative biomedical
analyses: 2018 update. Nucleic Acids Res. 2018;46(W1):W537-44.

Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, et al.
Orchestrating high-throughput genomic analysis with bioconductor. Nat
Methods. 2015;12(2):115-21.

Carvalho BS, Irizarry RA. A framework for oligonucleotide microarray
preprocessing. Bioinformatics. 2010,26(19):2363-7.

Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD,

et al. Minfi: a flexible and comprehensive bioconductor package for the analysis
of Infinium DNA methylation microarrays. Bioinformatics. 2014;30(10):1363-9.
Dvinge H, Bertone P. HTGPCR: high-throughput analysis and visualization of
quantitative real-time PCR data in R. Bioinformatics. 2009,25(24):3325-6.
Gatto L, Lilley KS. MSnbase-an R/bioconductor package for isobaric tagged
mass spectrometry data visualization, processing and quantitation.
Bioinformatics. 2012,28(2):288-9.

Hahne F, LeMeur N, Brinkman RR, Ellis B, Haaland P, Sarkar D, et al. flowCore:

a Bioconductor package for high throughput flow cytometry. BMC
Bioinformatics. 2009;10(1):106.

Lawrence M, Gentleman R. VariantTools: an extensible framework for
developing and testing variant callers. Bioinformatics. 2017;33(20):3311-3.
Liao Y, Smyth GK, Shi W. The subread aligner: fast, accurate and scalable
read mapping by seed-and-vote. Nucleic Acids Res. 2013;41(10):e108.
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers
differential expression analyses for RNA-sequencing and microarray studies.
Nucleic Acids Res. 2015;43(7):e47-e47.

Wehrens R, Weingart G, Mattivi F. metaMS: An open-source pipeline for
GC—-MS-based untargeted metabolomics. J Chromatogr B. 2014;966:109-16.
Gentleman R. Annotate: Annotation for microarrays. R package version 156; 2016. p. 1.
Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for
removing batch effects and other unwanted variation in high-throughput
experiments. Bioinformatics. 2012;28(6):882-3.

Morgan M, Anders S, Lawrence M, Aboyoun P, Pages H, Gentleman R. ShortRead:

a bioconductor package for input, quality assessment and exploration of high-
throughput sequence data. Bioinformatics. 2009;25(19):2607-8.

Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for
differential expression analysis of digital gene expression data.
Bioinformatics. 2010;26(1):139-40.

Falcon S, Gentleman R. Using GOstats to test gene lists for GO term
association. Bioinformatics. 2007;23(2):257-8.

26.

27.

28.

29.

30.

32.
33.
34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

45.

46.

47.

48.

49.

50.

Page 10 of 10

Luo W, Brouwer C. Pathview: an R/bioconductor package for pathway-
based data integration and visualization. Bioinformatics. 2013;29(14):1830-1.
Kanwal S, Khan FZ, Lonie A, Sinnott RO. Investigating reproducibility and
tracking provenance - a genomic workflow case study. BMC Bioinformatics.
2017;18(1):1-14.

Kulkarni N, Alessandri L, Panero R, Arigoni M, Olivero M, Ferrero G, et al.
Reproducible bioinformatics project: A community for reproducible
bioinformatics analysis pipelines. BMC Bioinformatics. 2018;19(Suppl 10):211.
Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C.
Nextflow enables reproducible computational workflows. Nat Biotechnol.
2017;35(4):316-9.

Merkel D. Docker: lightweight linux containers for consistent development
and deployment. Linux J. 2014,2014(239):2.

Almugbel R, Hung LH, Hu J, Almutairy A, Ortogero N, Tamta Y, et al.
Reproducible bioconductor workflows using browser-based
interactive notebooks and containers. J Am Med Informatics Assoc.
2018;25(1):4-12.

Ragan-Kelley M, Kelley K, Kluyver T. JupyterHub: deploying Jupyter
notebooks for students and researchers; 2019.

Binder. 2019. Available from: https://mybinder.org. [cited 2019 Feb 2]
Kannan L, Ramos M, Re A, El-Hachem N, Safikhani Z, Gendoo DMA, et al.
Public data and open source tools for multi-assay genomic investigation of
disease. Brief Bioinform. 2016;17(4).603-15.

Li'Y, Wu FX, Ngom A. A review on machine learning principles for multi-
view biological data integration. Brief Bioinform. 2018;19(2):325-40.
Argelaguet R, Velten B, Arnol D, Dietrich S, Zenz T, Marioni JC, et al. Multi-
Omics factor analysis—a framework for unsupervised integration of multi-
omics data sets. Mol Syst Biol. 2018;14(e8124):1-13.

Rohart F, Gautier B, Singh A, Lé Cao K-A. mixOmics: An R package for ‘omics feature
selection and multiple data integration. PLoS Comput Biol. 2017;13(11):21005752.
Wang B, Mezlini AM, Demir F, Fiume M, Tu Z, Brudno M, et al. Similarity
network fusion for aggregating data types on a genomic scale. Nat
Methods. 2014;11(3):333-7.

Nguyen T, Tagett R, Diaz D, Draghici S. A novel approach for data
integration and disease subtyping. Genome Res. 2017;27(12):2025-39.
Hernandez-Ferrer C, Ruiz-Arenas C, Beltran-Gomila A, Gonzélez JR.
MultiDataSet: an R package for encapsulating multiple data sets with
application to omic data integration. BMC Bioinformatics. 2017;18(1):36.
Wei TYW, Juan CC, Hisa JY, Su LJ, Lee YCG, Chou HY, et al. Protein arginine
methyltransferase 5 is a potential oncoprotein that upregulates G1 cyclins/
cyclin-dependent kinases and the phosphoinositide 3-kinase/AKT signaling
cascade. Cancer Sci. 2012;103(9):1640-50.

Hou J, Aerts J, den Hamer B, van licken W, den Bakker M, Riegman P, et al.
Gene expression-based classification of non-small cell lung carcinomas and
survival prediction. PLoS One. 2010;5(4):e10312.

Zhang Y, Foreman O, Wigle DA, Kosari F, Vasmatzis G, Salisbury JL, et al.
USP44 regulates centrosome positioning to prevent aneuploidy and
suppress tumorigenesis. J Clin Invest. 2012;122(12):4362-74.

Parkinson H, Kapushesky M, Shojatalab M, Abeygunawardena N, Coulson R,
Farne A, et al. ArrayExpress - a public database of microarray experiments and
gene expression profiles. Nucleic Acids Res. 2007;35(Database issue):D747-50.
Ramos M, Waldron L, Schiffer L, Obenchain V, Martin M. curatedTCGAData:
Curated Data From The Cancer Genome Atlas (TCGA) as
MultiAssayExperiment Objects. R Packag version 120; 2018.

Love MI, Huber W, Anders S. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):1-21.
Peters TJ, Buckley MJ, Statham AL, Pidsley R, Samaras KV, Lord R, et al. De
novo identification of differentially methylated regions in the human
genome. Epigenetics Chromatin. 2015;8(1):1-16.

loannidis JPA, Allison DB, Ball CA, Coulibaly |, Cui X, Culhane AC, et al. Repeatability
of published microarray gene expression analyses. Nat Genet. 200941:149.
Beaulieu-Jones BK, Greene CS. Reproducibility of computational workflows is
automated using continuous analysis. Nat Biotechnol. 2017;35(4):342-6.
Davidson SB, Freire J. Provenance and Scientific Workflows: Challenges and
Opportunities. In: Proceedings of the 2008 ACM SIGMOD International
Conference on Management of Data. New YorkACM; 2008. p. 1345-1350.
(SIGMOD 08).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.


https://mybinder.org

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	Package overview
	Study design vocabulary
	Workflow syntax
	Package features
	Omics data integration

	Results
	Horizontal integration: meta-analysis on lung cancer transcriptomics data
	Vertical integration: exploratory data analysis on multi-omics data

	Discussion
	Conclusions
	Availability and requirements

	Supplementary information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher’s Note

