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Abstract

Background: Protein structure comparative analysis and similarity searches play essential roles in structural
bioinformatics. A couple of algorithms for protein structure alignments have been developed in recent years.
However, facing the rapid growth of protein structure data, improving overall comparison performance and running
efficiency with massive sequences is still challenging.

Results: Here, we propose MADOKA, an ultra-fast approach for massive structural neighbor searching using a novel
two-phase algorithm. Initially, we apply a fast alignment between pairwise structures. Then, we employ a score to
select pairs with more similarity to carry out a more accurate fragment-based residue-level alignment. MADOKA
performs about 6–100 times faster than existing methods, including TM-align and SAL, in massive alignments.
Moreover, the quality of structural alignment of MADOKA is better than the existing algorithms in terms of TM-score
and number of aligned residues. We also develop a web server to search structural neighbors in PDB database (About
360,000 protein chains in total), as well as additional features such as 3D structure alignment visualization. The
MADOKA web server is freely available at: http://madoka.denglab.org/

Conclusions: MADOKA is an efficient approach to search for protein structure similarity. In addition, we provide a
parallel implementation of MADOKA which exploits massive power of multi-core CPUs.

Keywords: Protein structure alignment, Structural neighbor searching, Parallel programming

Background
Protein structure alignment can reveal remote evolution-
ary relationships for a given set of proteins, and thus
helps significantly to understand the function of proteins
[1–7]. In the last two decades, numerous computational
tools have been proposed to perform optimal protein
structure alignment such as DALI [8], CE [9], SAL [10],
FATCAT [11], TM-align [12], Fr-TM-align [13], FAST
[14], CASSERT [15], DeepAlign [16], MICAN-SQ [6], etc.
Because of the complexity of protein structures, these
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methods are mainly different from presentations of struc-
tures and similarity scoring matrices. In practice, most
structure alignment approaches begin with constructing
a set of equivalent residues [13]. The structural similarity
score is then calculated using various steps and metrics,
and a dynamic programming procedure is employed to
acquire the final result. A bottom-up scheme by assem-
bling small alignment fragments to build a global align-
ment is brought in many methods [8, 13, 17–19]. This
involves iterative comparisons and merges of many frag-
ments, and its computational tasks become very heavy
when making all-against-all operations [20].

Among structural alignment algorithms, root-mean-
square deviation (RMSD), is the most widely used metric
between a pair of length-equal structures for performance
assessment, which is defined as:
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where N is the number of aligned pairs of residues,
and di is the distance between the ith pair of residues.
However, as Zhang [21] and Skolnick [22] figured out, a
small number of local structural deviations may result in a
large RMSD value, even the global topologies of the com-
pared structures are very similar. Additionally, the RMSD
of randomly chosen structures depends on the lengths of
compared structures. TM-score [21] has overcome these
deficiencies, which is a more accurate measure in evalu-
ating the alignment quality of full-length pairwise protein
structures, and it is independent of protein lengths:
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here, L denotes the length of the original structure,
Nali is the number of aligned residue pairs, and d0 =
1.24 3√L − 15 − 1.8 .

Protein structure similarity searching is a one-against-
all structure alignment process, which is especially impor-
tant in situations where sequence similarity searches (e.g.,
BLAST [23]) fail or deliver too few clues. Large-scale
structural similarity searches using traditional structure
alignment algorithms is typically time-consuming [24, 25].
A number of approaches have been proposed to accel-
erate the speed of structure similarities searching, such
as [26], CASSERT [24] and ppsAlign [25]. Despite sig-
nificant advances in structure alignment algorithms, pro-
tein structure similarity search against a large structural
database is still a great challenge, as protein structures are
highly complex and protein 3D structure repositories are
becoming increasingly huge, such as Protein Data Bank
(PDB) [27].

In this paper, we describe a new method named
MADOKA for fast and accurate protein structure simi-
larity searching. MADOKA is designed to filter out the
structures with low secondary structural similarity in
the first phase as initial alignment, and perform precise
alignment in the second phase as accurate alignment.
MADOKA also benefits from highly parallelized pro-
gramming by using multi-core processors to accelerate
processes of protein structure similarity neighbor search.

Results
SCOP and CATH [28] are used as standards for
assessing the structure alignment in various methods.
However, proteins that differ from fold families in the
SCOP and CATH categories may contain significant
structural similarity [13]. We have geometric measure

benchmarks purely to evaluate the structure alignment
quality between pairwise proteins.

Datasets
We use three datasets to assess the performance of
MADOKA. The first dataset TM-align is obtained from
the TM-align paper [12], which includes 200 non-
homologous protein structures from PDB ranging in size
from 46 to 1058 residues. We get (200 × 199)/2 = 19, 900
protein pairs in total. The second dataset comes from
MALIDUP [29], which contains 241 manually curated
pairwise structure alignments homologous domains orig-
inated from internal duplication. The third is MALISAM
[30], which consists of 130 protein pairs that are different
in terms of SCOP [31] folds but structurally analogous.

MADOKA employs the secondary structure elements
and the backbone Cα coordinates of the protein structures
for alignment.

Performance comparison with existing structure
alignment techniques
We have performed comparison experiments on a work-
station computer with two Intel Xeon E5-2630 v3 proces-
sors and 64GB of memory. The result of the alignments
generated by MADOKA and CE [9], SAL [10], TM-align
[12], Fr-TM-align [13] on the TM-align dataset is shown
in Table 1. MADOKA achieves the best performance in
the RMSD and TM-score metrics. Most importantly, the
speed of MADOKA is much faster than the other four
algorithms and its total time consumption was about 265
seconds, indicating the filtering process and parallel com-
puting play a key role in improving search speed. By the
first-phase alignment, our method largely narrows down
the number of pairwise proteins for precise alignments
to be done in the second phase, 11,052 pairs complete
both phases in total, which account for about 55.5% of
all 19,900 structure pairs. Moreover, the implementation
of MADOKA is a concurrent system [32] that runs many
alignments for different pairs on different CPU cores
at the same time. We use MADOKA to search struc-
ture neighbors against the entire PDB database for each
protein in the TM-align dataset. The calculation time cor-
responding to proteins with different lengths is shown

Table 1 Alignment performance comparison on the TM-align
dataset

Method RMSD TM-score Running Time (s)

CE 6.30 0.273 0.52

SAL 6.96 0.320 2.47

TM-align 4.99 0.348 0.13

Fr-TM-align 4.73 0.365 1.65

MADOKA 4.07 0.562 0.02
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in Fig. 1a, and the distribution of protein number with
respect to the protein length is shown in Fig. 1b. We can
see that the larger the size of protein structure, the longer
the calculation time is needed. Most proteins are in 100aa-
300aa in length, and the number of protein longer than
500aa is small. It is worth noting that the total calculation
time depends on the number of proteins, but the average
calculation time is only related to the size of protein struc-
ture. Moreover, we carry out another experiment to check
the relationship between average calculation time and size
of protein structure. From the entire dataset, we randomly
extract certain number of proteins (N=20, 40 and 60) to
execute searching task, and then compute the average
protein length and average running time. This process is
repeated for 1000 times. The result is shown in Fig. 1c,
we find that three curves of average running time overlap
to each other, meanwhile increase gradually with the pro-
tein length. This result indicates that the average running
time is largely affected by the size of protein structure, not
the number of proteins. Finally, we split the proteins into
three groups by their length, i.e. short (≤200aa), moderate
(201aa-400aa) and large (401aa-700aa). For each group, we

randomly extract increasing number of proteins to exe-
cute the searching task, and the average running time is
computed. The process is repeated till every protein in a
group is selected at least one time. As shown in Fig. 1d, the
curves of average running time regarding to each group
keep steady, while they differ largely from each other for
different size of protein structures.

Next, we conduct performance evaluation on the other
two datasets for MADOKA and five different methods,
including DeepAlign [33], DALI [8], MATT [34], For-
matt [35] and TM-align [12] in Table 2. Nali measure
represents the total count of aligned residues in each
pairwise structure alignment [36]. In this test, we skip
the first phase in order to verify the validity of the sec-
ond phase. Among these approaches, MADOKA obtains
highest TM-score and number of aligned residues (Nali).
Moreover, MADOKA’s calculation time is far less than
other methods.

Parameters selection
Note that the LCS length for strings of secondary struc-
tural elements of each protein pair will be compared with

c d

a b

Fig. 1 Computing time and amount of protein at different protein sizes. a shows the average computing time of proteins in the TM-align dataset for
structural similarity searching against the whole PDB database by using MADOKA. b indicates the number of structures at different protein sizes in
the TM-align dataset. c shows average running time curves with respect to randomly selected proteins from entire TM-align dataset (N=20, 40 and
60 is the number of selected proteins each time). d shows average running time corresponding to three different group of protein split by lengths
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Table 2 Performance of six pairwise structure alignment tools on
benchmarks MALIDUP and MALISAM

Benchmark Method Nali RMSD TM-score Total Time (s)

MALIDUP DeepAlign∗ 85.5 2.61 0.622 10.2

DALI∗ 83.5 2.65 0.600 115.3

MATT∗ 82.3 2.47 0.608 63.0

Formatt∗ 70.6 2.19 0.542 85.1

TM-align∗ 87.0 2.62 0.631 6.4

MADOKA 91.7 3.43 0.631 1.2

MALISAM DeepAlign∗ 61.3 2.96 0.521 4.3

DALI∗ 61.0 3.11 0.515 47.4

MATT∗ 56.2 2.74 0.486 16.2

Formatt∗ 44.9 2.42 0.411 33.1

TM-align∗ 61.1 3.06 0.517 2.9

MADOKA 62.8 2.72 0.555 0.7

*These are detailed in [33]

a threshold. If the length is less than the threshold, the
pair will be filtered out. So the threshold for the second
phase should be selected properly. The higher the thresh-
old, the fewer pairs will get residue-level alignments. The
lower the threshold, the weaker the acceleration effect of
the first phase. The length of LCS for pairwise strings
depends mainly on the length of the shorter one. For
trade-off between time efficiency and alignment accuracy,
we take the threshold as min(m, n)× 0.7 in all of our tests.
A protein pair will pass the first phase if the LCS length
S[ m, n] > threshold.

Within the TM-align dataset, we choose the gap open
penalty of the second phase of MADOKA as 3×10−6. For
MALIDUP and MALISAM datasets, we specify the gap
penalty as 3 × 10−6 and 0.08, respectively. We find that
maybe a low gap penalty contributes to a better result for
dataset contains many remote homologous protein struc-
tures, but it likely just opposite for structurally analogous
proteins.

Case study
As shown in Fig. 2a and b, there are two illustrative
examples of TM-align alignments and MADOKA align-
ments. Benefits from optimal-position based fragment
alignment, MADOKA could gain some improvements.
Figure 2a shows structural alignments between 1A1O_A
and 4HKJ_A, MADOKA is able to align nearly all regions
and get a better superposition result, as well as RMSD and
TM-score. Figure 2b shows alignments between 2GZA_A
and 1A1M_B, MADOKA acquires an optimized aligned
position which has a common region of β-strands, which
obtains higher TM-score and lower RMSD value.

Web interface
Our MADOKA web server accepts a protein 3D structure
file in PDB format or a PDB code as input. MADOKA
will check the validity of the input protein, and then con-
duct structure similarity searching against the whole PDB
database. The time required for similarity searching is
dependent on the size of the query protein. Most searches
can be completed within half an hour. The output con-
sists of a list of structural neighbors, their RMSD and
TM-scores for each submitted query protein, which can
be downloaded in text format. A unique feature is the 3D
visualization of structure alignment for the query protein
and its structural neighbors (Fig. 3).

Discussion
Commonly, there are two kinds of protein structure align-
ment approaches. The first compares a pair of structures
with an a priori specified equivalence between pairs of
residues (often offered by sequence or threading align-
ments [37]). The second is to compare structures under
a set of equivalent residues, which is not a priori given;
this is an NP-hard problem with no exact solution for an
optimal alignment [38]. Accurate protein structure align-
ment could be complicated and computationally expen-
sive as protein structures are very large and databases are
becoming increasingly huge such as PDB. In this study,
we integrate SSE and residue similarity to search pro-
tein structural similarity neighbors effectively. Moreover,
our algorithm focused on searching an optimal aligned
position between a short structure and a long struc-
ture to obtain a local alignment, rather than an all-to-all
residues comparisons based global alignment. The local
alignment contributes to higher TM-score, lower RMSD
and more aligned residues. A limitation of MADOKA is
that it requires specified gap penalty value for residue-
level alignment, which may limit its application. However,
with the classification of protein data becomes clearer,
we believe MADOKA can be a useful fast tool for accu-
rately searching protein structural neighbor in large-scale
context.

Conclusion
In this paper, we proposed a two-phase algorithm,
referred to as MADOKA, for protein structural alignment
and similarity neighbor searching, together with a web
server. The secondary structure element, residue align-
ment and filtering mechanism are introduced to accel-
erate the alignment process and performs faster when
a parallel implementation is used. Compared to exist-
ing representative protein structure alignment methods,
MADOKA outperforms about 6, 20 and 100 times faster
than TM-align, CE and SAL on large-scale datasets,
respectively. Meanwhile, MADOKA achieves better align-
ment quality than a couple of methods. We expect
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a b

Fig. 2 Two examples showing the structural alignments from TM-align and MADOKA. a shows alignment between 1A1O_A (276 residues) and
4HKJ_A (277 residues). b shows alignment between 2GZA_A (334 residues) and 1A1M_B (99 residues)

MADOKA to be applied to structure-based protein inter-
action and function predictions [39–42].

Methods
Overview of MADOKA
MADOKA performs one-against-all structure alignment
procedure between the query protein and all proteins in
the database. The illustrative workflow is shown in Fig. 4.
The algorithm of MADOKA is composed of two phases.
In the first phase, we represent pairwise protein struc-
tures as two strings of secondary structure units, and
then conduct initial alignment between the secondary
structure sequences by marking the Longest-Common-
Subsequence (LCS) by dynamic programming. In the
second phase, for each pairwise proteins with initial align-
ment score larger than a predefined threshold, we run
pairwise 3D residue structural alignments by rigid body
superposition and modified TM-align rotation matrix to
pick up an alignment with highest TM-score (the com-
prehensive description of these two phases are showed in
the following two sections). For versatility, The MADOKA
implementation is written in C++ standard syntax and
standard concurrency library, and thus supports multi-
ple compilers natively and can run on many operating

systems such as Microsoft Windows, macOS and Linux
without modification. The program will decide whether
to use multi-threading mode depending on the scale of
input pairs; if the program is in parallel state, there will
be multiple simultaneous executions of the algorithms
for different pairs. The MADOKA website is developed
using Perl, JavaScript, jQuery(AJAX) and CSS, and calls
the MADOKA program for protein structure similarity
searching.

First phase: initial alignment
First of all, we denote pairwise protein structures A and
B as two strings of secondary structure types (α-helix, β-
strand, coil and others) by using the DSSP [43] program,
each character in a string corresponds with the secondary
structure element (SSE) of a residue:

A =[ SSEA
1 , SSEA

2 , ..., SSEA
m] (3)

B =[ SSEB
1 , SSEB

2 , ..., SSEB
n ] (4)

m, n is the number of residues in protein structures A and
B, respectively.

The initial alignment is obtained by marking the two
strings using the Longest-Common-Subsequence(LCS)
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Fig. 3 Web page for 3D visualization of structure alignment and structure neighbors

between them, the effective solution using dynamic pro-
gramming of the LCS problem is given in Eq. (5).

S[i, j]=
⎧

⎨

⎩

0 i = 0 or j = 0
S[ i − 1, j − 1] +1 i, j > 0 and Ai = Bj
max(S[ i − 1, j] , S[ i, j − 1] ) i, j > 0 and Ai �= Bj

(5)

In which S is a (m + 1) × (n + 1) dimension scor-
ing matrix, S[ i, j] is the length of LCS ranging from A1
to Ai and B1 to Bj. Then, S[ m, n] is the length of LCS

for the global A and B. Finally, make a traceback on S to
get an optimal path for initial alignment. An example is
demonstrated in Fig. 5 [44], and the detailed step of back-
tracking for constructing initial alignment is described in
Algorithm 1.

Second phase: accurate alignment
We set a threshold for each pairwise alignment in the first
phase. Structures passed the first phase are being further
aligned to obtain the accurate alignment in the second
phase. This phase employs the 3D coordinates of back-
bone Cα atoms for a pair of aligned protein structures A
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Fig. 4 Schematic diagram of MADOKA algorithm and the web interface. The algorithm involves two steps: 1) Search for Longest-Common-
Subsequence (LCS) for each pairwise secondary structure elements using dynamic programming, and then structure pairs with the length of the
LCS below the threshold are removed; 2) Pairwise 3D residue structural rigid body superposition is performed and residue-level alignments are
constructed, and the best alignment with the highest TM-score and optimally aligned position for each pair of protein structures is selected
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Fig. 5 Scoring matrix for LCS problem and dynamic programming backtrack

and B. We pick the short structure that contains fewer
residues as template structure, and the other as constant
structure. Then we set Lt as the length of the template and
Lc as the length of the constant. Starting with the template
structure, we superpose it to the corresponding residues

Algorithm 1 The algorithm for initial alignment
Require:

A LCS matrix S defined as Formula (5) for a protein
pair showed as two SSE sequences A and B.

1: i = m, j = n
2: while i > 0 and j > 0 do
3: if S[ i, j] > S[ i − 1, j − 1] and S[ i, j] > S[ i, j − 1] and

S[ i, j] > S[ i − 1, j] then
4: PRINT(A[ i] , B[ j]); i = i − 1, j = j − 1
5: else if S[ i − 1, j] > S[ i, j − 1] then
6: PRINT(-,B[ j]); j = j − 1
7: else
8: PRINT(A[ i],-); i = i − 1
9: end if

10: end while
11: return S[ m, n]

of the constant residues according to Kabsch algorithm
[45]. Secondly, we create a new scoring matrix for tem-
plate and a fragment of the same length with template on
constant. The matrix is defined as:

M[ i, j] =

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

0 when i = 0 or j = 0

Max

⎧

⎪
⎨

⎪
⎩

M[ i − 1, j] +g
M[ i, j − 1] +g
M[ i − 1, j − 1] + 1

1+d2
ij/d0(Lmin)2

(6)

where g is the gap penalty customized by user, dij is the
distance of the ith residue in template structure and the jth
residue in constant structure under the superposition, and
d0(Lmin) = 1.24 3√Lmin − 15 − 1.8 which Lmin being the
length of the template. The formula above is a modified
TM-align rotation matrix [12] definition. An alignment
can be constructed by a dynamic programming backtrack
on M. An alignment consists of residue pairs which are
aligned or a gap inserted between a pair. Next, we collect
all fragments on the alignment with at least 10 successive
aligned residue pairs, then superpose this set of fragments
onto the constant structure again. A new alignment is
generated by another traceback with a new matrix. Then
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Algorithm 2 The algorithm for accurate alignment
Require:

Set A for the template protein structure and B for
the constant protein structure. Present A and B as 3D
coordinates of backbone Cα atoms. And x, y as the
number of residues for A and B.
Copy A into five groups. Group 1 remains unchanged;
others divide their structure A into 2, 3, 5, 8 parts with
equal numbers of residues respectively.

2: for each group g in groups do
n =number of structure parts in g, l = x

n
4: for i = 0 to y − x do

sum = 0
6: for j = 1 to n do

Run Kabsch superposition algorithm on
residue position between (sum, sum + l] and
(i + sum, i + sum + l] on A and B.

8: Create a (l +1)× (l +1) scoring matrix and fill
it as Formula (6).
Obtain an alignment by the scoring matrix and
a dynamic programming backtrack.

10: Collect all aligned fragments at least with
10 successive aligned residue pairs and make
another superpose and refined the alignment.
sum = sum + l

12: end for
Merge refined alignments in original sequence
order.

14: end for
Select a complete alignment with highest TM-score
among all align position for a group.

16: end for
Select a final residue-level alignment with highest
TM-score in all groups.

we perform a gapless threading which is composed of
all (Lc − Lt + 1) iterations with residue location shift-
ing from the N- to the C-terminus between the template
and constant. Next, we choose an alignment with max-
imum TM-score computed by the superposed template
and the corresponding fragment on the constant struc-
ture. Be aware that the optimal alignment is between the
whole template and the fragment which has an optimized
position on the constant and the same number of residues
as the template.

There is usually a strong relationship between the con-
verged superposition and the length of superposed frag-
ment, so we create five groups; each group contains a copy
of the template structure. Then each group divides their
template into several parts; all parts in a group have an
equal length. The number of parts in each group is 1, 2,
3, 5, and 8, respectively. Next, we take parts in each group

to have the superposed, DP and gapless threading proce-
dures with the order of template residue sequence, and
then combine all sub-structure alignments into a com-
plete alignment for each group. Eventually, the alignment
with the highest TM-score among all number of parts is
selected as the final accurate alignment. A more concrete
description for the algorithm of phase two is presented in
Algorithm 2.
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