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Abstract

Background: Current Hi-C technologies for chromosome conformation capture allow to understand a broad
spectrum of functional interactions between genome elements. Although significant progress has been made into
analysis of Hi-C data to identify biologically significant features, many questions still remain open, in particular
regarding potential biological significance of various topological features that are characteristic for chromatin
interaction networks.

Results: It has been previously observed that promoter capture Hi-C (PCHi-C) interaction networks tend to separate
easily into well-defined connected components that can be related to certain biological functionality, however, such
evidence was based on manual analysis and was limited. Here we present a novel method for analysis of chromatin
interaction networks aimed towards identifying characteristic topological features of interaction graphs and
confirming their potential significance in chromatin architecture. Our method automatically identifies all connected
components with an assigned significance score above a given threshold. These components can be subjected
afterwards to different assessment methods for their biological role and/or significance. The method was applied to
the largest PCHi-C data set available to date that contains interactions for 17 haematopoietic cell types. The results
demonstrate strong evidence of well-pronounced component structure of chromatin interaction networks and
provide some characterisation of this component structure. We also performed an indicative assessment of potential
biological significance of identified network components with the results confirming that the network components
can be related to specific biological functionality.

Conclusions: The obtained results show that the topological structure of chromatin interaction networks can be well
described in terms of isolated connected components of the network and that formation of these components can
be often explained by biological features of functionally related gene modules. The presented method allows
automatic identification of all such components and evaluation of their significance in PCHi-C dataset for 17
haematopoietic cell types. The method can be adapted for exploration of other chromatin interaction data sets that
include information about sufficiently large number of different cell types, and, in principle, also for analysis of other
kinds of cell type-specific networks.
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Background
The basic functionality of a genome is regulated on
many levels, especially regarding how and when individ-
ual genes are transcribed and subsequently translated into
proteins. The timely, specific and accurate regulation of
these processes is the key to the proper functioning of
an organism. Most of an organism’s regulatory processes
originate in its own genome, two primary categories of
these processes can be delineated based on whether they
are interactions primarily between regions of DNA (cis-
regulation) or between DNA and another molecule such
as a regulatory protein (trans-regulation). Both of these
forms of interaction are deeply involved in the essential
mechanism underlying the action of transcription factors:
the promoter-enhancer interaction (PEI). The PEI links
together a promoter, the region encompassing the vicin-
ity of a transcription start site of a gene and the target
of the transcription factor binding, and an enhancer, a
distantly positioned genomic region that acts as a facili-
tator of the transcription. When active, a promoter and
its corresponding set of enhancers are connected with the
help of activator proteins and other regulatory factors, and
form a small, distinctive chromatin loop [1-3].
Promoter-enhancer interactions are central to the cur-
rent understanding of transcriptional regulation, and
studying them requires methods which are able to capture
the location, prevalence and changes of the chromatin
looping. The method most directly targeted at capturing
these chromatin features thus far has been chromatin con-
formation capture or 3C, originated almost two decades
ago [4] and subsequently advanced with the advent of
next-generation sequencing to create Hi-C [5]. Hi-C is
theoretically capable of capturing all chromatin interac-
tions between two genomic sites, however, in its classic
form it is generally insensitive to PEIs due to rarely pro-
viding reliable data at high enough resolutions to capture
small-scale chromatin looping [6-8]. Several approaches
exist to improve this resolution, including much greater
sequencing depths [9] as well as superior restriction
enzymes and other technical improvements [7]. One par-
ticular method, capture Hi-C (CHi-C), adds a sequence
capture step that pares down the range of interactions to
a smaller subset associated with defined genomic regions
('baits’) [10, 11]. This allows for easier capture of a partic-
ular kind of interaction and has been successfully applied
to study PEIs specifically in a variant of the method called
promoter capture Hi-C, or PCHi-C [11, 12]. The single
largest PCHi-C study to date was conducted by Javierre
and colleagues [12] on a variety of human cells belonging
to the haematopoietic lineage. This study found that each
particular lineage of cells had noticeable differences in the
distribution of its PEIs and that many of these interactions
appeared to match up with putative genetic variations
linked to disease and altered gene expression. Due to
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its excellent coverage of a range of closely related non-
cancerous cell lineages the study provides an attractive
target for further analysis, particularly for using computa-
tional methods to find patterns in chromatin dynamics.
Analysing Hi-C data is often non-trivial. Many tech-
niques can be employed to improve the fidelity of a given
dataset, from more effective experimental and data pro-
cessing pipelines to post-processing methods for finding
particular features within a dataset [13—15]. Fewer ana-
lytical methods, however, focus on the dynamics of the
chromatin architecture and its specificity [16]. Cluster-
ing techniques in particular may be useful in detecting
functional modules of genes in Hi-C data. This can be
observed in approaches such as Arboretum-Hi-C, which
use spectral clustering to identify groups of interactions
conserved between several Hi-C datasets [17], or Graph-
Teams, where a §-teams model is used to locate gene clus-
ters in Hi-C data [18]. Similar techniques may be useful
in detecting features in chromatin interaction landscapes
that map to broader mechanisms of regulatory interaction
such as transcription factories [19] or activity hubs [20].
This makes clustering a potentially valuable technique for
interpreting PCHi-C datasets, where functional modules
made up of PEIs rarely caught in lower-resolution Hi-C
data might be isolated. To our knowledge, however, the
employment of topology-based clustering approach in the
analysis of capture Hi-C data still has been quite limited —
the approach has been used in our own previous related
work [21] and for (ChIA-PET network analysis) in [22].
From the topological features of PCHi-C interactions
analysed in [21] the most notable was the observation that
PCHi-C interaction networks tend to separate easily into
comparatively small and well-defined connected compo-
nents when we restrict the analysis to the networks in
which all interactions are required to be present in sev-
eral (two or more) different cell types. It was also observed
that connected components of interaction networks have
a tendency to remain largely unchanged when the pres-
ence of the same interactions is additionally required for
a number of other (component-specific) cell types and
largely (or completely) disappear when the presence of the
same interactions is additionally required for several other
(component-specific) cell types. Such a feature provides
an additional indication that PCHi-C interaction network
components are likely related to some biological func-
tionality and for several components manually selected
for further biological validation their relation to function-
ally related gene modules has been shown [21]. Still, in
[21] the network components were obtained by a man-
ual ad-hoc procedure (by choosing a certain subset of
cell types and visually exploring how the networks change
when other cell types are either added or removed), leav-
ing open the question how pronounced such component
structure is, and the problem of automated identification
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of 'potentially interesting’ components remaining a chal-
lenge.

This behaviour was observed for the network describ-
ing PCHi-C interactions for 17 different haematopoietic
cell types. It would have been very interesting to check
whether the same type of behaviour is characteristic for
PCHi-C interaction networks for different sets of cell
types, however, to our knowledge no other data set suit-
able for such a purpose has yet become available. Due to
this, we are focusing our analysis on the available PCHi-C
interaction networks for 17 haematopoietic cell types.

The identification of network components is related to
the problem of comparison of one or more networks,
which has been widely studied from various perspectives,
and with particularly strong focus on biomolecular net-
works. For the latter, probably one of the most successful
approaches has been based on graphlet sampling ([23—
25]). However, in the our case comparison of two net-
works is not an issue (since the networks are labelled
this can be done in linear time), the task is to identify
potentially significant or interesting components that dis-
criminate between 2% networks assigned to each subset of
k objects (cell types). The problem is quite specific and,
as far as we know, has not been studied before. In slightly
generalised terms it can be described as follows.

The initial data are represented by a rooted tree with
graphs (networks) assigned to its nodes in such a way that
graphs assigned to child nodes are (not necessarily proper)
subgraphs of the graph assigned to their parent node. (In
our particular case this rooted tree is a binomial tree with
its vertices corresponding to all the possible 2 subsets of
set consisting of k cell types.) The objective is to find a set
of 'characteristic’ components (subgraphs) that best dif-
ferentiate between all the pairs of graphs assigned to the
nodes. In principle this can be done by a straightforward
two-step approach: 1) finding such characteristic set for
all the pairs of nodes, and 2) combining these sets into
a single set that does not contain identical or very sim-
ilar components. However, such approach requires high
time and space complexity; in particular, the complex-
ity of the second step depends on both the number of
nodes and sizes of networks, and for whole-genome chro-
matin interaction networks poses a challenge even for
small number (e.g. 17, as in our case) of cell types. The
alternative method that we propose does this by a one-
pass traversal of the tree and has significantly lower time
and space requirements. The overview of the problem and
the method is illustrated in Fig. 1.

The proposed approach is particularly suited for identi-
fication of connected components, but in principle could
be adapted for identification of certain other characteris-
tic topological features of the networks. It is also worth
to note that whilst the networks are directed (with edges
from ’baits’ to ‘other ends’), the edge direction is currently
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not taken into account in exploring network component
structure. There are two (related) main reasons for this:
1) there are different alternatives how to define directed
components (the use of strongly connected components is
the most obvious one, and we have also partially explored
this option; however, it does not seem too promising,
one of the problems being that they cover only a small
part of the networks — due to the fact that all the nodes
must be both ’baits’ and ‘other ends’); 2) although there
is limited evidence of the importance of edge directional-
ity (e.g. statistical significance of the presence of cycles of
length 2 and of bi-connectivity has been observed in [21]),
the role of edge directionality is still insufficiently under-
stood to take it into account when analysing the network
component structure.

The main contributions of this paper are: 1) demonstra-
tion of strong evidence of well-pronounced component
structure of chromatin interaction networks and the fact
that many of these components tend to be largely pre-
served in some of cell types and largely absent in some
others; 2) a method for automatic detection of all the
possible candidates for potentially biologically interest-
ing (as measured by a scoring function assessing their
significance) of such network components; 3) character-
isation of the component structure of PCHi-C interac-
tion networks gained from the network analysis using
this method; 4) assessment of the potential biological
significance of identified network components by a "high-
throughput’ approach, whose results confirm that the
components tend to be related to specific biological mech-
anisms/functionality.

However, whilst the limited assessment of the biological
significance described here shows statistically significant
relation of components to gene regulation patterns, it is
very likely that the component structure is the result of
several different interrelated biological processes and in
this paper we do not attempt to assign to them a conclu-
sive well-defined biological explanation. What we think
is significant, is the fact that the component structure of
chromatin interaction networks is sufficiently well mani-
fested to be taken into consideration when analysing these
networks. Here we propose a method that can be used
for efficient automatic discovery of such components,
which afterwards can be subjected to different assessment
methods for their biological role and/or significance.

Methods

Data sets used for network analysis and result validation
For analysis of PCHi-C interaction network topology we
use a data set of long-range interactions between pro-
moters and other regulatory elements that was generated
by The Babraham Institute and University of Cambridge
[12]. This data set is still largely unique because it con-
tains genome-wide data covering a representative subset
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Fig. 1 Overview of method for identifying network components. The initial data are represented by a rooted tree with graphs (networks) assigned
to its nodes in such a way that graphs assigned to child nodes are (not necessarily proper) subgraphs of the graph assigned to their parent node.
The problem is to find a set of ‘characteristic’ components (subgraphs) that best differentiate between all the pairs of graphs assigned to the nodes.
Although this can be done by a straightforward two-step approach: 1) finding such characteristic set for all pairs of nodes, and 2) combining these
sets into a single set that does not contain identical or very similar components, the proposed method does this by a one-pass traversal of the tree

significantly reducing time and space requirements

of the entire haematopoietic lineage collected using a
unified protocol. The data was obtained by promoter cap-
ture Hi-C (PCHi-C) in 17 human primary haematopoietic
cell types (shown in Fig. 2), and from 31253 identified
promoter interaction regions across all chromosomes, a
subset of high-confidence PCHi-C interactions have been
selected using CHiCAGO pipeline [26]. These data are
available from the Open Science Framework website [12].

For the assessment of the potential biological sig-
nificance of the found network components, several
approaches were considered based on possibilities to per-
form assessments in a ’high-throughput’ manner. The
options, however, are limited by the availability of datasets
covering the particular 17 haematopoietic cell types.
The most straightforward approaches are looking for
the similarity of regulation or expression patterns of
genes from the same component. Regarding the gene

expression, there are few gene data sets that could be used
(e.g. BLUEPRINT RNA-seq data set EGAS00001000327),
however, the coverage of the gene set for which there
are PCHi-C interaction data is rather poor. More accu-
rate data related to the gene expression could be obtained
from FANTOMS5 promoter level expression atlas [27].
This data set contains transcription start site activity
data obtained by CAGE [28] protocol and the available
data cover genome-wide information about 14 human
haematopoietic cell types, 11 of these overlap with cell
types for which PCHi-C interaction data are available.
Thus, this data set might seem to be very appropri-
ate for biological validation, unfortunately the coverage
again is quite poor — the expression data are available
for approximately 18% of vertices (corresponding to ’bait’
ends) of PCHi-C interaction graphs constructed from
[12] data.
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Fig. 2 Haematopoietic tree for 17 cell types. 17 haematopoietic cell types in PCHi-C data set and their hierarchical clustering based on distances
from [12]. For convenience the distances are re-scaled to produce tree of hight 1
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Regarding the gene regulation patterns, a well-suited
data set is chromatin annotations generated through
ChromHMM based on ChIP data from BLUEPRINT [29].
The dataset includes information on transcription factor
binding sites, CTCF binding sites, DNase-sensitive sites,
transcription start sites, proximal and distal cis-regulatory
regions, as well as the activity modes of transcription
start sites and cis-regulatory regions, as observed from the
aforementioned annotations. The same annotations were
previously used in the original publication [12] to validate
the interactions between promoters and regulatory ele-
ments, but their analysis did not focus on the discovery
of potential hubs of the activity or coordinated repres-
sion. The annotations are available for 9 of 17 cell types
for which there are PCHi-C data and vertex coverage is
also quite good. For this reason we have chosen to use it
here for assessment of biological significance of the identi-
fied topological features (connected network components
with significance scores above a certain threshold). The
data are available from Open Science Framework website
[12].

Graph representation of PCHi-C interaction networks
Technically the network of PCHi-C interactions is
described as a digraph (directed graph) G with a set of
vertices V' = V(G) consisting of promoters ('baits’) and
detected interaction regions (other ends’). (A vertex can
also be both: a ’bait’ and an 'other end’) For convenience,
however, such vertex set V' we represent simply as a set of
integers {1, ..., n}, where n = |V|.

The set of edges E = E(G) corresponds to detected
interactions and edges are directed from ’baits’ to ‘other
ends’ (it is possible that for some vertices v1, v € V both
edges (v1,v2) € E and (vo,v1) € E). When constructed
from Hi-C data, the set of edges E usually will depend on
the selected interaction score threshold (only interactions
with scores not below the threshold will be chosen for
edges). For dataset analysed here we use the same thresh-
old that was proposed in [12] — i.e. only interactions with
score 5 or above are selected for edges.

By T we denote the set of all the available cell types.
For convenience we also assume that these cell types are
indexed, i.e. 7 = {t1,...,t}, where k is the number of
available cell types. (For dataset in our study we have k =
17.) For t € T its index is denoted by idx(¢) forset T < T
we define idx(T) = max{idx(t) | t € T} —i.e. the maximal
index of T elements.

For each edge e € E there is assigned a non-empty set of
labels T'(e) < 7. These labels correspond to cell types for
which the scores for the interaction reached at least the
threshold level. For T C T by G(T) we denote a subgraph
of G with vertex set V and edgeset{e € E | T C T(e)}.

A connected component (or CC) of a digraph H here
we simply will define as a connected component of the
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corresponding undirected graph H, obtained from H by
ignoring edge directions (i.e. we will not require strong
connectivity of components). The fact that C is a con-
nected component of digraph H we denote by C <. H.
For T € T and C <. G(T) by G(C, T) we denote a sub-
graph of G(T) with set of vertices restricted to V(C) — this
will be useful to discuss changes of component C when T
defining it is replaced by another set 7.

Algorithm for network analysis

Our aim is to find the set of all connected components
{C < G(T) | T C T} that are ‘'medium-sized’ (with
number of vertices n between some thresholds #,,;, and
Mmax) and have 'sufficiently interesting properties’ to merit
further exploration of their potential biological signifi-
cance (this is assessed by function SIGNIFICANCESCORE,
a reasonably good candidate for which we are proposing
below, but the function likely could be further elaborated
and/or modified to improve its biological accuracy or to
adapt it for assessment of different kinds of biological
features).

For identification of all such connected components,
we propose the algorithm FINDNETWORKCOMPONENTS
(Algorithm 1) described below. The algorithm is based
on BFS (Breadth First Search) of binomial tree defined by
subsets of T (with k + 1 levels i = 0...k) and all the
possible i element subsets of T at level i).

At each depth level i = 0..k queue Q; initially con-
tains all the connected components C <, G(T) for all
T < 7T with |T| = i satisfying certain pruning cri-
teria. Q; also contains components C <, G(T’) with
|T’| < ifurther analysis of which have been pruned earlier
and which are marked as inactive. During the process-
ing of Q; components with significance score reaching
threshold s or above are printed and the queue Qi1
for the next level of the binomial tree is constructed.
The construction of Q;y; is omitted for the last depth
level i = k. The algorithm prints a list of all com-
ponents, together with subsets of cell types T < T
defining them and their significance scores. Schematically
the search tree constructed by the algorithm is shown
in Fig. 3.

The algorithm is called on initial graph G = G(%) that
is assumed to be based on interactions for all the chro-
mosomes, however, since there are very few interactions
between different chromosomes, technically it is more
convenient to build and analyse G for each of 23 chro-
mosomes separately. For our dataset, there seems to be
a good motivation to chose n,,;, = 10, the choice of
Mmax is more arbitrary, we used ny,,, = 100 to limit
components to a manageable size for further analysis.
The value of s depends on the properties of function
SIGNIFICANCESCORE; in our case by its design it was
appropriate to choose s = 0.
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Fig. 3 Search tree of FINDNETWORKCOMPONENTS algorithm. Schematic representation of part (limited to a single CC at the root) of binomial search
tree constructed and traversed by FINDNETWORKCOMPONENTS algorithm. The binomial tree corresponding to all subsets of 7~ is additionally
branched due to the possibility of CCs to split into several at the next depth level. The search tree is pruned: 1) below components with less than
Nmin Vertices (these are simply not added to the tree); 2) below components reaching significance score threshold (components

Gt ), G, G{ts})); 3) components C(T) that are subgraphs of already found components C'(T") with T/ € T (component Cy 1 ({t2, t3})).

Here for brevity C(T) is used to denote G(C, T)

The purpose of SIGNIFICANCESCORE function is to
guess/predict how ’interesting’ from the biological per-
spective the detected CCs could be. Since we are mostly
interested in the variability of CCs for different cell types,
it is natural to ask that for a C <., G(T) with n = |V(C)|
vertices and m = |E(C)| edges there is a cell type ¢ €
T — T, such that G = G(C,T U {t'}) preserves most
of C edges, and also a cell type ¢’ € T — T, such that
G" = G(C, T U {t"}) preserves only few of C edges. It is
also natural to score higher CCs that have more options
for choice of such types ¢’ and ¢”. Often used and well
suited choice for a scoring function with such properties
is (for easier readability denoting the number of edges
|E(H)| of a graph H by e(H)):

SIGNIFICANCESCORE(C, T) =
' eT-TleG@)z=a-eO)-I{t"eT
~T|eG") <b-eO))'?

The constants a and b should satisfy 0 < b < a < 1 and
empirically were chosen as ¢ = 0.75 and b = 0.25, (for
the data set used it was also observed that slight variations
of them do not have a significant impact on the results
— see Table 1). The square root taken from the product
of cardinalities of two sets does not affect the ordering of
significance scores, but provides more linear distribution
of their values.

Algorithm complexity The algorithm involves travers-
ing 2K vertices corresponding to all the possible subsets

T C 7T thus its time complexity unavoidably is expo-
nential in k. Most of the tasks involving the processing
of graphs (splitting into CCs, computing C(T, E)) can be
done in time O(m) (where # and m correspondingly are
numbers of graph vertices and edges). Checking whether
a constructed CCs C should be pruned (lines 14,15,16 of
the code) can be done in time O(2X|V(C)|).

This gives the overall algorithm time complexity
O(2%*n + 2%m). The main space requirements are for
storage of two queues containing information for up to
(Lkl;z J)n graph vertices in each, thus algorithm space com-
plexity is O(2kn).

These bounds, however, are not very informative for
comparatively low values of #, m and k for our particu-
lar PCHi-C data set, since the actual complexity depends
on the number of CCs constructed by the algorithm and
the number of pruned search tree branches as well as lev-
els at which the pruning occurs. For this dataset we have
k = 17 and, depending on the chromosome, n varies
between 2000 and 18000 vertices and m between 3000

Table 1 Dependence of the number of discovered connected
components from constants a and b in SIGNIFICANCESCORE
evaluation function

a=2070 a=0.75 a=0.80
b =020 3349 3454 3773
b =025 3821 3966 4325
b =030 4318 4490 4871

These data are for chromosome 1
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Algorithm 1 FINDNETWORKCOMPONENTS
Input. Set of k edge labels 7. Graph G = G().
Component size thresholds #,,;, and n;,4y.
Significance score threshold s.
Output. List of connected components C <., G(T) for
all T C 7 with number of vertices between #,,;, and
Mmayx and significance scores at least s.

1 Initialise kK + 1 empty queues Q, . .., Qx
2 Find all connected components Cy, ..., Cy <, G(C,T)
3 fori=1...qif|V(C))| > ny, then
EnQueue(Qy, (C;, ¥, True))
4 fori=0...k — 1while Q; is not empty:
5 (C, T, IsActive) <— DeQueue(Q;)
6 if IsActive = False then
EnQueue(Q;t1,{C, T, False))
7  else
8 if |V(O)| < nyax and
S = SIGNIFICANCESCORE(C, T) > s then

9 print (C, T, S)

10 EnQueue(Q;+1,{C, T, False))

11 elseforj=idx(T)+1... .k

12 T' =T U{t;)

13 Find all connected components
Cr, .., Cq < G(C,T)

14 fori=1...q

15 if |[V(C))| = #i, and there are no
(C", T", False) in Q;

16 with 7”7 € T" and C; <. G(C", T)

17 then EnQueue(Q;y1, (Cj, T', True))

18 while Qg is not empty:
19 (C, T, IsActive) <— DeQueue(Qy)
20  if IsActive = True then

21 if |V(O)| < nyax and
S = SIGNIFICANCESCORE(C, T) > s then
22 print (C, T, S)

and 44000 edges. For these values the number of CCs is
notably lower and the extent of pruning notably higher
than the indicative asymptotic bounds.

In practice the current C++ implementation of the algo-
rithm (on a single core of Xeon E5-1620 v3 3.50GHz pro-
cessor) for processing of single chromosome data required
up to 7 minutes of running time and up to 300 MB of
RAM. Thus, the algorithm is quite practical for analysis of
genome-wide Hi-C interaction data for k = 17 cell types,
however, exponentiality in k also means 17 cell types could
be already quite close to the upper limit to which the
algorithm can be directly applied.
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Relation with previous work and alternative approaches
The fact that PCHi-C interaction network G(T) sepa-
rates easily into comparatively small (with sizes up to few
hundred vertices) connected components, when set of
cell types T contains two or more (sufficiently distinct)
haematopoietic cell types was observed by the authors in
[21] by the exploration of visualised interaction networks.
It was also observed that connected components have a
tendency to remain largely unchanged when shared by a
number of additional different (component-specific) cell
types and largely (or completely) disappear when shared
by some other (component specific) cell types. A compo-
nent structure of G(T) for several particular choices of the
set of cell types T was explored in more detail, and few
components were chosen for analysis of their biological
significance. It was shown that these selected components
form functionally related gene modules.

The exact component structure of G(T), however,
depends on the choice of 7, and one of the main contribu-
tions of this work is the algorithm for automatic detection
of all connected components C <., G(T), which are
assessed as potentially biologically significant, for all the
possible choices of T C 7. The algorithm also prunes the
list of components found by not searching for any sub-
components C' <, G(C,T"), if component C <, G(T)
has already been output as significant for some T C T
The pruning, however, still does not exclude only par-
tially overlapping components, or components of G(T)
and G(T") for only partially overlapping T and 7.

The direct 'automatisation’ of manual choosing of sets
of cell types T that produces G(T') with well-defined com-
ponent structure (which was attempted in [21]) could
be achieved by a similar but simpler algorithm based on
BFS of binomial tree defined by subsets of 7 and sepa-
rate analysis of the component structure of whole graphs
G(T) associated with the corresponding vertices of the
binomial tree. However, it is not difficult to show that
the proposed analysis at the level of individual compo-
nents of G(T) instead of whole graphs G(T) still outputs
all the components that will be assessed as significant
by SIGNIFICANCESCORE scoring function. An additional
notable benefit is a significant reduction of the number of
components output by the search procedure due to omit-
ting of components that are identified as subgraphs of
others.

Assessment of the biological significance

The strongly pronounced tendency of chromatin inter-
action networks to split into well defined medium sized
connected components is clearly not a feature shared by
random graphs and very likely should be explained by
some biological reasons. Whilst there is also a possibil-
ity that at least partially this topological feature might be
the result of limited freedom of possible conformations of
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chromatin 3D structure, even in this case it should likely
have some impact of correlated functionality of genes
contained in a particular component.

At the same time, it is very unlikely that this com-
ponent structure could be attributed to a single and
clearly defined biological mechanism, and these compo-
nents should be regarded as good candidates for modules
of genes on which to focus attention for a more thorough
exploration of their potential biological significance.

In [21] we have analysed a number of selected compo-
nents for enrichment with registered transcription factor
protein-protein interactions, known transcription factor
binding sites, co-expressed transcription factors and bind-
ing motifs with the Enrichr web tool [30, 31]. It was found
that genes contained in specific components tend to be
associated with common transcription factors. Such anal-
ysis, however, is difficult to perform for a large number
(few tens of thousands) of components that are identified
automatically.

Here we have used another more ’high-throughput’
approach for assessment of the potential biological sig-
nificance of network components. It is based on look-
ing for relations of components to activity modes of the
involved transcription start sites, proximal and distal cis-
regulatory regions using chromatin annotation data gen-
erated through ChromHMM based on ChIP data. The
data set assigns transcription start sites (TSS) and/or
regulatory regions to a number (not all) interactions in
PCHi-C network, which are further characterised by 4 dif-
ferent activity modes denoted by 0 (dead’),1 (‘active’), 2
('poised’),3 (Polycomb-repressed’). These assignments are
specific for each of cell types from 7 and the data are
provided for 9 different cell types.

To assess whether there is a tendency for network com-
ponents to be associated with certain activity modes, for
each component C defined by T C 7T and for each cell
type t € T, for which data is available, we construct a
4-tuple (ag,ai,as, az). a; value is equal to the number
of edges e € E(G(C,{t})) to which is assigned activity
mode i, multiplied by 4-tuple specific normalisation con-
stant ¢, chosen to ensure that ag + a1 + az + a3 = 1.
Thus, to each component C there is assigned a r x 4
size matrix (where r depends on the number of available
data entries), with rows consisting of 4-tuples for these
t € T for which data are available. The largest possible
value or r is 9, and we consider only components with
r > 1. The level of association of C with particular activ-
ity mode i can then be assessed by comparing the variance
of a; values within matrix assigned to C with the over-
all variance of a; values and/or with the variance of a;
values for randomised data. Another option is compar-
ing the distribution of average or maximal values of a;
within components with the average or maximal values for
randomised data.
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Results

Topological features of PCHi-C networks

Since there are almost no interactions between differ-
ent chromosomes in the available PCHi-C dataset (from
[12]), it was natural to construct and analyse interaction
networks separately for each chromosome. The data set
also contains very few interactions for Y chromosome,
thus only interaction networks for chromosomes 1...22
and chromosome X were analysed (for technical conve-
nience the latter here is also called ‘chromosome 23’).
The number of vertices in the chromosome-specific net-
works ranges between 2904 (chromosome 22) and 23079
(chromosome 1), the overall number of vertices in 23
interaction networks is 251209 and the overall number of
edges is 723165. The number of edges to which each of 17
cell types is assigned varies between 100000 and 200000
(see Fig. 4).

The fact that PCHi-C interaction networks G(T') sep-
arate easily into comparatively small connected compo-
nents was already observed by the authors in [21]. For
T = ¢ (i.e. no requirement for edge presence in any par-
ticular cell type) the networks, however, consist of one
large component containing 40—75% of G(T') vertices, the
other CCs are noticeably smaller (except for chromosome
18 for which the two largest components correspondingly
contain 1925 and 1178 vertices), and there are very few
(2 to 14) CCs with 10 or more vertices (the choice of
Hmin = 10 is somewhat arbitrary, but quite well suited
to remove 'random noise’). The well-defined structure of
medium-sized components start to appear when T con-
tains 2 or more not too similar cell types — the sizes of the
largest CCs tend to drop below 150 and there are about
50 (on average, the numbers are generally proportional to
the size of G(T')) components with 10 or more vertices per
chromosome.

For finding connected components FINDNETWORK-
COMPONENTS algorithm was tested with parameters
Hmin = 10, s = 0 (the only natural choice this par-
ticular SIGNIFICANCESCORE function) and with different
values of #,,,, and of @ and b in the SIGNIFICANCESCORE
function.

The value of 1,4, should not be too large (to limit com-
ponents to manageable size for further analysis) but also
not too small (there is a quite large number of compo-
nents with 70 — 80 vertices and high significance scores).
Increasing #,,4,x, however, leads to the output of fewer
components and #,,,, = 100 was selected as a convenient
choice from interval where small variations of #,,,,, do not
significantly affect the number of components found by
the algorithm.

The effect of the choices of a and b on the number of
components found is illustrated in Table 1 and the choice
of the retained edge level thresholds ¢ = 0.75 and b =
0.25 can be considered as a reasonably good compromise.
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An interesting seemingly counter-intuitive feature is an
increase of the number of components for higher a val-
ues, which is due to the pruning occurring at lower levels
(as a result the algorithm outputs several partially overlap-
ping subgraphs of a larger component that by itself fails
the score). However, there is no obvious choice for the
‘optimal value’ of a.

The whole data set was analysed using the parameter
values n,,;, = 10, nyay = 100, a 0.75 and b
0.25. The number of components found for each chro-
mosome range between 492 and 4107 and is shown in
Fig. 5 (additionally shown are the numbers of compo-
nents with less than 25 and less than 50 vertices). The

distribution of the component sizes (number of edges and
number of vertices) is shown in Fig. 6 (the data are shown
for chromosome 6 but distributions are very similar for
other chromosomes). The average edge to vertex propor-
tion within components is slightly larger than in the whole
interaction network.

A ‘typical’ larger component C with a compara-
tively high significance score 6 from chromosome 4
is shown in Fig. 7. It is defined by the set of labels
T {nB,aCD4, Neu}. At least 75% of its 80 edges
are preserved in subgraphs G(C,T U {¢}) with ¢t €
{tB,tCD8, nCD8, naCD4, tCD4, nCD4, FoeT, Ery, Mon}
and at most 25% edges are preserved in subgraphs

2000 3000 4000

Number of connected components
1000

10

1

12 13 14 15 16 17 18 19 20 21 22 23

Chromosomes

Fig. 5 Connected component size distribution. The number of connected components with less than 25, 50 and 100 vertices for each
chromosome. The components were computed using parameters Nmin = 10, Nmax = 100,a = 0.75,b = 0.25
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G(C, T U {t})) with ¢t e {EP,Mac2, Macl, MacO}. As
an illustrative example the subgraph G(C,T U {EP}) is
SWOWN.

The structure of the ‘component space’

From the number of components that are found by
FINDNETWORKCOMPONENTS algorithm (Fig. 5) it is
obvious that they must have overlapping sets of vertices.
E.g. interaction graph for chromosome 1 contains 23079
vertices, however, the algorithm outputs 3066 compo-
nents with at least 10 vertices each (the total number of
vertices for all components is 162172).

By its design FINDNETWORKCOMPONENTS algorithm
prunes the list of components found by not searching for
any sub-components C' <., G(C,T’), if a component
C <. G(T) has already been output as significant for
some T C T’. This, however, does not exclude the pos-
sibility to output partially overlapping components, and
from the results, it is clear that the amount of overlapping
components is still significant.

The pruning also does not exclude finding components
of G(T) and G(T”) with the same set of vertices if there is
only a partial overlap of T and T’. The number of latter,
however, is quite small.

To analyse the degree of overlapping between compo-
nents we compared them using a simple similarity score.
For two components C and C’ their similarity score is
defined as |V/(C) N V(C)|/|V(C) U V(C’)| and ranges
from 0 (for non-overlapping components) to 1 (for com-
ponents with the identical set of vertices). For each of the
chromosomes all-against-all comparison of components
was performed and similarity scores between them have
been computed. A sample distribution (for chromosome
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6, however, the distributions for other chromosomes are
similar) of similarity scores is shown in Fig. 8.

More informative probably is representation of com-
ponent similarity by graphs ('CC graphs’) in which com-
ponents correspond to vertices and edges connect pairs
of components with similarity score above some given
threshold. For analysis of such 'CC graphs’ it again is use-
ful to look at their component structure. A ’good feature’
of these graphs is that they split into comparatively (i.e.
close to complete graphs) components that remain mutu-
ally isolated. This can be considered as another indirect
confirmation that component structure is characteristic
to PCHi-C interaction networks and not the result of
specific technique of network analysis. The number of
components in 'CC graphs’ and their sizes depend on
the similarity threshold used. Table 2 shows number of
components of 'CC graphs’ for chromosome 6, their max-
imal and average sizes as well as density (edge density of
components with n vertices and m edges is defined as
2m/n(n — 1) and shows how close these components are
to complete graphs) for similarity thresholds from 0.00
to 0.95. The average sizes and average densities are com-
puted only for components with 4 or more vertices. The
data for all 23 chromosomes and similarity threshold 0.75
are shown in Table 3.

Part of 'CC graph’ for chromosome 6 is visualised in
Fig. 9 (the largest part of the graph’s 2355 vertices, how-
ever, are contained within components of 1 to 4 vertices,
which are not shown here). This figure shows a typical
component structure of 'CC graphs’ regardless of the used
similarity thresholds, although for the lower thresholds
there are fewer components and average and maximal
component sizes increase.

Similarity scores (%) between connected components

Fig. 8 Distribution of similarity scores between connected components. Distribution of similarity scores (ranging from 0% to 100%) between
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Table 2 Dependence of a number of connected components,
their maximal and average sizes, and edge density from similarity
threshold used to construct 'CC graph’
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Table 3 Number of connected components, their maximal and
average sizes, and edge density in ‘CC graphs’ for all
chromosomes

Similarity Number of components  Maxsize  Average Average Chromosome ~ Number of Max size Average Average
threshold size density components size density
0.00 48 279 63.2 0.740 1 1410 104 10.7 0.640
0.05 65 223 49.6 0.781 2 1540 120 10.8 0.690
0.10 72 223 46.5 0.785 3 1145 440 13.9 0.669
0.15 85 183 420 0.775 4 822 126 12.5 0.643
0.20 98 183 383 0.787 5 985 59 10.0 0.701
0.25 110 152 34.7 0.782 6 959 64 9.9 0.656
0.30 128 114 31.6 0.752 7 944 158 9.7 0.686
0.35 151 107 27.2 0.727 8 714 127 114 0.663
040 183 107 228 0.713 9 566 62 9.8 0614
045 220 102 214 0.686 10 816 111 10.8 0.649
0.50 280 100 184 0.688 11 759 71 94 0.762
0.55 344 100 164 0.680 12 843 74 104 0.646
0.60 450 71 149 0.680 13 446 134 134 0.627
0.65 580 70 14.1 0.669 14 561 196 13.3 0.647
0.70 732 64 124 0.641 15 580 38 9.2 0.629
0.75 959 64 9.9 0.656 16 531 62 11.9 0.655
0.80 1212 63 8.8 0.653 17 604 250 13.0 0.639
0.85 1484 55 8.0 0.663 18 363 27 80 0.815
0.90 1789 41 6.7 0.706 19 255 35 8.9 0.640
0.95 2072 16 58 0.748 20 371 29 9.5 0.657
In ‘CC graph’ components represented by vertices are connected by edges if their 21 222 40 114 0.681
similarity exceeds the threshold value. The data are given for chromosome 6 but are

similar for other chromosomes. The minimal component size is 1 even for similarity 22 286 19 66 0674
threshold 0. Edge density of components with n vertices and m edges is defined as 23 644 169 120 0583

2m/n(n — 1) and shows how close these components are to complete graphs.
Average component sizes and average densities are computed taking into account
only components with more 4 or more vertices

At present this description about the structure of
‘component space’ is provided only as being poten-
tially useful for interpretation of the results produced by
FINDNETWORKCOMPONENTS algorithm. Nevertheless,
it is also clear, that reducing the number of components
by including only representatives from sets of very sim-
ilar ones (and probably excluding some that are of little
interest — e.g. quite typical ’star like’ structures) would
facilitate analysis of their biological roles. However, this
unlikely can be done on the basis of similarity scores alone.
A second semi-supervised processing stage for selecting
‘representative set’ from the components directly output
by the algorithm remains an interesting option to explore.

Assessment of the biological significance of network
components

The assessment of the potential biological significance
of the components was performed using gene regulation
annotations, and the results show that on average the

The similarity threshold used for constructing 'CC graphs'is 0.75

genes from the same component have similar regulation
patterns, thus in principle confirming that components
of PCHi-C interaction networks are related to specific
biological functionality and/or biological mechanisms of
their formation. A brief summary is given by Fig. 10
showing variance of regulation activity modes within net-
work components, which for most of the components are
below the overall variance values. There is also a strong
tendency for each component being associated with this
component-specific activity mode. This effect in compar-
ison to the distribution for randomised data is shown in
Fig. 11. The exact calculation of statistical significance
of this effect is difficult due to complex dependencies
between the component edges. We computed the approx-
imate p-values with the Wilcoxon test [32] (using its
standard implementation in R language; the test itself can
be considered to be the most appropriate for the data that
are not normally distributed). For all the chromosomes
the obtained p-values were 2.2 x 10710 (i.e. ’almost zero’)
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when comparing activity distributions between our com-
ponents and randomised data. Whilst such estimate is not
totally accurate, it is still a very convincing indication that
the statistical significance is high.

The activity assessments provided for the predicted
transcription start sites and enhancers in the whole
PCHi-C dataset were essentially dominated by two major
groups: active regions (activity "1") and dead zones
(activity "0"), both making up approximately half of all
activities observed. Poised (activity "2") and Polycomb-
repressed (activity "3") sites were comparatively much
rarer, together making up no more than 10 — 15%
of all activities in every chromosome except for chro-
mosome 17, where poised activity was predicted in
22% of sites in the whole data set. When compared
to this overall background, our components showed
mild but noticeable differences in the activity. Foremost
of these was an enrichment in predicted dead zones,
with a mean 5% increase across all chromosomes, the
highest enrichment of which (13%) was observed in
chromosome 13. Conversely, active sites seemed com-
paratively diminished in our components, showing a
largely consistent decrease in prevalence across most
chromosomes. Polycomb-repressed sites were mostly
enriched as well but remained in the 1 — 3% range of
prevalence.

When considering distributions of activities within
components, we found that approximately two thirds of
the components showed a strong primary activity pre-
dicted for 60% of sites or more. Much like in the overall
distribution, most of these are dominated by either pre-
dicted active sites or dead zones. There are also approx-
imately 100 components showing a majority of poised
activity, but only three dominated by Polycomb repres-
sion. Moreover, almost all of these components show
noticeably low differences in the activity types detected
between the tissue types that they primarily belong to,
with variances between tissue types generally well below
those observed in random permutations of the same data
(Fig. 10). Altogether these results point toward shared
properties within individual components, although no
unified significance that applies to every component can
be isolated through our method.

Discussion

Our initial goal in setting the criteria for suitable com-
ponents was to find dynamic structural elements in
chromatin corresponding to tissue-specific modules of
promoter-enhancer interactions. Our results instead show
that our components, and also the PCHi-C data they
stem from, connect a wider variety of structures, includ-
ing most notably a wide range of components that connect
chromatin ‘dead zones’ with an overall quiescent profile
of histone marks [33, 34]. These components occur in
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roughly equal proportion to ones that are dominated by
markers of activity, and in fact, are more frequent in our
filtered component set compared to the full set of anno-
tated edges. As such, an important question to ask would
be how to differentiate such components in our data, if
it is possible. Furthermore, it may be important to also
consider other components previously filtered out in our
selection process and to analyse what each of them may
contain.

More elaboration on the content and selectivity of the
components could potentially be obtained in several ways.
Firstly, with further data from a wider variety of inde-
pendent datasets such as the FANTOMS5 promoter-level
expression atlas [27]. Of particular note may be ATAC-seq
and DNase accessibility studies, as DNA accessibility is
an obligatory prerequisite of enhancer function, whereas
particular histone marks do not necessarily enable or
preclude such function in vivo [35]. Additionally, even
with the data we have currently gathered, it may be
possible to find further topological properties of com-
ponents such as particular sizes or modes of connec-
tivity which help differentiate between the components
already found. As we have demonstrated in our previ-
ous work, metrics based on graph topology can be used
to differentiate between broad categories of tissue types
[21], and so may be useful in finding out the general
properties of highly active and spatially compact gene
clusters.

Our analysis could also benefit from the re-examination
of the components we have filtered out in the present
study. The current criteria stipulate that each component
must be specific to a small number of tissue types, but
still retain most of its interactions in at least one more tis-
sue. Given that these criteria eliminated the majority of
the connected components found in the original dataset,
it is likely that we could glean some insight from both
non-specific components found in most or all tissue types
studied, and also highly specific components delineating
the most variable elements of dynamic chromatin archi-
tecture. In fact, understanding the contribution of the
latter category to the regulatory landscape of blood cells
may be the logical next step in further work, with non-
specific chromatin architecture serving as a useful frame
of comparison.

Regarding the algorithm FINDNETWORKCOMPO-
NENTS for identification of connected components of
potential biological significance the part that likely can
be further elaborated/improved is SIGNIFICANCESCORE
function. In current version significance scores do not
depend on the size of connected components and high
scores are assigned also for comparatively small and
simple components that (depending on the biological
questions further asked) might not always be of particular
interest. A better insight into component topology and its
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Fig. 9 Relations between connected components with a similarity threshold above 75%. Graph showing similarity relations with a similarity score
above 75%. Here components are represented by vertices and edges connect pairs of components with similarity score above 75%. Data are for
chromosome 6 and only part of 2355 components are shown (the ones forming the largest connected parts of 'CC graph’, most components are
contained in small connected fragments of 1 to 4 vertices, which are not shown here)

relation to biological functionality, however, is needed for
this.

As already mentioned, reducing the number of compo-
nents would facilitate analysis of their biological roles and
a second semi-supervised processing stage for selecting
‘representative set’ from the components directly output
by the algorithm remains an interesting option to explore.

Conclusions
In this paper we have presented a novel algorithm for
analysis of chromatin interaction networks with a goal

to identify characteristic topological features of interac-
tion graphs and to ascertain their potential significance
in chromatin architecture. The algorithm provides auto-
matic identification of all connected components with
significance score above the given threshold that can be
potentially related to specific biological role or function.
The fact that chromatin interaction networks tend to sep-
arate easily into well-defined connected components to
which it is possible to assign certain biological functional-
ity was previously observed by the authors [21]. However,
identification of such components was only possible with
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manual ad-hoc methods, with which exploration of the
whole component space was infeasible.

We have applied the developed
FINDNETWORKCOMPONENTS algorithm to analysis of
PCHIi-C interaction networks of 17 different haematopoi-
etic cell types based on dataset by [12]. This provided
strong evidence that component structure for these
PCHi-C interaction networks is quite pronounced and
also allowed to obtain some characterisation of this
component structure. We have also made assessment of
potential biological significance of the found network
components by analysing regulation patterns of genes
contained within components and the results confirmed
that on average genes from the same component have
similar regulation patterns. At the same time it is very
likely that the component structure is the result of num-
ber of different interrelated biological processes, and by
no means we attempt to claim that we have assigned to
them a unique well-defined biological explanation. What
we think is significant, is the fact that component struc-
ture of PCHi-C interaction networks is sufficiently well
manifested to be taken into consideration when analysing
such networks.

The developed algorithm can be adapted for explo-
ration of similar data sets of PCHi-C interactions (or
chromatin interactions obtained by other technology) that
includes information for sufficiently large number of dif-
ferent cell types. The analysis results obtained on another
data set would provide significant new insights whether

topological structure of the chromatin interaction net-
works is similar for different sets of cell types, and whether
there are similar associations of structural components
with specific biological functionality. Unfortunately, to
our knowledge no other data set suitable for such a pur-
pose as yet have become available, however, emergence of
such data sets in near future is very likely. In particular,
there are already available several genome-wide chro-
matin interaction data sets that cover few (up to 3) differ-
ent cell types (e.g. [22]). Whilst data about only 3 cell types
are really insufficient for component structure exploration
(and the structure of ChIA-PET networks studied in [22]
is somewhat different), the study provides an additional
support to the hypothesis of importance of interaction
network component structure. The authors of [22] have
provided characterisation of biologically significant topo-
logical features of the networks in terms of graphlets
(small subgraphs), although, in contrast to our approach,
these have been derived from the known biological fea-
tures, whilst our emphasis is on potential discovery of new
biological relations from analysis of network topology.
More problematic, but still possible, is adaptation of the
method for other types of cell (or tissue) type-specific net-
works. This could be quite feasible for gene regulatory
networks (although instead of connected components,
these likely will need to be analysed in terms of more com-
plex topological structures); the main limitation, however,
is the fact that currently the tissue-specific information
on gene regulation is mostly provided by the chromatin
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interaction data. Still, a possible application could be anal-
ysis of gene regulatory networks of different species based
on the known homologies between the genes. Although
such task will be more complicated and it is difficult to
predict how interesting and/or useful the results might
be.

The developed software for automatic identification of
components in PCHi-C interaction networks (C++ code
and compiled Windows and Linux binaries) is publicly
available at GitHub repository: https://github.com/IMCS-
Bioinformatics/ PCHiCNetworkExplorer. The repository
contains also data files describing analysed PCHi-C inter-
action networks used for experiments as well as analy-
sis results — list of identified components with assigned
scores of their anticipated biological significance. The
software also includes a JavaScript based web-based
browser for visualisation and exploration of components
of PCHi-C interaction networks.

Abbreviations

3C: Chromatin conformation capture; aCD4: Activated total CD4+ T
lymphocytes; ATAC-seq: Assay for transposase-accessible chromatin using
sequencing; BFS: Breadth first search; CAGE: Cap analysis gene expression; CC:
Connected component; CHi-C: Capture Hi-C; ChIA-PET: Chromatin interaction
analysis by paired-end tag sequencing; CHiICAGO: Capture Hi-C analysis of
genomic organization; ChIP: Chromatin immunoprecipitation; CTCF:
CCCTC-binding factor; EP: Endothelial precursors; Ery: Erythroblasts; FoeT: Fetal
thymus; MacO: Macrophages MO (non-activated macrophages); Mac1:
Macrophages M1 (inflammatory macrophages); Mac2: Macrophages M2
(alternatively activated macrophages); MK: Megakaryocytes; Mon: Monocytes;
naCD4: Non-activated total CD4+ T lymphocytes; nB: Naive B lymphocytes;
nCD4: Naive CD4+ T lymphocytes; nCD8: Naive CD8+ T lymphocytes; Neu:
Neutrophils; PCHi-C: Promoter capture Hi-C; PEl: Promoter-enhancer
interaction; tB: Total B lymphocytes; tCD4: Total CD4+ T lymphocytes; tCD8:
Total CD8+ T lymphocytes; TSS: Transcription start site

Acknowledgements
Not applicable.

About this supplement

This article has been published as part of BMC Bioinformatics Volume 20
Supplement 23, 2019: Proceedings of the Joint International GIW & ABACBS-2019
Conference: bioinformatics. The full contents of the supplement are available
online at https://bmcbioinformatics.biomedcentral.com/articles/
supplements/volume-20-supplement-23.

Authors’ contributions

All authors have contributed to the presented research and to the preparation
of the paper. JV, KC and KF developed the overall methodology and
mathematical framework. GM developed methods for biological validation of
the results and provided biological interpretation of validation outcomes. PK,
DR and EC contributed to implementation of PCHi-C network analysis
algorithm and running computational experiments. LL and MO contributed to
statistical analysis of the results. PR and PK developed the tools for data
visualisation. All authors have read and approved the final manuscript.

Funding

The research and publication costs were funded by European Regional
Development Fund project “Graph based modelling and analysis methods for
systems biology” (ERDF project 1.1.1.1/16/A/135).

Availability of data and materials

The developed software for automatic identification of components in PCHi-C
interaction network (C++ code and compiled Windows and Linux binaries) is
publicly available on GPL license at GitHub repository: https://github.com/

Page 16 of 17

IMCS-Bioinformatics/PCHICNetworkExplorer. The repository contains also data
files describing analysed PCHi-C interaction networks used for experiments as
well as analysis results — list of identified components with assigned scores of
their anticipated biological significance.

The software also includes a JavaScript based web browser for visualisation
and exploration of components of PCHi-C interaction networks. This is a
modified version of the browser that was previously made available as a
supplement to an earlier publication of the authors [21].

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 12 November 2019 Accepted: 14 November 2019
Published: 27 December 2019

References

1. Mora A, Sandve GK; et al. In the loop: promoter-enhancer interactions
and bioinformatics. Brief Bioinform. 2016;17(6):980-95.

2. Matharu N, Ahituv N. Minor loops in major folds: Enhancer-promoter
looping, chromatin restructuring, and their association with
transcriptional regulation and disease. PLoS Genet. 2015;11(12):1-14.

3. Shlyueva D, Stampfel G, Stark A. Transcriptional enhancers: from
properties to genome-wide predictions. Nat Rev Genet. 2014;15:272-86.

4. Dekker J, Rippe K, et al. Capturing chromosome conformation. Science.
2002;295(5558):1306-11.

5. Lieberman-Aiden E, van Berkum E, et al. Comprehensive mapping of
long-range interactions reveals folding principles of the human genome.
Science. 2009;326(5950):289-93.

6. Schmitt AD, Hu M, Ren B. Genome-wide mapping and analysis of
chromosome architecture. Nat Rev Mol Cell Biol. 2016;17:743-55.

7. Belaghzal H, Dekker J, Gibcus JH. Hi-C 2.0: An optimized hi-c procedure
for high-resolution genome-wide mapping of chromosome
conformation. Methods. 2017;123:56-65.

8. Mishra A, Hawkins RD. Three-dimensional genome architecture and
emerging technologies: Looping in disease. Genome Med. 2017,9(1):1-14.

9. Rao SSP, Huntley MH, et al. A 3D map of the human genome at kilobase
resolution reveals principles of chromatin looping. Cell. 2014;159(7):
1665-80.

10. Dryden NH, Broome LR, et al. Unbiased analysis of potential targets of
breast cancer susceptibility loci by capture Hi-C. Genome Res.
2014;24(11):1854-68.

11. Mifsud B, Tavares-Cadete F, et al. Mapping long-range promoter contacts
in human cells with high-resolution capture Hi-C. Nat Genet. 2015;47:
598-606.

12. Javierre BM, Burren OS, et al. Lineage-specific genome architecture links
enhancers and non-coding disease variants to target gene promoters.
Cell. 2016;167(5):1369-84.

13. Lajoie BR, Dekker J, Kaplan N. The hitchhiker's guide to Hi-C analysis:
Practical guidelines. Methods. 2016,72:65-75.

14. Forcato M, Nicoletti C, et al. Comparison of computational methods for
Hi-C data analysis. Nat Methods. 2017;14:679-85.

15. GolloshiR, Sanders JT, McCord RP. Iteratively improving Hi-C
experiments one step at a time. Methods. 2018;142:47-58.

16. Chasman D, Roy S. Inference of cell type specific regulatory networks on
mammalian lineages. Curr Opin Syst Biol. 2017;2:130-9.

17. Siahpirani AF, Ay F, Roy S. A multi-task graph-clustering approach for
chromosome conformation capture data sets identifies conserved
modules of chromosomal interactions. Genome Biol. 2016;17(114)..
https://doi.org/10.1186/513059-016-0962-8.

18. SchulzT, Stoye J, Doerr D. GraphTeams: a method for discovering spatial
gene clusters in Hi-C sequencing data. BMC Genom. 2018;19(Suppl 5):308.

19. Schoenfelder S, Clay |, Fraser P. The transcriptional interactome: Gene
expression in 3D. Curr Opin Genet Dev. 2010;20(2):127-33.


https://github.com/IMCS-Bioinformatics/
https://github.com/IMCS-Bioinformatics/
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-20-supplement-23
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-20-supplement-23
https://github.com/IMCS-Bioinformatics/PCHiCNetworkExplorer
https://github.com/IMCS-Bioinformatics/PCHiCNetworkExplorer
https://doi.org/10.1186/s13059-016-0962-8

Viksna et al. BMC Bioinformatics 2019, 20(Suppl 23):618 Page 17 of 17

20. Phanstiel DH, Van Bortle K, et al. Static and dynamic DNA loops form
AP-1-bound activation hubs during macrophage development. Mol Cell.
2017,67(6):1037-48.

21. Lacel, Melkus G, Rucevskis R, Celms E, Cerans K, Kikusts P, Opmanis M,
Rituma D, Viksna J. Graph-based characterisations of cell types and
functionally related modules in promoter capture Hi-C data. In:
Proceedings of the 12th International Joint Conference on Biomedical
Engineering Systems and Technologies, vol. 3: BIOINFORMATICS; 2019. p.
78-89. https://doi.org/10.5220/0007390800780089.

22. Thibodeau A, Marques EL, et al. Chromatin interaction networks revealed
unique connectivity patterns of broad H3K4me3 domains and super
enhancers in 3D chromatin. Sci Rep. 2017;7(14466):. https://doi.org/10.
1038/541598-017-14389-7.

23. Yaveroglu ON, Milenkovic T, Przulj N. Proper evaluation of alignment-free
network comparison methods. Bioinformatics. 2015;31(16):2697-704.

24. Przulj N, Malod-Dognin N. Network analytics in the age of big data.
Science. 2016;353(6295):123-4.

25. Sarajlic A, Malod-Dognin N, et al. Graphlet-based characterization of
directed networks. Sci Rep. 2016;6(35098).. https://doi.org/10.1038/
srep35098.

26. Cairns J, Freire-Pritchett P, et al. CHICAGO: robust detection of DNA
looping interactions in capture Hi-C data. Genome Biol. 2016;17(127)..
https://doi.org/10.1186/513059-016-0992-2.

27. Lizio M, Harshbarger J, et al. Gateways to the FANTOMS promoter level
mammalian expression atlas. Genome Biol. 2015;16(22):. https://doi.org/
10.1186/513059-014-0560-6.

28. TakahashiH, Sachiko K, et al. CAGE - cap analysis gene expression: a
protocol for the detection of promoter and transcriptional networks.
Methods Mol Biol. 2012;786:181-200.

29. Stunnenberg HG, et al. The international human epigenome consortium:
A blueprint for scientific collaboration and discovery. Cell. 2016;167:
1145-9.

30. ChenEY, Tan CM, et al. Enrichr: interactive and collaborative html5 gene
list enrichment analysis tool. BMC Bioinformatics. 2013;14(128):. https://
doi.org/10.1186/1471-2105-14-128.

31. Kuleshow MV, Jones MR, et al. Enrichr: a comprehensive gene set
enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44:
90-7.

32. Wilcoxon F. Individual comparisons by ranking methods. Biom Bull.
1945;1(6):80-3.

33. ErnstJ, Kellis M. Chromatin-state discovery and genome annotation with
ChromHMM. Nat Protoc. 2017;12(12):2478-92.

34, ErnstJ, Kheradpour P, et al. Mapping and analysis of chromatin state
dynamics in nine human cell types. Nature. 2011;473(7345).. https://doi.
org/10.1038/nature09906.

35. Catarino RR, Stark A. Assessing sufficiency and necessity of enhancer
activities for gene expression and the mechanisms of transcription
activation. Genes Dev. 2018;32(3-4):202-23.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

o fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions k BMC



https://doi.org/10.5220/0007390800780089
https://doi.org/10.1038/s41598-017-14389-7
https://doi.org/10.1038/s41598-017-14389-7
https://doi.org/10.1038/srep35098
https://doi.org/10.1038/srep35098
https://doi.org/10.1186/s13059-016-0992-2
https://doi.org/10.1186/s13059-014-0560-6
https://doi.org/10.1186/s13059-014-0560-6
https://doi.org/10.1186/1471-2105-14-128
https://doi.org/10.1186/1471-2105-14-128
https://doi.org/10.1038/nature09906
https://doi.org/10.1038/nature09906

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Data sets used for network analysis and result validation
	Graph representation of PCHi-C interaction networks
	Algorithm for network analysis
	Algorithm complexity

	Relation with previous work and alternative approaches
	Assessment of the biological significance

	Results
	Topological features of PCHi-C networks
	The structure of the 'component space'
	Assessment of the biological significance of network components

	Discussion
	Conclusions
	Abbreviations
	Acknowledgements
	About this supplement
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher's Note

