Gadepalli et al. BVIC Bioinformatics 2019, 20(Suppl 24):670
https://doi.org/10.1186/512859-019-3251-1

BMC Bioinformatics

RESEARCH Open Access

BISR-RNAseq: an efficient and scalable
RNAseq analysis workflow with interactive
report generation

Venkat Sundar Gadepalli'*?, Hatice Gulcin Ozer'*?, Ayse Selen Yilmaz'“?, Maciej Pietrzak'** and Amy Webb'**"

Check for
updates

From The International Conference on Intelligent Biology and Medicine (ICIBM) 2019
Columbia, OH, USA. 09-11 June 2019

Abstract

Background: RNA sequencing has become an increasingly affordable way to profile gene expression patterns. Here
we introduce a workflow implementing several open-source softwares that can be run on a high performance
computing environment.

Results: Developed as a tool by the Bioinformatics Shared Resource Group (BISR) at the Ohio State University, we have
applied the pipeline to a few publicly available RNAseq datasets downloaded from GEO in order to demonstrate the
feasibility of this workflow. Source code is available here: workflow: https://code bmi.osumc.edu/gadepalli.3/BISR-
RNAseg-ICIBM2019 and shiny: https://code.bmi.osumc.edu/gadepalli.3/BISR_RNASeq_ICIBM19. Example dataset is

application.

Keywords: RNAseq, Transcriptome, Workflow, Visualization

demonstrated here: https://dataportal.omi.osumc.edu/RNA_Seq/.

Conclusion: The workflow allows for the analysis (alignment, QC, gene-wise counts generation) of raw RNAseq data
and seamless integration of quality analysis and differential expression results into a configurable R shiny web

Background

A whole transcriptome sequence provides an estimate of
the quantity of all transcripts present in a group of cells.
High throughput sequencing technologies have been de-
veloped to deep sequence the transcriptome. Sequencing
generates several million short reads that are typically
50—400 bases in length. These reads can be mapped to a
known reference genome or assembled de-novo. Either
method will provide a snapshot of the transcript present
in the sample and an estimate of abundance. Statistical
methods have been developed to normalize and compare
transcript estimates to identify differential transcripts. At
each step of the bioinformatics analysis pipeline, there
are many options for specific programs to use, reference

* Correspondence: amy.hite@osumc.edu

'Biomedical Informatics, The Ohio State University, Columbus, OH, USA
°The James Comprehensive Cancer Center, The Ohio State University,
Columbus, OH, USA

Full list of author information is available at the end of the article

K BMC

genome for alignment, and gene annotation set of ex-
pression quantification. One of the challenges for the
analysis of transcriptome data is to have a reproducible
set of steps for consistent analysis. The aim of this study
was to generate a standardized workflow available to the
public that would make RNAseq analysis easier to im-
plement, especially for non-expert users.

The growth of genomics data has been exponential
over past 5years. The workflow established by various
researchers to store, analyze and deliver the results have
been scaling in order to meet the requirements of large
scale data. Open source software and technology have
been widely adapted to address the requirements in gen-
omics data analysis. Interpreting, understanding and
communicating the results in genomics is commonly
done using respective plots and tables from the data
analysis outputs. There are many open source software
such as R [1], Bioconductor [2], Shiny [3] that have facil-
itated researchers to explore insights in genomics data.

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-019-3251-1&domain=pdf
https://code.bmi.osumc.edu/gadepalli.3/BISR-RNAseq-ICIBM2019
https://code.bmi.osumc.edu/gadepalli.3/BISR-RNAseq-ICIBM2019
https://code.bmi.osumc.edu/gadepalli.3/BISR_RNASeq_ICIBM19
https://dataportal.bmi.osumc.edu/RNA_Seq/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:amy.hite@osumc.edu

Gadepalli et al. BVIC Bioinformatics 2019, 20(Suppl 24):670

However, leveraging these open source technologies in a
scalable way is still a challenge for analysts or users who
are not familiar with these open source technologies. As
the Bioinformatics Shared Resource (BISR) group at
OSU, we developed this workflow to provide consistent
analysis and reports to our collaborators. Other groups
have developed workflows and pipelines to streamline
RNAseq analysis [4—7]. Unlike other applications, our
approach is easily scalable as it can run multiple samples
in parallel in a pbs scripting environment. It allows us to
retain version control with a config file and pbs script
detailing particular options and versions used in the
workflow. This allows an expert user to switch version s
or programs of the workflow including alignment pro-
gram or reference genome. The shiny application offers
interactive visualizations and has an R backend that
takes advantage of R packages typically used in RNAseq
analysis. Through an interaction with OSC, we have a
storage environment for shiny reports providing pro-
tected, private access for end users.

Using Shiny and other libraries, we designed a scalable
workflow for creating interactive RNAseq reports which
can be easily launched and customized by users who are
not expert users of shiny or R. Our workflow is one of
the first to pipe into a customizable R shiny application
for visualization and reports generation.

Implementation
Example datasets can be downloaded from GEO reposi-
tories in fastq format using ‘fastq-dump’ from NCBIL

If reference files are not available, gather required files:
download reference genome and index for hisat2 use,
download bed files from RSeQC for gene definitions and
ribosomal gene locations, download gene annotation file
appropriate for genome. Install all used programs and
have locations included in your PATH.

Clone RNAseq_pipeline from github (https://github.
com/MPiet11/BISR-RNAseq)

Generate a sample file containing 3 columns—name of
forward read fastq, name of reverse read fastq, and name
of sample. Sample name should not contain any dashes.
For single end datasets, leave NA as a placeholder for
the reverse read. Scripts assume fastq files will be in a
folder within the working directory named “fastq.” Fastq
can be gzipped or as is. If gzipped, name of fastq in sam-
ple file should reflect this.

Edit config file with full path and names of required
parameters (sample file, pbs script, reference genome,
gene annotation, ribosomal bed, and gene definition
bed).

Execution of the config file will pass the entered pa-
rameters to a shell script which will submit a job for
each sample to run the provided pbs script. Modify pbs

Page 2 of 7

header for resources provided by your specific pbs com-
puting environment.
Provided pbs script will execute the following pipeline:

1. Raw read QC with fastqc for forward and reverse
read fastq. Results from different samples can be
gathered with multiQC

2. Raw read alignment with HISAT2

Convert sam to bam, sort, and index with samtools

4. Generate post alignment QC metrics with RSeQC
(detected junctions, read distribution, experiment
type, and ribosomal contamination) and picard
(insert size and duplication rate)

5. Count reads per gene with featureCounts

w

After all samples have finished, provided script ‘rna-
seq_final_reports.sh’ can be submitted to gather QC and
counts. This script requires datamash for table reformat-
ting. Script will also gather unnecessary files into a trash
folder. Finally the script runs 2 provided R scripts—1.
‘read_data_for_rshiny.R’ will read all QC/counts tables
into an rds object. 2. ‘create_rshiny_input.R’” will run
differential expression (set up in DGE_RNAseq_lim-
ma.R) calculating a pair-wise comparison of groups
using limma and package all results into an rds object
for shiny. Differential expression requires a file with
gene_ID, gene names, and biotype and a file with sample
names and groups for comparison. Place these files in a
folder named ‘raw_data’.

Detailed installation instructions are provided in the
README file on the project gitlab https://code.bmi.
osumc.edu/gadepalli.3/BISR_RNASeq_ICIBM19. Overall
the steps are as follows

1. To run the shiny app clone the git repository to
local computer or a server that runs shiny.

2. The input files for R shiny report should be
transferred into the ‘data’ folder under the shiny
app folder. The app currently is setup with packrat
package manager, but the choice is left to the user
to discard it and install packages as required.

3. It is important to make sure that the R libraries are
loaded as required. For this purpose, the user can
run the load_project_packages.R in R IDE or using
a command line ‘Rscript load_project_packages.R’.
This script loads the library if it is already present
or it will install the missing libraries.

4. Finally, the user would need to make sure that
names of the input files match to those listed under
read_data.R. If there is a naming difference, these
should be fixed in order for the shiny app to read
the data.

5. To launch the app the user can run
‘shiny:runApp(‘app. R’)".

https://github.com/MPiet11/BISR-RNAseq
https://github.com/MPiet11/BISR-RNAseq
https://code.bmi.osumc.edu/gadepalli.3/BISR_RNASeq_ICIBM19
https://code.bmi.osumc.edu/gadepalli.3/BISR_RNASeq_ICIBM19

Gadepalli et al. BVIC Bioinformatics 2019, 20(Suppl 24):670

To launch the shiny app over a webserver it is re-
quired to install and setup R shiny server. The installa-
tion and setup instructions are detailed in the Rstudio
help pages https://www.rstudio.com/products/shiny/
shiny-server/. The setup of the app to run with user data
follows the above same steps.

Results

A conceptual outline of this workflow is presented in
Fig. 1. A set of fastq formatted sequencing files are fed
into the parallel alignment and gene counts generation
is shown in the workflow. For a given dataset, we make
a tab-delimited three column sample manifest listing
the forward read, the reverse read, and a name that will
be used to identify the sample through analysis. If a
sample is run on multiple lanes, we recommend leav-
ing them separate so that QC can be assessed on indi-
vidual lanes. Counts from different lanes can be
summed at the end. For the purposes of this article,
raw data was downloaded from NCBI’s Gene Expres-
sion Omnibus (GSE48403 [8]). Scripts are setup to be
run in a high performance computing (HPC) environ-
ment that utilizes portable batch system (PBS) for job
scheduling and could be easily modified for other
schedulers such as slurm.

Page 3 of 7

Run time variables and paths are set in the config file.
This includes reference genome, gene annotation gtf,
bed files needed for RSeQC [9], name of pbs script, etc.
The pbs script runs a pipeline with default setup pre-
ferred by our group. Advanced users can modify this pbs
script with additional program options or switch out the
programs used for particular steps (for instance run
STAR [10] instead of HISAT2 [11]). We assume all re-
quired programs have been installed and accessible on
the cluster environment. Locations for python applica-
tions like RSeQC [9] will need to be added to the
PYTHONPATH. The workflow also assumes that you
have generated reference genome indexes appropriate
for your alignment program and that you have a gene
definition file in gtf format in the same coordinates as
your genome.

A sample file is a tab-delimited 3 column file gener-
ated by the user listing the forward and reverse fastq
files and a name for the sample. Executing the config file
launches a workflow job for each sample listed in the
sample file and runs through the set of steps laid out in
the pbs script.

The first step in the analysis of RNAseq raw data is to
assess the QC of the raw sequence. We accomplish this
by generating a view of the data in FastQC and

- . . Differential) . .
Visualize with . . Visualize with
. —>| expression with [—]
clustering . volcano/heatmap
limma/edgeR
List of sample One run per sample
fastq workflow
) . \
: Gather results,
config . differential R shiny
L]
. expression with visualization
T R code
workflow
Genome
reference and
accessory files
Alignment Quantification:
Sequence QC Alignment QC with Generate gene
with fastqc with HISAT2 picard and counts with
RSeQC featureCounts
Fig. 1 Schematic workflow of RNAseq pipeline. A list of fastq files and locations of necessary reference files are fed into config file which spawns
a workflow run job for each sample. Results are gathered into an R data object and differential expression is calculated through provided R code.
Visualization is provided through R shiny app

https://www.rstudio.com/products/shiny/shiny-server/
https://www.rstudio.com/products/shiny/shiny-server/

Gadepalli et al. BVIC Bioinformatics 2019, 20(Suppl 24):670

summarizing those views with mutliQC [12]. multiQC
generates an html document summarizing all FastQC re-
sults across multiple samples. Important checks include
sequence quality along the length of the read and
adapter content. Any adapter content can be trimmed
with Cutadapt [13] or Trimmomatic [14] but the work-
flow here assumes adapters are not present.

Raw fastq files are aligned using HISAT2 [9] with de-
fault options to the reference genome specified in the
config file. For alignment we used Ensembl’s GRCh38
[15] reference genome indexed using hisat2-build.
HISAT2 generates summary statistics on overall map-
ping rate and uniqueness of mapping.

Alignment QC is generated using RSeQC [7] and pic-
ard [16] to assess: duplication rate, insert size for paired
end reads, ribosomal contamination, proportion of
known/novel junctions detected, read distribution across
genomic features, library preparation approach based on
paired read alignment. Gene definition and ribosomal
gene location in bed format were downloaded from the
RSeQC website. The main aim of the alignment QC is
to check whether the alignment is consistent across
samples and that it confirms what is known about the
library preparation.

We use featureCounts [17] from the subread package
to count reads on genes. In-house we prefer using the
primary option for multimapped reads. Gene annotation
definition file in gtf format is specified in the config file.
For this example, we used Ensembl gene annotation
release 92 [18].

R scripts are provided to gather QC metrics into an
rdata object, run simple pairwise differential expression,
and format the data for display by the R shiny app.
Expert users with a more complicated experimental
design could write their own code for differential
expression.

Wrapping sequencing data analysis into an interactive
framework enhances the exploration of large scale gen-
omics data effortlessly. Shiny is a web application frame-
work [3] that facilitates R users to build interactive
visualizations on the data analysis outputs However, to
implement it at analysis core facility would need to build
a production level software. The setup presented here al-
lows seamless integration with experimental designs that
can be easily customizable without the expertise in web
programming. To achieve this task, we have designed
and developed interactive reports in shiny that offer gen-
erality and extensibility. The overall design is detailed in
Fig. 2. Figure 2a, outlines the different inputs for BISR
shiny app. A configuration file, wrangled data object,
and project relevant accessory files. The configuration
file in JSON format stores the information on what user
interface (UI) components should the shiny app render.
The goal of the configuration file is to allow non-shiny

Page 4 of 7

and R users ability to customize their UI and launch
their data analysis findings. A complete configuration file
is provided the source code under the ‘data’ folder. This
allows a non-shiny user to customize or change UI com-
ponents. The wrangled data in RDS format stores the in-
formation about the specific data values and parameters
for respective plots and tables to be displayed on the UL
Finally, the project detail files comprise of any html or
Rmarkdown files that provide relevant information for
respective RNA sequencing project. These project detail
files are optional, but to run the app it is required to
provide the JSON configuration file and as well as the
data. RDS object.

The Fig. 2b, show an overview of the components of
the BISR shiny app. These components comprises of
specific codes that offers extensibility and scalability. In
order create a self-contained app we used packrat [19],
an R-library manager that offers seamless deployment of
apps across different operating systems. The interactive
shiny report that BISR delivers comprises of sequence
quality analysis plots, differential gene analysis plots and
their respective tables. To reduce the repeatability of
code and enhance the reproducibility we developed
shiny modules for respective plots. These small compo-
sable shiny modules are extensible across different apps.
CRAN and Bioconductor libraries were employed to
achieve this task.

Figure 2b displays the output in the RNAseq report.
The left hand panel shows the different subsections pro-
vided in a report as part of the configuration JSON file
—Project description, QC metrics, read count table, and
differential expression results. An example figure is pro-
vided in Additional file 1 and the complete JSON file is
included in the source code under the ‘data’ folder. Dif-
ferential expression results are presented as a volcano
plot, MA plot, and heatmap. Each plot is customizable
based on FDR, fold change, and base line expression
levels. The customized results can be exported for publi-
cation or further analysis.

Discussion

This workflow was created to address issues encoun-
tered when processing a large number of RNAseq data-
sets. First, we wanted a workflow that would run
sequence of commands in a consistent manner. Second,
we wanted to keep a record of runtime details including:
genome version, gene annotation set, program version,
program options, etc. Third, we wanted a smooth transi-
tion from generating RNAseq results from the workflow
to visualization through a shiny app.

This workflow encourages consistency between RNA-
seq analysis datasets. The workflow is intended to be
downloaded as a self-contained directory where the user
can add their own fastq files and sample file. The first

Gadepalli et al. BVIC Bioinformatics 2019, 20(Suppl 24):670

Page 5 of 7

(a) Output file from
RNAseq (RDS)

R
l

config.json
(Design Shiny UI)

Wrangled data R-markdown outputs
(RDS) (html or MD files)

BISR RNAseq shiny app

» Volcano Plot

Interactivity
O Interactive
@ static

Plotting values

Prostate_Post_vs_Prostate Pr

Adjusted p-value (FOR):

Background expression cut-off
4

Fold Change:

Prostate_Post_vs_Prostate_Pre

w
|

. volcano Plot

Show| 10 ¥ |entries

AveExpr

0.0
log2 fold change

gene_name

5.0

Prostate_Post_vs_Prostate_Pre_logFC

Volcano Plot =

Fold-Change
Not-Significant
Significant

Significant-FoldChange

Search:

Prostate_Post_vs_Prostate_Pre_

1 6.4505400228753

NCAPD3

3.74652626389148

0.00000733994

Shiny
modules

Functions

Shiny
dashboard

help files
(RMD)

packrat

of BISR RNAseq report

o

Fig. 2 The overall design of the BISR RNASeq shiny app. a Data gathering: The 3 inputs files that BISR shiny app takes as inputs (1) config.json file,
that defines the shiny Ul (2) a .Rds object generated by custom R script run on RNAseq pipeline output (3) files relevant to the project that are
generated as Rmarkdown or html files. These three items are sent into the app which is made up of the following components b A screen shot

2 2.76706233628205 DHCR24 2.14792349185895 0.0000600862

3 7.01501150785367 TPDS2 1.85824630433342 0.000166773

4 601047723749344 AGTRAP 1.68158766222112 0.00016743

5 7.1284075878776 CVBS61 1.40591259256397 0.000247234

step is to run the config file to generate QC, alignment,
and counts. As technologies and software improves, pro-
grams called in the bulk of the workflow could be
switched out with minimal effort as long as users are
conscious about with the program needs and what is
generated as an output. The second step is to gather QC
and counts, compute differential expression, and pack-
age the results for our R shiny app. The third step is to
launch the shiny app and view the results. The shiny app
provides a user-friendly visualization for the data, under-
standable for even non-bioinformatics users. If raw data
comes in batches, it is easy to reuse a set config file and
pbs script.

Most of the workflow parameters are set in the config
file or the pbs script. Retaining these files will allow a
user to keep a record of run-time details such as pro-
gram versions and genome versions. With these details
and the raw fastq, the analysis could be recreated at any
point in the future.

This application provides a smooth transition from
QC and counts generation to visualization. The provided
R scripts pull results from individual samples into sum-
mary tables and calculate differential expression. All re-
sults are stored in an. Rds object with additional details
needed for R shiny visualization including parameters
that are needed for respective plots. A large benefit to
the R shiny application environment is automatic plot-
ting of interactive graphs. Graphs for QC are plotted
with options to scale based on library size or unscaled.
Publication ready plots can be exported as .png and the
filtered and unfiltered tables can be downloaded in CSV
format. Differential expression results are visualized as
volcano plots, MA plots, and heatmaps and all plots can
be filtered for FDR, fold change, and expression levels.

The goal of this project is to provide a scalable and
configurable RNAseq pipeline that can run the analysis
and as well as integrate the results in a seamless way.
Bioinformaticians who are not familiar with shiny can

Gadepalli et al. BVIC Bioinformatics 2019, 20(Suppl 24):670

easily customize the UI end of the shiny so that creating
project specific interactive report is effortless. As noted
in the Fig. 2b, the sidebar contents (controllers and input
boxes) and the body contents (plots and tables) for the
Volcano plot are determined by the config. JSON. The
Fig. 2b, displays a Volcano plot and has certain control-
lers to interact with the data displayed on the plot.
While the JSON file offers customization to at menu,
submenu and box levels. When the name, tabname (id),
data frame name, display and UI and Server module are
changed the Ul renders accordingly.

Conclusions

Presented is a consistent workflow to analyze RNAseq
data and generate interactive reports and customizable
visualization suitable for publication. The application is
simple to use and set up to parallelize analysis in a
supercomputer environment. This workflow empowers
researchers without bioinformatics or programming ex-
perience to run quick analysis on their data by working
with human readable configuration files. The user-
interface on the shiny end is configurable with a simple
JSON file thus facilitating generation of interactive
visualization report across different RNAseq projects.
The resulting R shiny report and figures are suitable for
non-bioinformatics use and for guiding future biological
research. Work-in-progress to create an R package and
an active development process to implement feasible fea-
ture requests from users on github.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512859-019-3251-1.

Additional file 1. Example of JSON file customization translated into R
shiny display.

Abbreviations

BISR: Bioinformatics shared resource; GEO: Gene expression omnibus;

HPC: High peformance computing; IDE: Integrated development
environment; NCBI: National Center for Biotechnology Information;

OSU: Ohio State University; PBS: Portable batch system; QC: Quality control;
RNA: Ribonucleic acid; Ul: User interface

Acknowledgements

Cluster computing environment support to run BISR RNA sequencing
pipeline was provided by Ohio Supercomputer Center (OSC). HPC resources
were supported by department of Biomedical Informatics. Biomedical
Informatics (BMI) data portal server to launch interactive BISR-RNASeq report
was supported by BMI and shiny server installation and setup was done by
Rohit Vanam, BMI informatics team.

About this supplement

This article has been published as part of BMC Bioinformatics Volume 20
Supplement 24, 2019: The International Conference on Intelligent Biology and
Medicine (ICIBM) 2019. The full contents of the supplement are available
online at https.//bmcbioinformatics.biomedcentral.com/articles/supplements/
volume-20-supplement-24.

Page 6 of 7

Authors’ contributions

AW and VSG wrote the initial draft of the paper and contributed figures. AW,
HGO, and ASY built, tested, and ran the workflow. VSG wrote the shiny app.
MP contributed key ideas and feedback. All authors read and approved the
final manuscript.

Funding

This work was supported in part by the National Cancer Institute grants
CA016058. Publication costs are funded by the Department of Biomedical
Informatics at The Ohio State University.

Availability of data and materials

Project name: BISR-RNAseq

Project home page: workflow: https://github.com/MPiet11/BISR-RNAseq and
shiny: https://code.bmi.osumc.edu/gadepalli.3/BISR_RNASeq_ICIBM19
Operating system(s): RNAseq pipeline workflow: Linux. Shiny workflow:
Windows, Linux/shiny server

Programming language: BASH, R, python

Other requirements: RNAseq pipeline workflow: Installed analysis programs
(fastqc, hisat2, samtools, rseqc, picard, featureCounts), reference genome and
gene annotation gtf. For shiny, Rstudio IDE (suggested). All the packages
required to launch interactive report are listed under
‘load_project_packages.R".

License: Open Source (MIT)

Any restrictions to use by non-academics: none

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details

'Biomedical Informatics, The Ohio State University, Columbus, OH, USA. *The
James Comprehensive Cancer Center, The Ohio State University, Columbus,

OH, USA. *Bioinformatics Shared Resource Group, The Ohio State University,

Columbus, OH, USA.

Published: 20 December 2019

References

1. R Core Team. R: the R project for statistical computing. 2018. https.//www.r-
project.org/. Accessed 12 Feb 2019.

2. Morgan M. BiocVersion: set the appropriate version of bioconductor
packages. 2018. https://www.bioconductor.org/packages/release/bioc/html/
BiocVersion.html. Accessed 22 Feb 2019.

3. Winston Chang, Joe Cheng, JJ Allaire, Yihui Xie, Jonathan McPherson. Web
application framework for R [R package shiny version 1.2.0]. 2018. https//
cran.r-project.org/web/packages/shiny/index.html. Accessed 12 Feb 2019.

4. Cornwell M, Vangala M, Taing L, Herbert Z, Koster J, Li B, et al. VIPER:
visualization pipeline for RNA-seq, a Snakemake workflow for efficient and
complete RNA-seq analysis. BMC Bioinformatics. 2018;19:135. https://doi.org/
10.1186/512859-018-2139-9.

5. Wagle P, Nikoli¢ M, Frommolt P. QuickNGS elevates next-generation
sequencing data analysis to a new level of automation. BMC Genomics.
2015;16:487. https://doi.org/10.1186/512864-015-1695-x.

Zhao S, Xi L, Quan J, Xi H, Zhang Y, von Schack D, et al. QuickRNASeq lifts
large-scale RNA-seq data analyses to the next level of automation and
interactive visualization. BMC Genomics. 2016;17:39. https://doi.org/10.1186/
$12864-015-2356-9.

7. Kalari KR, Nair AA, Bhavsar JD, O'Brien DR, Davila JI, Bockol MA, et al. MAP-
RSeq: Mayo analysis pipeline for RNA sequencing. BMC Bioinformatics. 2014;
15:224. https;//doi.org/10.1186/1471-2105-15-224.

8. Rajan P, Sudbery IM, Villasevil MEM, Mui E, Fleming J, Davis M, et al. Next-
generation sequencing of advanced prostate cancer treated with androgen-
deprivation therapy. Eur Urol. 2014;66:32-9. https://doi.org/10.1016/j.eururo.
2013.08.011.

https://doi.org/10.1186/s12859-019-3251-1
https://doi.org/10.1186/s12859-019-3251-1
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-20-supplement-24
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-20-supplement-24
https://github.com/MPiet11/BISR-RNAseq
https://code.bmi.osumc.edu/gadepalli.3/BISR_RNASeq_ICIBM19
https://www.r-project.org/
https://www.r-project.org/
https://www.bioconductor.org/packages/release/bioc/html/BiocVersion.html
https://www.bioconductor.org/packages/release/bioc/html/BiocVersion.html
https://cran.r-project.org/web/packages/shiny/index.html
https://cran.r-project.org/web/packages/shiny/index.html
https://doi.org/10.1186/s12859-018-2139-9
https://doi.org/10.1186/s12859-018-2139-9
https://doi.org/10.1186/s12864-015-1695-x
https://doi.org/10.1186/s12864-015-2356-9
https://doi.org/10.1186/s12864-015-2356-9
https://doi.org/10.1186/1471-2105-15-224
https://doi.org/10.1016/j.eururo.2013.08.011
https://doi.org/10.1016/j.eururo.2013.08.011

Gadepalli et al. BVIC Bioinformatics 2019, 20(Suppl 24):670

Wang L, Wang S, Li W. RSeQC: quality control of RNA-seq experiments.
Bioinformatics. 2012;28:2184-5. https://doi.org/10.1093/bioinformatics/
bts356.

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR:

ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15-21. https://doi.

0rg/10.1093/bioinformatics/bts635.

Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low
memory requirements. Nat Methods. 2015;12:357-60. https://doi.org/10.
1038/nmeth.3317.

Ewels P, Magnusson M, Lundin S, Kaller M. MultiQC: summarize analysis
results for multiple tools and samples in a single report. Bioinformatics.
2016;32:3047-8. https://doi.org/10.1093/bioinformatics/btw354.

Martin M. Cutadapt removes adapter sequences from high-throughput
sequencing reads. EMBnet J. 2011;17:10. https://doi.org/10.14806/ej.17.1.200.
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for lllumina
sequence data. Bioinformatics. 2014;30:2114-20. https://doi.org/10.1093/
bioinformatics/btu170.

Consortium GR. Genome reference consortium human build 38 patch

release 12 (GRCh38.p12). NCBI https.//www.ncbi.nlm.nih.gov/assembly/GCF _

000001405.38?report=full. Accessed Mar 2016.

BROAD Institute. Picard tools - by Broad Institute. http://broadinstitute.
github.io/picard/. Accessed 24 Feb 2019.

Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose
program for assigning sequence reads to genomic features. Bioinformatics.
2014;30:923-30. https://doi.org/10.1093/bioinformatics/btt656.

Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J, et al.
Ensembl 2018. Nucleic Acids Res. 2018;46:D754-61. https://doi.org/10.1093/
nar/gkx1098.

Kevin Ushey, Jonathan McPherson, Joe Cheng, Aron Atkins, JJ Allaire.
packrat: a dependency management system for projects and their R
package dependencies. 2018. https://cran.r-project.org/web/packages/
packrat/indexhtml. Accessed 12 Feb 2019.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Page 7 of 7

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

https://doi.org/10.1093/bioinformatics/bts356
https://doi.org/10.1093/bioinformatics/bts356
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1038/nmeth.3317
https://doi.org/10.1038/nmeth.3317
https://doi.org/10.1093/bioinformatics/btw354
https://doi.org/10.14806/ej.17.1.200
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1093/bioinformatics/btu170
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.38?report=full
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.38?report=full
http://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/
https://doi.org/10.1093/bioinformatics/btt656
https://doi.org/10.1093/nar/gkx1098
https://doi.org/10.1093/nar/gkx1098
https://cran.r-project.org/web/packages/packrat/index.html
https://cran.r-project.org/web/packages/packrat/index.html

	Abstract
	Background
	Results
	Conclusion

	Background
	Implementation
	Results
	Discussion
	Conclusions
	Supplementary information
	Abbreviations
	Acknowledgements
	About this supplement
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

