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Abstract

possibility remains that these methods are flawed.

Spectral clustering

Background: Identifying different types of cancer based on gene expression data has become hotspot in bioinformatics
research. Clustering cancer gene expression data from multiple cancers to their own class is a significance solution. However,
the characteristics of high-dimensional and small samples of gene expression data and the noise of the data make data
mining and research difficult. Although there are many effective and feasible methods to deal with this problem, the

Results: In this paper, we propose the graph regularized low-rank representation under symmetric and sparse constraints
(sgLRR) method in which we introduce graph regularization based on manifold learning and symmetric sparse constraints
into the traditional low-rank representation (LRR). For the sgLRR method, by means of symmetric constraint and sparse
constraint, the effect of raw data noise on low-rank representation is alleviated. Further, sgLRR method preserves the
important intrinsic local geometrical structures of the raw data by introducing graph regularization. We apply this method to
cluster multi-cancer samples based on gene expression data, which improves the clustering quality. First, the gene
expression data are decomposed by sgLRR method. And, a lowest rank representation matrix is obtained, which is
symmetric and sparse. Then, an affinity matrix is constructed to perform the multi-cancer sample clustering by using a
spectral clustering algorithm, i.e, normalized cuts (Ncuts). Finally, the multi-cancer samples clustering is completed.

Conclusions: A series of comparative experiments demonstrate that the sgLRR method based on low rank representation
has a great advantage and remarkable performance in the clustering of multi-cancer samples.

Keywords: Affinity matrix, Gene expression data, Graph regularization, Symmetric constraint, Low-rank representation,

Background

Currently, cancer is one of the most prevalent human dis-
eases, and cancer seriously threatens the quality of human
life [1]. The number of variety cancers is increasing, which
makes it difficult to effect a radical cure of cancer. A good
performing cancer diagnosis method can help doctors to
formulate treatment strategies for patients effectively and
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in a timely manner. In addition, cancer clustering based
on gene expression data has become one of the frontiers
of bioinformatics research. In the field, it provides an ef-
fective way to further explore gene expression data. For
example, it can be used to classify cancer [2], select genes
[3] and discover cancer linked biomarker genes [4]. In this
paper, we propose a methodology to processing gene ex-
pression data for identifying different types of cancer.
Since the start of the twenty-first century, the volume
of high dimensional and complex gene expression data
has exploded with the advent and development of gene
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detection technology such as DNA microarray technol-
ogy [5]. So far, the researchers have proposed many
well-performing methods and used them for gene ex-
pression data mining, such as K-means clustering [6],
nonnegative matrix factorization (NMF) [7] and princi-
pal component analysis (PCA) [8]. More recently, be-
cause of the high dimensional nature of gene expression
data, the low-rank representation (LRR) method has be-
come a popular and promising method since its proto-
type was proposed by Liu et al. [9]. The LRR method
can preserve the subspace structure of the raw dataset in
a lowest rank representation matrix. Theoretically, the
lowest rank representation matrix is a block-diagonal
matrix with a well grouped effect, and this matrix can
well capture the global structural information of high-
dimensional dataset [10]. And then, the -clustering
method, such as spectral clustering method, is used to
cluster the lowest rank representation matrix to realize
the subspace segmentation. The LRR clustering method
has been adopted widely in many fields due to the ad-
vantages of the lowest rank representation matrix, such
as facial recognition [11], genetic microarray data clus-
tering [12], image clustering [13] and subspace segmen-
tation [14]. And, LRR method achieves good results in
processing high-dimensional datasets.

In general, high-dimensional data always have noisy
and outliers because of the complexity of the collec-
tion process. And, the noisy and outliers inevitably
impairs the intrinsic structure of the data space.
Therefore, the outliers and noise cause difficulties
during processing the raw data. Especially in the LRR
method, the high-dimensional data are usually used in
the form of a dictionary matrix, which inevitably ad-
versely affects grouped effect of lowest rank represen-
tation matrix. As described in [9], the LRR method
may fail to obtain a block-diagonal lowest rank repre-
sentation matrix in complex applications, which
makes it difficult to integrate the lowest rank repre-
sentation matrix with other information. To alleviate
this problem, the commonly used solution is to com-
bine the LRR method with the spectral clustering
method (the Ncuts clustering method is often
adopted) to get the final clustering result. The LRR
method and the spectral clustering method are linked
by an affinity matrix which is constructed based on
the lowest rank representation matrix. And, the affin-
ity matrix has better grouping effects. In general, in
order to construct the affinity matrix, a symmetric
operation step is usually performed to establish a
similarity-based undirected graph. However, this sim-
ple symmetric operation inevitably leads to the loss of
important structural information of the raw dataset.
To tackle this disadvantage, Ni et al. proposed an ap-
proach named the low-rank representation with
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positive semi-definite (LRR-PSD) to obtain a symmet-
ric positive semi-definite (PSD) matrix [15]. In the
LRR-PSD method, an affinity matrix is constructed
based on the PSD matrix. This method inspired Chen
et al. to propose a low-rank representation with sym-
metric constraint (LRRSC) method for learning a
symmetric lowest rank representation matrix [16]. In
this method, the affinity matrix is constructed accord-
ing to the angular information of the principal direc-
tions of the symmetric lowest rank representation
matrix. The obtained affinity matrix is better than the
matrix which is obtained by simple symmetric
operation.

However, compared with the sparse representation
method, which considers the sparsest representation of
each data point or data vector individually, the LRR
method mainly focuses on the global structural informa-
tion of data [9]. That leads to the LRR method ignoring
the local geometrical structural information of data. Be-
cause it is shown that the intrinsic local geometrical
structures within the high-dimensional data are import-
ant for the subspace clustering model [17], some re-
searchers introduce nonlinear dimensionality reduction
methods into the LRR, such as the manifold learning
theory.

At present, many well-established nonlinear dimen-
sionality reduction methods have been proposed since
Tenenbaum et al. and Roweis et al. proposed isometric
mapping (ISOMAP) [18] and locally linear embedding
(LLE) [19], respectively. The typical methods include the
locality preserving projection (LPP) [20], local tangent
space alignment (LTSA) [21], Laplacian eigenmap (LE)
[22] and Riemannian normal coordinates (RNC) [23].
They can generate a low-dimensional subspace accord-
ing to the submanifold of the observation datasets. Fur-
thermore, the manifold learning method treats the local
geometrical structures of data points as submanifolds.
Inspired by the local invariance [20], the manifold learn-
ing method estimates the geometrical structures of the
submanifold using random data points [24]. The method
can map the submanifolds from the high-dimensional
space to the low-dimensional space. Therefore, the local
geometrical structural information of the raw high-
dimensional dataset can be preserved in the low-
dimensional space [25].

In order to improve the original LRR method, some
researchers combine manifold learning theory with the
LRR. For instance, Yin et al. proposed a novel model
called the nonnegative sparse hyper-Laplacian regular-
ized LRR (NSHLRR) that can acquire the inherent infor-
mation within dataset [24]. Motivated by the NSHLRR,
Wang et al. proposed the Laplacian regularized low-rank
representation (LLRR) method to identify differently
expressed genes [26]. More recently, Wang et al
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presented a tumor sample clustering method named the
Mixed-norm Laplacian Regularized low-rank representa-
tion (MLLRR) [27].

Motivated by the above methods, in order to obtain a
better lowest rank matrix that can avoid the simple sym-
metric operation and preserve the intrinsic local geomet-
rical structures within the raw high-dimensional dataset,
we introduce symmetric sparse constraints and graph
regularization based on manifold learning into the LRR
method, and propose the graph regularized low-rank
representation method under combined the sparse and
symmetric constraints, or short sgLRR method. The
sgLRR method can obtain a lowest rank representation
matrix that can well capture the global structure infor-
mation of the high-dimensional raw dataset and mean-
while preserve the intrinsic local geometrical structures
within the dataset. Furthermore, the sgLRR method
weakens the adverse effect of noise in the raw dataset by
strengthening the symmetric constraint to the lowest
rank representation matrix. The obtained lowest rank
representation matrix is an excellent basis for construct-
ing the affinity matrix. To take full advantage of the low-
est rank representation matrix, we consider the angular
information of the principal directions of the lowest rank
representation matrix. Therefore, in contrast to the trad-
itional approach, we perform skinny singular value de-
composition (SVD) operations on the lowest rank
representation to construct the affinity matrix. Finally,
based on the affinity matrix, we adopt a spectral cluster-
ing algorithm to obtain the clustering results.

We adopt the sgLRR method for multi-cancer sample
clustering based on gene expression data. Our experi-
ment design is carried out in the following three steps:
Step One: the sgLRR method is used to process multi-
cancer sample gene expression dataset. And, we can ob-
tain a lowest rank representation matrix. Step Two: an
affinity matrix is constructed by exploiting the obtained
lowest rank representation matrix. Step Three: based on
the affinity matrix, we adopt a spectral clustering algo-
rithm, i.e., Ncuts method, to perform the multi-cancer
sample clustering. Compared with a lot of related
methods, the sgLRR method has better performance in
multi-cancer sample clustering.

In summary, the main contributions of our work are
as follows:

(1) We introduce the symmetric sparse constraints and
graph regularization based on manifold learning
into the original LRR method and develop a novel
method named the sgLRR. The regularized graph is
better for preserving the local geometrical structure
of raw high-dimensional data. And, the symmetric
constraint weakens the effect of noise in the raw
dataset. Therefore, we use sgLRR method to get a
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better lowest rank presentation matrix that has bet-
ter grouping effect for the subspace clustering.

(2) Based on the lowest rank presentation matrix, we
construct an affinity matrix to further improve its
grouping effect. As the link of sgLRR method and
Ncuts clustering method, the affinity matrix makes
full useful of the angular information of the
principal directions of the lowest rank
representation matrix.

(3) By combining sgLRR with the Ncuts clustering
method, we apply the sgLRR method to multi-
cancer sample clustering, and extensive experiments
are conducted on gene expression data. Compared
with other methods, our methodology has better
performance in multi-cancer sample clustering.

The remainder of this paper is outlined as follows:
The section 2 summarizes the LRR method, and gives a
brief review of some related work. And then, we describe
the proposed sgLRR method in detail. In section 3, based
on The Cancer Genome Atlas (TCGA) dataset [28], we
perform a large number of comparative experiments to
demonstrate the sgLRR method with better performance
on the multi-cancer sample clustering. And, we discuss
and analysis the experimental results from different as-
pects. In section 4, we describe the corresponding dis-
cussion. In the section 5, we summarize our work for
the full paper.

Methods

First, we review the related work about the low-rank
representation. And then, then we introduced our pro-
posed approach.

Related work

In recent years, the LRR method and its improved algo-
rithms have been widely used in many fields. Further-
more, the group theory based on manifold learning has
also captured the attention of the researchers. In subsec-
tions Low-Rank Representation and The Symmetric
Constraint for the Low-Rank Representation, we re-
view the LRR method [9] and the symmetric constraint
for the low-rank representation [16], respectively. Then,
in subsection Manifold Learning for Graph
Regularization, we give a detail introduction to graph
regularization based on manifold learning [29, 30].

Low-Rank Representation Learning a lowest rank rep-
resentation matrix of the observation dataset is the aim
of LRR method [9]. Given an observation data matrix
X =[x, Xg, ..., X,,] € R” ™" with no error. And, there is an
overcomplete dictionary matrix A = [aj, ay, ..., a;] € R~ k
and a union of multiple low-dimensional independent
subspaces. It is assumed that the subspaces can be
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linearly spanned by the dictionary matrix A. Therefore,
the given observation data X can be represented by these
low-dimensional subspaces, and the relationship be-
tween data X and matrix A is X = AZ. In other words,
data X is a linear combination of the dictionary matrix
A. The function of the LRR method is as follows:

rr%in rank(Z) s.t.X = AZ. (1)
Here, X = [x3,Xy,..,X,] € R"*” is the observation data
matrix. m is the total number of features, and # is the
total number of the samples. A =[aj,ay,..,a;] is the
overcomplete dictionary matrix, and Z = [z, 25, ...,2,,] €
R¥*" is the low rank representation matrix. The element
z; of matrix Z is the mapping relationship from {x;| x; €
X"*" 1<i<mn} to the dictionary matrix A. In general,
the matrix Z is also called the coefficient matrix, and it
is a new expression form of X that is based on the dic-
tionary matrix A. The purpose of the LRR method is to
find the lowest rank representation matrix Z.

In practical analysis, the observation data matrix X is
usually selected as the dictionary matrix A, which is a
very important aspect of the LRR [9, 15, 26, 27]. Accord-
ing to the matrix multiplication rule, the lowest rank
representation matrix Z=[zy,Zy,..,2,] €R"*" is a
square matrix. Equation (1) can be rewritten as follows:

n%in rank(Z) s.tX = XZ. (2)

In this case, the matrix Z" represents the relation of

each sample of X. In other words, the element z; of

matrix Z" represents the similarity between the samples
x; and x;. Therefore, the element z;; should be equal to

the element zl*l
matrix when the observation data matrix X is clean.

Because the rank function is nonconvex, no closed ex-
pression can be found. Therefore, Eq. (2) is very difficult
to solve. The related research has shown that the
nuclear-norm of a matrix is a minimal convex envelope
of the rank of the matrix [31-33]. Therefore, Eq. (2) is
equivalent to the following nuclear-norm convex
optimization problem:

That is, the matrix Z’ is a symmetric

rr%in 1Z]|, stX=XZ. (3)

Here, |||, is the nuclear-norm. It is the sum of all sin-
gular values of the matrix Z, which is the minimal con-
vex envelope of the rank function [17]. In the actual
situation, the observation data are inevitably polluted by
noise or outliers under certain special circumstances.
Therefore, a certain regularization constraint ||-|l; is usu-
ally added to (3) to balance the interference. The im-
proved formula is as follows:
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gl]izn |Z||. + yl|Ell, stX=XZ+E. (4)

Here, the matrix E denotes the noise or outliers. The
parameter y >0 is to balance the adaptability of each
part in (4), and |I-ll; is regularization constraint. In gen-
eral, the appropriate regularization constraint ||-|l; is se-
lected according to different types of noise and outliers
in real environments. For example, ||-ll,, 1, i.e, the /5 ;
norm, is used to extract the sample-specific corruptions
and small noise or outliers, and ||-lly, i.e., the [y norm, is
used to deal with the significant noise or outliers [27].
Solving the /y norm is an NP-hard problem. Therefore,
it is usually replaced by [-Il;, i.e., the /; norm.

The above is a description of the classic original LRR
method. The LRR method deals with the observation
data from a holistic perspective. That is, the global struc-
tural features of the observation data are represented by
the lowest rank representation matrix Z°. In addition,
the LRR method maps the structures of the observation
data from high-dimensional spaces to low-dimensional
spaces. It reduces the difficulty of processing high-
dimensional observation data.

The Symmetric Constraint for the Low-Rank
Representation With clean observation data, based on
function (3), the most ideal matrix Z’ is a block diagonal
and strictly symmetric matrix, as shown in Fig. 1. How-
ever, according to function (4), the lowest rank represen-
tation matrix Z° is not strictly symmetric when using
real data with noise and outliers, as shown in Fig. 2
[34].. In other words, because the element Z; is not
equal to the element Z;, the degree of similarity of the i-
th sample to the j-th sample is not equal to the degree
of similarity of the i-th of sample to the j-th sample.
One question worth considering is which of the two ele-
ments is more suitable to be used to reflect the similarity
between the two samples.

In general, an affinity matrix is usually constructed
using symmetric operation, i.e., (| Z*| +|Z°|")/2, to reflect
the similarity of samples. Then, based on the affinity
matrix, spectral clustering algorithms generally use the
Ncuts clustering method for subspace clustering. To
avoid symmetric operations, Chen et al. imposed a sym-
metric constraint onto the LRR to obtain a symmetric
lowest rank representation matrix [16]. The improved
method was named the low-rank representation with
symmetric constraint (LRRSC) and it can be expressed
as follows:

min [|Z], + y|[Ell, stX=XZ+E,Z= VA (5)
The symmetric lowest rank representation matrix Z-

can greatly preserve the subspace structures of the ob-
servation data. Therefore, the affinity matrix based on
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Fig. 1 The LRR method with clean data
A\

the principal direction angular information of the sym-
metric lowest rank representation matrix Z" can effect-
ively reflect the similarity between samples. However,
the LRRSC method does not consider the local geomet-
rical structural information. It may lose important infor-
mation when obtaining the lowest rank representation
matrix. In the next section, we use manifold learning
with graph regularization to solve this problem.

Manifold Learning for Graph Regularization In actual
situations, the given observation data X € R ™" are usu-
ally high-dimensional. Thus, the local geometrical struc-
tural information exists at each data point and at its k-
nearest-neighboring data points. Capturing the local
geometrical structural information is important for the
performance of subspace clustering. Fortunately, graph
regularization based on manifold learning provides a
feasible option to achieve this aim [29]. This approach
can preserve the intrinsic local geometrical structures
that are embedded in the high-dimensional data space.

In graph theory, the “manifold assumption” is that data
points near local geometrical structures should keep
their proximity under a new basis [35]. If we map the
adjacent data points x; and x; in the high-dimensional
space to the low-dimensional space, their mapping data
points z; and z; should be close in the low-dimensional
space. Therefore, the local geometrical structural infor-
mation of the data points x; and x; can be represented in
the low-dimensional space. In other words, if the charac-
teristics of the data points are similar in the high-
dimensional space, their mapping data points can be
clustered into the same class in the low-dimensional
space.

X X

Fig. 2 The LRR method with real data

é B
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We take each data point as a vertex. The data points
are defined by the column of observation data X =[xy,
X3, ..., X,]. Therefore, the number of vertices is n. All n
vertices form a graph G. The weight of the connected
edge of vertices i and j in the graph G is represented by
w;;. The assignment rule of w;; is as follows:

_ lif x;eNg(x;) or x;eNg(x;)
Wi = {0 otherwis(e /) ' ’ (©)
where Ny(x;) denotes the set of the k-nearest-neighbors
of x;. As suggest in [26, 27], we select the k=5 as the
nearest neighbors for the experimental datasets. In
addition, all elements w; make up a symmetric weight
matrix W.

In the low-dimensional space, the new relationship of

the data points is as follows:
min Y [z~ wy. @)

After a linear algebraic transformation, the above
optimization problem (7) can be written as follows:

rr%in tr(Z"LZ). (8)

Here, tr(-) is the trace of the matrix. L is called the graph
Laplacian matrix. It is defined by L = D — W. The matrix
D is a diagonal matrix, and the element d;; of D is sum
of the i-th row of W, i.e., d;; = Z;’wij.

sgLRR methodology

In this section, we introduce our method for multi-
cancer sample clustering. First, we obtain the objective
function according to the problem’s formulation and
solve the function using the linearized adaptive direction
method with the adaptive penalty (LADMAP) method
[36]. Then, we provide the complete algorithm for easier
understanding. Second, we combined our method with
the Ncuts clustering method by learning an affinity
matrix. Finally, the proposed method is used for the sub-
space segmentation of multi-cancer sample clustering.

Problem formulation and the solution

In this subsection, our goal is to propose a novel LRR
model to preserve the intrinsic local geometrical struc-
tures of the observation data and simultaneously weaken
the effects of noise and outliers in the dictionary matrix.
We introduce graph regularization based on manifold
learning and the symmetric constraint into the original
LRR method. It is as follows:

. T
min |Z||, + per(ZLZ") + ylIEIl  (9)

where 3 and y are penalty parameters, L is the Laplacian
matrix, and | - ||, is the regularization constraint. |Ell; is
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the sum of the absolute values of each element in the
matrix E.

In addition, according to the sparsity-based clustering
method, e.g., sparse coding combined with clustering,
the sparsity constraint can be thought of as a strategy
for information localization [37]. Thus, the coefficient
matrix with the sparsity constraint can improve the per-
formance of subspace clustering. Namely, by combining
the low-rank and sparse data, the within-class affinities
are dense, and the between-class affinities are zeros. So,
we introduce the sparsity constraint into Eq. (9), and the
finally objective function of our method is as follows:

min |Z], + MZIlly+ptr(ZLZ") + ylE
stX=XZ+EZ=1Z",

where 1 is the penalty parameter, and [|Z[|; is the spars-
ity constraint for the low-rank representation matrix Z.

We call the objective function in (10) the graph regu-
larized low-rank representation under combined the
sparse and symmetric constraints (sgLRR) method. To
obtain a globally optimal solution, we adopt the LAD-
MAP to solve problem (10).

First, we introduce the auxiliary variable J to separate
variables. It is as follows:

min ||Z]], + MJlly+ptr(ZLZT) + ylIE]
stX=XZ+EZ=7Z"Z=17.

(11)

Second, problem (11) can be converted into an uncon-
strained optimization problem by using the augmented
Lagrange multiplier method (ALM) [38]. The formula is
rewritten as follows:

¢(Z,E,),Y1,Ys) = ||Z||, + Ml +Btr(ZLZ") + ylIEI
+(Y1,X-XZ-E) + (Y5,Z-])
“
+ S (IX-XZEJR +1Z-1]3),
(12)
Here, |I-ll is the Frobenius-norm; A, 5, A and y are the
penalty parameters; (A, B) = tr(A”B) represents the Eu-
clidean inner product between the two matrices, and Y;
and Y, are Lagrangian multipliers.

According to the LADMAP method, problem (12) is
divided into three problems. They are as follows:

&(Z) = ||Z||, + Btr(ZLZ") + (Y1,X-XZ-E)
(Y2, Z-)) + 5 (IX-XZ-E: + 1Z-1]3),
(13)

€(E) = ylEl+(Y1, X-XZ-E)

+ £ IX-XZ-E[}, (14)
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&(7) = Ml +(¥2, Z-3) + 5 2= (15)

Problem (13) can be replaced by solving the following
problem (16):

min| Z|, + (V2a(Z), Z-Z4) + 1 |Z-Ze[[}, (16)

where Vzq(Zi) = B(ZiLY + ZiL) + i (Zi= T + Y5 /1)
X (XZe- X+ Ee-Yi /i) 1y =2B|L, + (1
+XI[3)-

We use the following Lemma-1 to solve problem (16).
Chen et al. have given the rigorous mathematical deriva-
tions and detailed proofs for this theorem [16].

Lemma 1 Given a square matrix Qe R"*", there is a

unique closed form solution to solve optimization prob-
lem (17).

P = in— ||P —||P- tP
arg min [P, + 5 [P-Ql; s

=pT. (17)
It is as follows:
* 1 T
P =U (2 L)V (18)

Here, Z,, U, and V, are obtained using Q= U,Z,VrT,
which is the skinny SVD of the symmetric matrix Q. In
addition, X, = diag (04, 09, ..., 0;) with {r: o, > /%} are the
positive singular values of matrix Q. U, and V, are the
singular vectors of matrix Q. Matrix Q is obtained by Q
= (Q + Q")/2 and the skinny SVD only keeps the posi-
tive singular values of the normal SVD. I, is an identity
matrix.

According to Lemma-1, we set Q=Zi— Vzq(Z)/n;.
Then, we solve problem (16) by using the iterative for-
mula (19):

. Q+Q"
zkH@%( )

Here, ©,(A) = U,Sg(er—t-I,)VrT and S.(x) = sgn(x)
max(| x| -, 0).

We update E and J by minimizing £»(E) and ¢53(]).
And, E and J are independent of each other in this
minimization problem. And then, based on a singular
value thresholding algorithm, we obtain the iterative for-

(19)

mulas of E and J. We set aa% =0and % = 0, respectively.
Then, we obtain the following equations.
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ot
ﬁ = Yy (Ek—x + XZk+1—Y]1(//Ak) = 0=E;
= X-XZior + Yy, (20)
ot
i = e [N~ (Zis1 + Y5 /)] =0 =)
=Zio1 + Y5 /uy. (21)

According to the NSHLRR method [24] and the singu-
lar value thresholding algorithm [39], the iterative for-
mulas of E and J are as follows:

4

Eir1 = Ymfrac(X-XZo1 + Y5 /iy )P,

1
Jip1 = maX{‘h (Zkﬂ +—Y§)70}.
123 /,t

k

(22)
(23)

Based on the above, we discuss the time complexity of
sgLRR compared to the original LRR. As described in [36],
the complexity of LADMAP method for LRR is O(rmn),
where 7 is the rank of the matrix Z, 1 and # is the size of ob-
servation data matrix X € R”*" For sgLRR method, the
construction of the k-nearest neighbor graph is O(#*m).
Therefore, the complexity of sgLRR is O(rmmn + n*m).

Finally, Algorithm 1 provides the complete sgLRR
algorithm.

Algorithm 1: Solving sgLRR method by LADMAP
Input: observation data X, the parameters A, A, and 2, the
number of & -nearest-neighbors.
Output: z’
Initialization: 7 =E,=J,=Y'=Y, =0, p, =25, ,=10°, p, =10°,
£=10°, &=107,7,=1.25x|X|’,L.
While not convergence do:
Updating 7, as (19);
Updating E,, as (22);
Updating J,, as (23);
Updating Y, and Y,:
Yxh‘ :Y\,‘ 4y (X7XZA+I ’Eml)’
Y =Y (2~
Updating g, g, = min(thy, post) -
where p, :{pﬂ, if gty max {2, = Zy |9, =3 B - B <o
1, otherwise

Checking convergence,
If |Xx-xz,.,-E_|/|X]|<& or
A max {2, = Z |9, =3[, —Ep ) <,
End while.

sgLRR method combined with the Ncuts clustering method

We obtain the lowest rank representation matrix Z" by Algo-
rithm 1. The obtained matrix Z" inherits and improves the
grouping effect of the LRR method. The symmetric property
of matrix Z" strictly reflects the similarity of the data samples,
and the data samples that belong to the same group highlight
the same subspace of matrix Z". However, as mentioned in
[9], the complex application may fail in the lowest rank rep-
resentation matrix Z' and in fully using the information
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within matrix Z". Therefore, we combine the sgLRR method
with the Ncuts clustering method to guarantee correct seg-
mentation results.

First, we learn an affinity matrix H that is the link be-
tween the sgLRR method and the Ncuts clustering
method. The affinity matrix H utilizes the angular simi-
larity information of the principal direction of matrix Z’,
and matrix H is a similar undirected graph that further
improves the grouping effect. The process below can be
defined as learning matrix H.

1. The matrix Z" is decomposed into Z* = Uz vt
using skinny SVD.

2. Define the matrix M = U'(X")"? or the matrix
N = ()Y4(V*)T. Because the matrix Z' is a symmetrical
matrix, both matrix M and matrix N are equivalent for
leaning the affinity matrix H.

3. The element of the affinity matrix H is calculated
using function (24).

. 2
Hi=|—2"7 | or H:
’ (mi|2||m;||2> ’

2
_ n/n;
HninHnJ’Hz ’

where my; is the i-th row of M, and n; is the i-th row of N.

Next, we adopt the Ncuts clustering method to produce
the final data sample clustering results. The Ncuts clustering
method was proposed by Shi et al. and is closely related to
graph theory [40]. This approach can well reflect the degree
of similarity within classes and the degree of dissimilarity be-
tween classes. This approach has been successfully applied in
image segmentation and has numerous successful examples
in different fields and datasets, such as gene expression over-
lapping clustering based on the penalized weighted normal-
ized cut [41].

Finally, we briefly summarize the process of the multi-
cancer sample clustering algorithm. It is as follows.

(24)

Algorithm 2: Clustering multi-cancer samples based on the sgLRR method

Input: the observation data X, i.e., the gene expression data, the number of types

cancers k.

Step:

1) Obtain the lowest rank representation matrix z' by Algorithm 1.

2) Learn an affinity matrix H by the function (24).

3) Use the Ncuts clustering method based on the affinity matrix H to perform
multi-cancer sample clustering.

Output: multi-cancer sample clustering results.

End

Results
Datasets
As the biggest cancer genomic profile database, The
Cancer Genome Atlas (TCGA) provides publicly
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available datasets with over 30 types of cancers using
high-throughput sequencing technology and integrated
multidimensional analyses to help improve the diagnosis,
prevention, and treatment of cancer [28].

We use five real gene expression datasets that were
downloaded from the TCGA to construct the inte-
grated datasets for the experiments. The five original
datasets are the cholangiocarcinoma (CHOL) dataset,
the head and neck squamous cell carcinoma (HNSC)
dataset, the colon adenocarcinoma (COAD) dataset,
the esophageal carcinoma (ESCA) dataset and the
pancreatic adenocarcinoma (PAAD) dataset. Each
dataset consists a different number of cancer samples
and normal samples, and each sample contains 20,502
genes. Table 1 lists the distribution number of the
samples for each dataset.

As listed in the Table 1, we use all the cancer samples
of each dataset to construct six integrated datasets. And,
the six integrated datasets are named the CO-CH
(COAD-CHOL) dataset, the PA-ES (PAAD-ESCA) data-
set, the CH-HN-CO (CHOL-HNSC-COAD) dataset, the
ES-CH-HN (ESCA-CHOL-HNSC) dataset, the ES-CO-
PA-HN (ESCA-COAD-PAAD-HNSC) dataset and the
CO-CH-ES-HN (COAD-CHOL-ESCA-HNSC) dataset,
respectively. The characteristics of the datasets are as
follows: the CO-CH dataset contain all 298 cancer sam-
ples from COAD and CHOL; the PA-ES dataset contain
all 359 cancer samples from PAAD and ESCA; the CH-
HN-CO dataset contain all 696 cancer samples from
CHOL, HNSC and COAD; the ES-CH-HN dataset con-
tain all 617 cancer samples ESCA, CHOL and HNSC;
the CO-CH-ES-HN dataset contain all 879 cancer sam-
ples from COAD, CHOL, ESCA and HNSC; and, the
ES-CO-PA-HN dataset contain all 1019 cancer samples
from ESCA, COAD, PAAD and HNSC. The distribution
of the six datasets are summarized and listed in Table 2.
We conduct experiments on the basis of the six datasets
to prove the performance of sgLRR method.

Table 1 The distribution of the samples in the five datasets

Gene The Distribution of the Samples in the Datasets
Expression Cancer Samples  Normal Samples  Total of Number
Datasets

COAD 262 19 281

ESCA 183 9 192

CHOL 36 9 45

PAAD 176 4 180

HNSC 398 20 418

Note: The Gene Expression Datasets represent the different cancer sample
data: COAD colon adenocarcinoma, ESCA esophagus cancer, CHOL
cholangiocarcinoma, PAAD pancreatic adenocarcinoma, HNSC head and neck
squamous cell carcinoma
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Measurement metrics for the experiment results

In this article, we use multiple measures to strictly
analyze the clustering results. The clustering results are
mainly evaluated by the Accuracy (Acc) [42], Matthews
Correlation Coefficient (MCC) [43], Rand Index (RI)
[44] and Normalized Mutual Information (NMI) [45].
Next, we concisely introduce them.

Accuracy

The Accuracy (Acc) evaluates the clustering results on
the global level by calculating the matching degree of ex-
perimental result labels and actual labels. The values of
the Acc ranges from 0 to 1, and the higher value is, the
better the clustering results is. The specific formula is as
follows.

> i10(p;, map(q;))

Acc = . x 100%. (25)
Here, d(p;, map(q;)) is defined as follows:
L,if i = i
(py maplqy)) = { 121 = map(a), (26)

0, otherwise

where # is the number of data samples, p; is the real
label for the i-th sample, and ¢; is the experimental re-
sult of the i-th sample. map(q;) is the mapping function
that can match the clustering result to the real label
using the Kuhn-Munkres approach [46].

Matthews correlation coefficient

The Matthews Correlation Coefficient (MCC) is widely
used performance measure in biomedical research to
handle imbalanced datasets [43, 47-49]. In general,
MCC represents a comprehensive evaluation measure
which has a better balance of both aspects of the accur-
acy and coverage than the individual precision and recall
values [49]. The MCC is defined in terms of TP (True
Positive), FP (False Positive) and TN (True Negative),
FN (False Negative), and its formula is as follows.

TP x TN-FP x FN

MCC =
/(TP + FP)(TP + FN)(IN + FP)(IN + FN)

x 100%,
(27)

where TP is the number of true positives, where the data
points that actually belong to the same cluster are
grouped into the same cluster in the experiment results.
TN is the number of true negatives, where the data
points that actually belong to the same cluster are
grouped into the different clusters in the experiment re-
sults. FP is the number of false positives, where the data
points that actually belong to different clusters are
grouped into the same cluster in the experiment results.
EN is the number of false negatives, where the data
points that actually belong to different clusters are
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Table 2 The distribution of the six datasets
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Datasets The number of samples of each type of cancer Total number of samples subspace number
CO-CH 262-36 298 2

PA-ES 176-183 359 2

CH-HN-CO 36-398-262 696 3

ES-CH-HN 183-36-398 617 3

CO-CH-ES-HN 262-36-183-398 879 4

ES-CO-PA-HN 183-262-176-398 1019 4

Note: The datasets represent different integrated datasets. The characteristics of each dataset are described in the previous passage

grouped into the different clusters in the experiment re- NMI(E, Q) = 2 I(5;Q) « 100%. (29)

sults. The Fig. 3 shows TP, TN, FP, FN clearly.

The value of MCC is took in the interval [-1, 1], with
1 representing a complete agreement, —1 indicating a
complete disagreement, and 0 indicating that the clus-
tered result was uncorrelated with the ground truth [50].
For the multi-class dataset clustering with k classes, the
MCC can be calculated by the confusion matrix. And,
the confusion matrix is a matrix C=(C)i«s with the
size of kx k, where C; represents the number of sam-
ples, which in actually belongs to the class i, are clus-
tered to be in the cluster j. And, the confusion matrix
and the item of TP, FP, TN, FN for multi-cancer samples
clustering are defined as the Fig. 4.

Rand index

The Rand Index (RI) is an objective criterion for the
evaluation of clustering methods. From a mathematical
standpoint, the RI is related to the Acc, but it is applic-
able even when class labels are not used [44]. Given the
set of # data points S = {0y, O,, ..., O,;} that are to be clus-
tered, the specific partitions V={vy,vy, .., v} and
U = {uy, uy, ..., u.} are the clustering results of S that are
divided into r and ¢ disjointed sets, respectively. If V rep-
resents the true results and U represents the experiment
results, then RI is defined as follows.

RI = a-+d

= 7% 100%,
a+b+c

(28)

(H(E) +H(Q))

= k k ©) N
Here, 1(Z: Q) = Y¥ 2 35 oo p(€,0) log(252L ) is the
mutual information, and H(E) = Zf;l p(&) < 1(&)

= Y1 p(§) % logy(i5) » where p(§) (p(w7) is the
probability of an object being in cluster & (class wy), and
(& ) is the joint probability that an object lies in clus-
ter § and class wy. The value of the NMI ranges from 0
to 1, and the higher value is, the better the clustering re-
sults is.

Experiment result and discussion

In this subsection, we cluster the multi-cancer samples
using the sgLRR method and compare the results with
other related methods to analyze the performance. The
related methods in the comparative experiments include
K-means, T-SNE, LLE, NMF [42], PCA [33], LRR [9],
LLRR [26] and MLLRR [27]. And, the experiments are
carried out on the six integrated datasets. We obtain the
clustering results of the sgLRR method and the compari-
son methods. For the compared methods: K-means, T-
SNE, LLE, NMF, PCA, LRR, LLRR, and MLLRR, they
are the traditional existing clustering and dimensional
reduction methods. And, we categorize these methods
into three classes. The first kind of method is the classic
method for clustering, including K-means, NMF and
PCA. The T-SNE and LLE belong to the second kind of

a is the total of the data pairs that exist in the same cluster for V and U.

where{ b is the total of the data pairs that exist in the dj

¢ is the case with different the g and 4.

The value of the RI ranges from 0 to 1, and the higher
value is, the better the clustering results is.

Normalized mutual information

The Normalized Mutual Information (NMI) is com-
monly used in clustering to measure the similarity of
two clustering results [45]. There are the clusters
E =[&]x obtained by the clustering algorithm and the
true inherent classes Q = [w;]x. The NMI is defined as
follows.

Actual label
(—%

_ Positive Negative

E N

% Positive TP FP

k3] Negative PN TN

3

[a W}

Fig. 3 The item of TP, FP, TN, FN
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method for dimensional reduction. T-SNE and LLE both
are well-established manifold learning methods. Among
them, T-SNE is almost the dominant one in bioinfor-
matics, especially for expression data. The third kind of
method include LRR, LLRR, MLRR and our proposed
sgLRR method. These methods belong to the subspaces
clustering methods to dimensional reduction by low
rank representation the raw datasets.

In addition, K-means clustering algorithm is usually
used to obtain the final clustering result in spectral clus-
tering. In this paper, K-means method uses the K-means
+ + algorithm for cluster center initialization and
squared Euclidean distance by default, and in K-means +
+ algorithm, the initial cluster center is randomly se-
lected [51]. Therefore, if K-means method is used to re-
peat the experiment with the same dataset, the results of
these experiments will not be identical, and there will be
minor differences. This difference will affect our per-
formance evaluation of clustering methods. In our ex-
periments, in order to improve the reasonable of results
and reduce the difference, we repeat clustering experi-
ment 50 times. And, the mean of results is taken as the
measurements of clustering results.

The experimental results are listed in the Table 3.
And, we highlight the best clustering results in bold. Of
all the best results, except for the few results, the results
obtained by sgLRR method are overwhelmingly superior
in the nine experimental methods. In the next, based on
the clustering results, we detailed discuss and analyze
the advantage of sgLRR method which is different with
the above comparison methods. And, the details are as
follows.

1. For the most of metrics results in the Table 3, the
LRR, LLRR, MLRR and sgLRR methods are better
than the first kind method, including K-means,
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NMF and PCA. Furthermore, the performances of
LLRR, MLRR and sgLRR methods improve as the
number of cancer types increasing. Notably, the
best clustering results are mainly obtained by the
sgLRR method. From an overall standpoint, the ex-
perimental results demonstrate that the methods
for the low-rank representation are better for mul-
tiple subspace clustering than the classical cluster-
ing method. One mainly reason is that the low-rank
representation methods with the characteristics of
capturing the subspace structure of datasets. There-
fore, the gene expression data structures of each
type cancer are stored in their respective low di-
mensional subspaces, which makes the different
types of cancer dataset more separable.

In order to demonstrate dimensionality reduction
datasets of sgLRR with the better performance on
the multi-cancer gene expression datasets, we com-
pare sgLRR method with the second class of
method: T-SNE and LLE. At first, we visualize the
dimensionality reduction datasets which are ob-
tained by the T-SNE, LLE and sgLRR methods, as
shown in Fig. 5. And, the data points are colored
according to their actual labels. As shown in the
Fig. 5, in the dimensionality reduction data obtained
by the T-SNE method, there are several overlaps
between clusters of different types of cancer sam-
ples such as I-2, I-4, I-5 and I-6. In the dimension-
ality reduction data obtained by the LLE method,
the separability of clusters of different types of can-
cers is not obvious such as II-3, II-5 and II-6. In the
dimensionality reduction data obtained by the
sgLRR method, the independence of different can-
cer sample clusters is obvious such as I1I-2, III-4
and III-6, and the data subspace has better separ-
ability effect than T-SNE and LLE methods.

Actual label
I . \
Class1 - - Classi - Class k
o Nl i |
2 R
Cluster1£C,, ™, | Gt Ci
b ~ | 1
o S T i
—z oo T [ Syoe e | | (—
o h S A | Pa—
§ > % 3
= T e e
P51 _l seiited \_E ...... :
5 7 Clusteri Cy * G IR Ci
g2l . T SRS A w o
ol T R It oo S ] e | sosens
I 4 BN
- {0 b
...... i 1 ..M N\
_ Cluster k| C, j Gl ™ 8L G
I ’
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Fig. 4 Confusion matrix and the item of TP, FP, TN, FN for multi-cancer dataset clustering
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Table 3 The clustering results of all methods on the different integrated datasets
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Datasets Measure Method
K-means T-SNE LLE NMF PCA LRR LLRR MLLRR SgLRR
ACC 95.40 89.31 71.14 93.14 93.63 97.99 99.66 98.99 98.66
MCC 80.06 70.21 88.58 75.53 72.99 46.76 91.06 90.78 95.20
RI 9143 49.85 63.66 87.18 8807 96.04 99.32 98.00 97.34
NMI 66.46 51.01 7571 54.12 5447 4192 80.51 77.04 87.51
ACC 98.25 91.84 77.26 99.16 99.16 96.38 99.16 99.16 99.16
MCC 84.73 83.74 62.04 98.34 98.34 77.98 96.71 96.71 98.34
RI 97.37 84.97 66.46 98.35 9833 93.00 98.34 98.34 98.34
NMI 81.06 5949 4143 93.86 93.86 6543 89.39 89.39 93.86
CH-HN-CO ACC 89.22 83.03 80.99 76.99 85.77 95.86 97.99 84.77 98.28
MCC 67.91 65.69 60.77 82.25 69.17 61.23 6831 80.96 87.25
RI 90.00 87.16 82.85 80.19 87.76 94.70 96.67 84.66 97.48
NMI 73.55 7843 69.07 76.22 7259 68.25 7381 77.83 80.99
ES-CH-HN ACC 85.56 5235 61.65 84.52 80.03 8217 93.19 94.32 96.11
MCC 66.26 3262 42.01 67.44 66.08 43.04 61.18 66.49 91.32
RI 8267 60.97 63.89 80.25 78.15 72.36 89.07 90.30 93.10
NMI 56.77 30.77 33.26 4735 72.59 36.92 52.38 57.20 78.75
CO-CH-ES-HN ACC 86.89 60.52 63.04 82.31 81.32 79.24 9248 87.94 94.17
MCC 70.00 65.30 79.30 51.78 7130 5244 78.05 73.03 91.71
RI 8943 74.59 7198 85.07 86.57 81.58 9142 88.95 93.34
NMI 71.04 4843 52.00 57.67 69.12 54.76 7442 69.82 80.27
ES-CO-PA-HN ACC 86.89 85.83 67.76 8231 81.32 79.24 9248 87.94 94.17
MCC 79.51 7852 7740 84.23 89.82 59.21 8838 83.63 8549
RI 89.43 9145 78.06 85.07 86.57 81.58 9142 88.95 93.34
NMI 76.15 8142 55.93 72.97 79.53 61.82 81.24 76.58 76.23

Note: The best clustering results are highlighted in bold

Therefore, we come to the conclusion that the sep-
arability among different types cancers in the di-
mensionality reduction data of three methods is
best by sgLRR method, followed by T-SNE method,
and finally by LEE method. Moreover, sgLRR
method makes the data points more separable be-
tween classes than T-SNE method. That is due to
that sgLRR method combines the low-rank repre-
sentation method with the graph regularization
constraint based on manifold learning, which en-
hances the separable between different types of can-
cer data in dimensionality reduction datasets.

In the third kind of method, what LRR LLRR
MLLRR and sgLRR methods have in common is
that they represent global structure of the raw
dataset by a low-rank matrix with low dimensional
subspaces. However, comparing the LRR method
with the LLRR, MLLRR and sgLRR methods, the
clustering results of most datasets are better than
the LRR method. This is because LLRR, MLLRR
and sgLRR methods with graph regularization based

on manifold learning can capture the inherent geo-
metric structural information of datasets. The re-
sults suggest that introducing graph regularization
based on manifold learning can improve the cluster-
ing performance of the method. Moreover, we can
find that the most of metrics of the sgLRR are
higher than those of the LLRR, and they are also
the best in all comparison methods. This is because
the symmetry constraint weakens the effect of noise
in the genetic expression data, and it makes the
lowest rank representation matrix that is obtained
by the sgLRR better for preserving the similarity
among the cancer samples than the LLRR.

In addition, the affinity matrix that is constructed
based on the lowest rank representation matrix also
plays a key role in the clustering. To briefly and
clearly explain the contribution of the affinity
matrix, we randomly select three typical datasets
and give the heat maps based on matrix Z" and
matrix H" for each respective dataset. The heat
maps of the three selected datasets (CO-CH, CH-
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Fig. 5 Visualization of the dimensionality reduction data of obtained by T-SNE, LLE and sgLRR methods for the six integrated datasets

HN-CO and CO-CH-ES-HN) are as shown Fig. 6.
In addition, in Fig. 6, the larger that the matrix
element is, the brighter the corresponding position
on the heat map. As we can see from Fig. 6, it is ob-
vious that the grouping effect of matrix H" is better
than that of Z".

In this part, we analyze the advantages of sgLRR
method from the relationship between subspace
number contained in datasets and method
performance. According to Table 2, each of the
six integrated datasets contains different types
and amounts of cancer. In other word, the
different integrated datasets contain different
number of subspaces. And, there is reason to
believe that the complexity of the internal
geometric structures for the dataset has a notable
positive correlation with the number of
subspaces. Therefore, among the six integrated

datasets, the CO-CH-ES-HN and ES-CO-PA-HN
are the most complex, followed by the CH-HN-
CO and ES-CH-HN that contain three types of
cancer, and finally, followed by the integrated
datasets CO-CH and PA-ES that contain two
types of cancer. Based on the Table 3, we can
see that the sgLRR method is better than the
other methods as the subspace number increases.
Specifically, the metrics of the sgLRR on the ES-
CH-HN dataset are 2.92 (ACC), 30.14 (MCC),
4.03 (RI) and 26.37 (NMI) percentage points
higher than those of the LLRR. Furthermore, for
the CO-CH-ES-HN dataset, the percentages of
the sgLRR are 1.69 (ACC), 13.66 (MCC), 1.92
(RI) and 5.85 (NMI) higher than those of the
LLRR. This proves that the sgLRR method is
more suitable for multi-cancer sample clustering
than comparison methods.
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(1-a) matrix Z' (CO-CH)

(1-b) matrix H (CO-CH)

(2-a) matrix Z* (CH-HN-CO)

(2-b) matrix H (CH-HN-CO)

Fig. 6 The heat maps intuitively compare the grouping effects of matrices Z* and H. (7-a) and (1-b) are the heat maps based on the matrices Z*
and H for the CO-CH dataset, respectively; (2-a) and (2-b) are the heat maps based on the matrices Z* and H for the CH-HN-CO dataset, respectively;
and (3-a) and (3-b) are the heat maps based on the matrices Z* and H for the CO-CH-ES-HN dataset, respectively
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(3-a) matrix Z* (CO-CH-ES-HN)

(3-b) matrix H (CO-CH-ES-HN)

Through the above analysis, we can conclude that the
combination of graph regularization based on manifold
learning and the symmetry constraint plays a significant
role in the sgLRR and achieves satisfactory results in
multi-cancer samples clustering.

Discussion

Based on the comparison and demonstration of the
above experimental results, our proposed sgLRR method
has advantages over other methods. The sgLRR method
based on low rank representation has a great advantage
in multi-subspace clustering. By means of symmetric
constraint and sparse constraint, the influence of data
noise on low-rank representation is alleviated. Mean-
while, the local geometric structure of data is retained
through graph regularization constraint based on mani-
fold learning, which improves the clustering effect in
subspace clustering. Compared with other methods
based on low rank representation, our method takes into
account various factors that affect subspace clustering
and improves the performance of the method. These ad-
vantages have been demonstrated in experiments with
gene expression data from multiple cancers.

Conclusions

In this paper, we introduce graph regularization based
on manifold learning and symmetric sparse constraints
into the original LRR and propose a novel method called
the sgLRR. The original LRR method can capture the
global geometrical information of the whole observation
data. The lowest rank representation matrix Z~ of the
sgLRR method has the properties of the traditional LRR
method and can capture the intrinsic local geometric
information within data. In addition, the symmetry con-
straint weakens the effect of noise in the dictionary
matrix and makes the lowest rank representation matrix
Z’ strictly and accurately preserve the similarity between
samples.

We adopt the sgLRR method for multi-cancer samples
clustering based on gene expression dataset. First, we
use the sgLRR to obtain the lowest rank representation
matrix Z’. Then, based on the angular similarity infor-
mation of the lowest rank representation matrix Z°, we
learn an affinity matrix H by using a unitary matrix that
is obtained using skinny SVD. The results prove that the
affinity matrix has a better grouping effect. Finally, based
on the affinity matrix H, the spectral clustering algo-
rithm (Ncuts) is used to obtain the clustering results.
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We compare the experimental results from other
methods to the sgLRR, including the K-means, T-SNE,
LLE, NMF, PCA, LRR, LLRR and MLLRR methods. The
experimental results show that the sgLRR method is a
novel efficient method for multi-cancer sample cluster-
ing. The sgLRR method performs well on the dataset,
which contain multiple subspaces. In future work, we
will further study the sgLRR method. For example, the
current method can be extended to identify characteris-
tic cancer genes or to analyze cancer pathways.
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