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Abstract

Background: Gene expression profiling experiments with few replicates lead to great variability in the estimates of
gene variances. Toward this end, several moderated t-test methods have been developed to reduce this variability
and to increase power for testing differential expression. Most of these moderated methods are based on linear
models with fixed effects where residual variances are smoothed under a hierarchical Bayes framework. However, they
are inadequate for designs with complex correlation structures, therefore application of moderated methods to linear
models with mixed effects are needed for differential expression analysis.

Results: We demonstrated the implementation of the fully moderated t-statistic method for linear models with
mixed effects, where both residual variances and variance estimates of random effects are smoothed under a
hierarchical Bayes framework. We compared the proposed method with two current moderated methods and show
that the proposed method can control the expected number of false positives at the nominal level, while the two
current moderated methods fail.

Conclusions: We proposed an approach for testing differential expression under complex correlation structures
while providing variance shrinkage. The proposed method is able to improve power by moderation and controls the
expected number of false positives properly at the nominal level.

Keywords: Fully moderated T-statistic, Linear mixed-effects model, Variance shrinkage, Expected number of false
positives

Background
To understand the dynamics of gene function, many func-
tional genomic studies have profiled transcriptomic data
of individuals with multiple samples of different origins
[1, 2], diverse cell types [3, 4], and various time points
[5–7]. These measurements of gene expression levels from
multiple samples of the same individual are correlated
in nature. To analyze the correlated gene expression lev-
els under complex structures, linear mixed-effects models
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for genes are needed. Due to the constrain of availabil-
ity, financial resources, or even practical considerations,
small number of individuals are commonly used for many
studies, which can lead to undesired low power for detect-
ing differential expression between conditions when genes
are analyzed separately using linear mixed-effects mod-
els. Therefore, variance shrinkage over the range of genes’
expression levels is necessary in order to improve power.
However, currently there is a lack of methods that use
variance shrinkage techniques for linear mixed-effects
models.

Several variance shrinkage methods through moder-
ation under hierarchical Bayes framework have been
proposed for detecting differential expression with
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microarray or RNA-Seq data [8–11]. These methods are
based on variance shrinkage of residual errors of linear
models with only fixed effects, but the power gain rela-
tive to other test methods without variance shrinkage is
significant. However, use of these models in designs with
correlation structures will lead to biased estimation of
gene variances, thus will result in inflated false positive
and false negative rates.

There are two variance shrinkage methods that try to
address the correlation issue. Limma method [12] incor-
porates correlation estimates of replicates in linear mod-
eling, but it enforces a common correlation for all genes,
which works well for within-array replicates as originally
planned, but is risky for between-array replicates. Dream
method [13] tries to solve this issue in the setting of lin-
ear mixed-effects models. This method shrinks residual
variances only, while variance estimates of random effects
are scaled to residual variances before and after shrinkage.
The limitation of this approach is that variance shrinkage
of random effects is ignored by using the same shrinkage
for both random and residual variances over the range of
genes’ expression levels.

Toward this end, we implemented a novel procedure
that allows us to shrink both types of variation indepen-
dently through moderated t-methods under linear mixed-
effects models. Our method assumes that variances of
both residual errors and random effects have different
mean functional forms over the range of genes’ expression
levels. Then testing for differential expression between
conditions is based on the combined variance shrinkage
estimators. Simulations were performed to evaluate the
proposed procedure. A real gene expression experiment
on alopecia areata treatment on mouse skin samples was
used as a case study.

Methods
Linear mixed-effects model
For each gene, Y denotes expression levels of all samples,
which are normally distributed. The linear mixed-effects
model (LMM) is formulated as

Y = Xβ + Zγ + ε,

where β are fixed-effects, γ are random-effects, and ε are
residual errors with Var(γ ) = G and Var(ε) = R. γ and ε

are independent. Y has mean Xβ and variance ZGZ′ + R.
The hypothesis for testing fixed-effects is

H0 : Lβ = 0 vs.H1 : Lβ �= 0

Then the t-statistic for the hypothesis test is

T = Lβ̂
√

LĈL′

where β̂ = (X′V̂ −1X)−X′V̂ −1Y , C = (X′V̂ −1X)−.

Hierarchical model
Following our previously published fully moderated t-
statistic (FMT) method [10], a hierarchical Bayes model
is assumed for residual variances or variance estimates of
a random effect from a linear mixed-effects model of log
transformed expression data.

Residual variance for a gene g, s2
eg , is assumed to fol-

low a scaled Chi-square distribution with deg degrees of
freedom:

s2
eg |σ 2

eg ∼
σ 2

eg

deg
χ2

deg
,

where σ 2
eg is the variance of residual error, which is

assigned a scaled inverse Chi-square prior:
1

σ 2
eg

∼ 1
d0eg s2

0eg

χ2
d0eg

. (1)

d0eg and s2
0eg

are the prior degrees of freedom and location,
respectively. Under this model, the posterior mean of σ 2

eg ,
given s2

eg , is

∼s
2
eg =

d0eg s2
0eg

+ deg s2
eg

d0eg + deg
.

Similarly, variance estimate of a random effect for a gene
g, s2

rg , is assumed to follow a scaled Chi-square distribution
with drg degrees of freedom:

s2
rg |σ 2

rg ∼
σ 2

rg

drg
χ2

drg
,

where σ 2
rg is the variance of a random effect, which is also

assigned a scaled inverse Chi-square prior:
1

σ 2
rg

∼ 1
d0rg s2

0rg

χ2
d0rg

. (2)

d0rg and s2
0rg

are the prior degrees of freedom and location,
respectively. Under this model, the posterior mean of σ 2

rg ,
given s2

rg , is

∼s
2
rg =

d0rg s2
0rg

+ drg s2
rg

d0rg + drg
.

Then the denominator of the moderated t-statistic is
∼
t g = Lβ̂g√

L
∼
Cg L′

.

Variance components method [14] or Welch-
Satterthwaite method [15] is used to calculate an
approximation to the degrees of freedom for the linear
combinations of independent posterior variance estimates
∼s

2
eg and ∼s

2
rg .
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Estimation of hyper-parameters
Hyper-parameter estimation procedures for σ 2

eg and σ 2
rg

are performed separately. The hyperparameters d0eg and
s2
0eg

as well as d0rg and s2
0rg

are estimated by an empir-
ical Bayes approach implemented in our FMT method
[10]. The accuracy of hyper-parameter estimation (in
terms of bias and variance) can be approximated by using
the empirical distribution of hyper-parameters’ estimates
generated from multiple simulation runs, which is demon-
strated in our FMT method paper.

False positive control
With thousands of genes available in genome-wide pro-
filing studies, multiplicity adjustment is needed for false
positive error control. While the Bonferroni method con-
trols the family-wise error rate (probability of one or more
false rejections among all comparisons), it is well-known
to be a conservative method for genome-wide profiling
studies. A less conservative procedure (the extended
interpretation of the Bonferroni method) that controls the
expected mean number of false positives was used for
multiplicity adjustment throughout this paper [16]. This
procedure controls the per family error rate (PFER). It is

as powerful as the Benjamimi-Hochberg (BH) FDR con-
trol procedure, but has better stability compared to the BH
FDR control procedure. In simulations, the nominal level
for the false positive error control is set as the PFER.

Simulation procedures
1: For 12,000 genes (g = 1, 2, · · · , 12, 000), simulate

average log expression, αg , from a three parameter
log-normal distribution:
ln(αg − 3.75) ∼ N(1.35, 0.35).

2: For σ 2
eg of gene g, calculate the gene-specific prior

location s2
0eg

and prior degrees of freedom d0eg as a
function of the average log expression values (αg )
obtained from Step 1. The prior location s2

0eg
and

prior degrees of freedom d0eg are modeled as:
s2
0eg = 0.2e−1.2(αg−4.6) + 0.05

d0eg = 1.5
√

−1.1e0.1(αg−6) + 0.6(αg − 7)2 + 20 + e0.25(αg−14)+ 2

For σ 2
rg of gene g, calculate the gene-specific prior

location s2
0rg

and prior degrees of freedom d0rg as a
function of the average log expression values (αg )
obtained from Step 1. The prior location s2

0rg
and

Fig. 1 Power by numbers of biological replicates. Power was averaged over 100 simulation runs for 13 different sample sizes of biological replicates
where the number of technical replicates equals 2 and the expected mean number of false positives equals 5. Different methods were used for the
degrees of freedom approximation: FMT-VC (solid blue) is the fully moderated t-test with the variance components method; FMT-Sat (dotted blue)
is the fully moderated t-test with the Welch-Satterthwaite method; OT-VC (solid black) is the ordinary t-test with the variance components method;
OT-Sat (dotted black) is the ordinary t-test with the Welch-Satterthwaite method; Limma (dotted dark green) is the Limma method with replicates’
correlation estimation; Dream-Sat (dotted red) is the Dream method with the Welch-Satterthwaite method
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prior degrees of freedom d0rg are modeled as:

s2
0rg = 0.5e−0.8(αg−5.25) + 0.1

d0rg = 1.2
√

−1.1e0.1(αg−6) + 0.6(αg − 7)2 + 20 + e0.25(αg−14)+ 2

3: For gene g, simulate σ 2
eg and σ 2

rg from an inverse
Chi-square distribution (Eqs. 1 and 2) using the
hyper-parameters from Step 2.

4: For gene g, simulate random effect Si from N(0, σ 2
rg ).

5: Among the 12,000 expressed genes, 500 genes are
simulated to be differentially expressed using the
following steps:

a) Simulate mean log-differences μg from
N(0, 2) for 500 differentially expressed genes.

b) Simulate expression data for each replicate in
group 1 from N(αg + μg/2 + Si, σ 2

eg ) and for
each replicate in group 2 from
N(αg − μg/2 + Si, σ 2

eg ).

6: For the remaining 11,500 expressed genes, simulate
expression data for each replicate from
N(αg + Si, σ 2

eg ).

Results
Simulation
Parameter setting
For simulation, we chose a simple design for gene expres-
sion experiment without loss of generality. We assumed
two cohort groups with each cohort having ns biological
replicates (subjects) and each subject having nr technical
replicates. Our main interest is to compare gene expres-
sion differences between two cohort groups for each gene.
We simulated gene expression data under linear mixed-
effects models, where subject is a random effect and
variation due to technical replicates was included in the
residual errors.

Expression levels of 12,000 genes were simulated inde-
pendently, among which 500 genes were simulated with
differential expression between two cohort groups (see
above Simulation Procedures). Simulation models were
based on model assumptions of our published FMT
method, which allows hyper-parameters to vary as a
function of genes’ expression levels. All parameters were
set to resemble real gene expression arrays. Under this
setting, we generated data sets for 13 different biologi-
cal replicates (3-20 in each cohort group) and 6 different
technical replicates (2-11) within each biological replicate.

Fig. 2 False positives by numbers of biological replicates. Actural number of false positives was averaged over 100 simulation runs for 13 different
sample sizes of biological replicates where the number of technical replicates equals 2 and the expected mean number of false positives equals 5.
Different methods were used for the degrees of freedom approximation: FMT-VC (solid blue) is the fully moderated t-test with the variance
components method; FMT-Sat (dotted blue) is the fully moderated t-test with the Welch-Satterthwaite method; OT-VC (solid black) is the ordinary
t-test with the variance components method; OT-Sat (dotted black) is the ordinary t-test with the Welch-Satterthwaite method; Limma (dotted dark
green) is the Limma method with replicates’ correlation estimation; Dream-Sat (dotted red) is the Dream method with the Welch-Satterthwaite
method
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One hundred simulation runs were conducted for each
simulation scenario.

Methods comparison
We compared the proposed method (FMT in LMM) to
Limma [12] and Dream methods [13]. The Limma method
calculates a common correlation coefficient between
technical replicates for all genes to account for the correla-
tion of repeated measurements within subjects in a linear
fixed-effects model setting. The Dream method uses a
linear mixed-effects model, where variance estimates of
random subject effect is standardized to residual vari-
ances, then residual variances were modeled as a function
of average of expression levels. In our proposed method,
we used two ways to estimate the degrees of freedom
of the moderated t-statistic in Eq. 3. The first approach
is the variance components method (VC), which divides
the residual degrees of freedom into between-subject and
within-subject portions based on variance decomposition
and assigns the between-subject degrees of freedom to the
fixed effects if subjects are nested in the fixed effects. The
second approach is the Welch-Satterthwaite method (Sat),
which uses an approximation of the effective degrees of

freedom of a linear combination of independent variance
estimates. We also compared our method to the ordinary
t-test method (OT) in LMM, which does not perform
variance shrinkage to the variance estimates.

Power and false positives
Power averaged over 100 simulation runs are shown in
Fig. 1, where power is plotted against numbers of bio-
logical replicates (3-20) for 2 technical replicates and 5
expected mean number of false positives. The Limma
method has the best power except at the small number
of biological replicates and OT-VC has the lowest power.
The power difference between all methods goes down
when the number of biological replicates increases. For
both FMT and OT methods, the Welch-Satterthwaite
method results in better power than the variance com-
ponents method. Fig. 2 shows the actual number of false
positives over numbers of biological replicates for 2 tech-
nical replicates and 5 expected mean number of false
positives. The Dream method has the largest actual num-
ber of false positives, and it spikes more than 100 fold
higher than the controlled level when the number of bio-
logical replicates is relatively small and drops dramatically

Fig. 3 Power by numbers of technical replicates. Power was averaged over 100 simulation runs for 6 different sample sizes of technical replicates
where the number of biological replicates equals 3 and the expected mean number of false positives equals 5. Different methods were used for the
degrees of freedom approximation: FMT-VC (solid blue) is the fully moderated t-test with the variance components method; FMT-Sat (dotted blue)
is the fully moderated t-test with the Welch-Satterthwaite method; OT-VC (solid black) is the ordinary t-test with the variance components method;
OT-Sat (dotted black) is the ordinary t-test with the Welch-Satterthwaite method; Limma (dotted dark green) is the Limma method with replicates’
correlation estimation; Dream-Sat (dotted red) is the Dream method with the Welch-Satterthwaite method
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when the number of biological replicates increases. The
Limma method has inflated actual number of false pos-
itives as well, but it is relatively stable over numbers of
biological replicates. Only FMT-VC and OT-VC maintain
the nominal level of false positive error control at each
biological replicate level. Similar patterns are observed for
higher numbers of technical replicates.

Power averaged over 100 simulation runs is plotted
against numbers of technical replicates (2-11) for 3
biological replicate and 5 expected number of false posi-
tives as shown in Fig. 3. The Limma and Dream methods
have higher power than other methods. The power dif-
ferences between methods seem stable across the range
of technical replicates. Figure 4 shows the actual number
of false positives by technical replicates for 3 biological
replicates and 5 expected number of false positives. Sim-
ilarly, FMT-VC and OT-VC maintain the desired false
positive error control at each technical replicate number.
When the number of technical replicates is bigger than
4, the FMT-Sat method maintains the desired false pos-
itive error control, while the other three methods still
fail to maintain false positives at the nominal level. For
both Limma and Dream methods, the actual number of
false positives increases with larger numbers of technical

replicates. Similar patterns are observed for higher num-
bers of biological replicates. We believe that the ultrally
inflated actual number of false positives for both Limma
and Dream methods contributes to the higher power
compared to both FMT and OT methods.

Gene correlation
To understand effects of gene correlation on the tests’
performance, we also performed simulations using a
block-diagonal gene correlation structure. We randomly
assigned genes into blocks of size 10, where gene correla-
tions inside blocks are fixed at 0.5 while gene correlations
between blocks are set to 0. Results on power and actual
number of false positives under the gene correlation struc-
ture are highly similar to those under gene independence.
Supplemental plots are provided in Additional file 1.

A case study
To demonstrate the performance of the proposed method
for detecting differential expression under linear mixed-
effects models, we applied it to a real microarray study
published in Nature Medicine in 2014 by Xing et al. [17].
Microarray data were deposited in the GEO database with
an access number GSE45514. This study used Affymetrix

Fig. 4 False positives by numbers of technical replicates. Actual number of false positives was averaged over 100 simulation runs for 6 different
sample sizes of technical replicates where the number of biological replicates equals 3 and the expected mean number of false positives equals 5.
Different methods were used for the degrees of freedom approximation: FMT-VC (solid blue) is the fully moderated t-test with the variance
components method; FMT-Sat (dotted blue) is the fully moderated t-test with the Welch-Satterthwaite method; OT-VC (solid black) is the ordinary
t-test with the variance components method; OT-Sat (dotted black) is the ordinary t-test with the Welch-Satterthwaite method; Limma (dotted dark
green) is the Limma method with replicates’ correlation estimation; Dream-Sat (dotted red) is the Dream method with the Welch-Satterthwaite
method
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Mouse Genome 430 2.0 Array on mouse skin samples
taken at different time points (weeks 6 and 12) from
C3H/HeJ mice treated with topical JAK inhibitors ruxoli-
tinib (Jak1), tofacitinib (Jak3) or control (PBS). Three skin
samples were taken at each time point from 3 mice for
each treatment. We focused on the comparison between
two treatments (J3 vs. PBS), and we analyzed the data
using our FMT-VC linear mixed-effects model where
mouse was treated as a random effect. We compared the
FMT-VC method with other methods as done in sim-
ulation studies. Figures 5 and 6 show the fitted values
of residual variances and variance estimates of random
mouse effect. As shown in the venn-diagram in Fig. 7, lists
of significant genes of week 12 at the PFER cutoff value of
5 expected mean number of false positives are compared
among methods. There are several genes detected only
by the Limma and Dream methods, but these genes are
most likely to be false positives since our simulation stud-
ies demonstrate the ultrally inflated false positive rate for
both methods especially when the number of biological
replicates is small. The few significant genes for OT-VC
method are mainly due to low power of that method.

Discussion
Differential expression analysis through moderated t-tests
has become common practice in genomic studies for
the past decade. But most moderated t-tests are limited
to simple designs with the usage of linear fixed-effects

models. Recent efforts have been made to accommodate
designs associated with complex correlation structures
using LMM. In this paper, we proposed a novel approach
to address the need of applying moderated methods in
LMM and compared our method with two other current
methods. Our proposed method is very flexible because
we allow different shrinkage over the range of expression
levels for each variance component. However the Limma
and Dream methods can only do shrinkage of residual
variances over the range of expression levels.

We have employed two approaches for approxi-
mating degrees of freedom of moderated t-statistic
(the variance components method and the Welch-
Satterthwaite method) for both FMT and OT meth-
ods in LMM for testing differential expression. The
Welch-Satterthwaite method uses all variance estimates
to approximate degrees of freedom, but the VC method
only accounts for between-subject variation and ignores
within-subject variation from the total degrees of freedom
when fixed effects change across subjects. The Welch-
Satterthwaite method inflates type I error and fails to
maintain false positive error control at the nominal level,
but the VC method performs proper control for false pos-
itive errors. In addition, FMT-VC is more powerful than
OT-VC mainly due to moderation.

The performance of the proposed method was
demonstrated through a case study with a simple
design. However it can be applied to comprehensive

Fig. 5 Residual variance in the case study. FMT-VC method was applied to analyze the microarray data in the case study. Black dots represent
per-gene residual variance. Blue dots represent per-gene posterior of residual variance. Green dots represent per-gene prior of residual variance
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Fig. 6 Variance estimates of random effect in the case study. FMT-VC method was applied to analyze the microarray data in the case study. Black
dots represent per-gene variance estimates of random effect. Blue dots represent per-gene posterior variance estimates of random effect. Green
dots represent per-gene prior variance estimates of random effect

designs including multi-factors or multi-levels in linear
mixed-effects models. The proposed method can also
be applied to data sets that measure gene expression by
other technologies, e.g. RNA-Seq, protein expression, or
quantities of small molecules.

Conclusions
Current moderated-t methods are limited to shrinking
only the residual variance of linear models. In this paper,
we proposed an approach to allow variance shrinkage of
both residual error and random effects using moderated

Fig. 7 Venn diagram of significant genes of week 12 in the case study. Four methods were applied to analyze the microarray data in the case study.
Lists of significant gene of week 12 were generated and compared among methods for 5 expected number of false positives. Red circle is for
FMT-VC method. Green circle is for OT-VC method. Blue circle is for Limma method. Pink circle is for Dream-Sat method
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t-statistic under LMM. The gain in power through mod-
eration and proper control of false positive errors was
demonstrated by simulation studies. We also applied the
proposed method to a real gene expression data set.
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