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Abstract

Background: Protein complexes are the cornerstones of many biological processes and gather them to form
various types of molecular machinery that perform a vast array of biological functions. In fact, a protein may belong
to multiple protein complexes. Most existing protein complex detection algorithms cannot reflect overlapping
protein complexes. To solve this problem, a novel overlapping protein complexes identification algorithm is
proposed.

Results: In this paper, a new clustering algorithm based on overlay network chain in quotient space, marked as
ONCQS, was proposed to detect overlapping protein complexes in weighted PPI networks. In the quotient space, a
multilevel overlay network is constructed by using the maximal complete subgraph to mine overlapping protein
complexes. The GO annotation data is used to weight the PPI network. According to the compatibility relation, the
overlay network chain in quotient space was calculated. The protein complexes are contained in the last level of
the overlay network. The experiments were carried out on four PPI databases, and compared ONCQS with five
other state-of-the-art methods in the identification of protein complexes.

Conclusions: We have applied ONCQS to four PPI databases DIP, Gavin, Krogan and MIPS, the results show that it
is superior to other five existing algorithms MCODE, MCL, CORE, ClusterONE and COACH in detecting overlapping
protein complexes.
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Introduction
Analyzing the mechanism of proteins is crucial for un-
derstanding the function of cell machinery and explain-
ing biological processes [1]. Proteins often bind together
to form complexes to carry out their biological functions
[2, 3]. A protein complex is a molecular group of two or
more functionally related proteins assembled via mul-
tiple protein interactions [4]. Detecting protein com-
plexes has great significance in biology and proteomics
[5]. In the early stage of protein complex research, the

protein complexes were found mainly through biological
experiments methods, such as RNA interference, condi-
tional gene knockout, single gene knockout and Co-
immunoprecipitation [6, 7]. However, these methods are
costly and time-consuming.
The high throughput techniques have generated a

large amount of protein related data. In 2001, Legrain
et al. [8] described the protein-protein interactions (PPI)
as an undirected graph G(V, E), where the point set V
represents protein nodes and the edge set E represents
protein-protein interactions. This idea transforms large-
scale protein-protein interaction data into network
structure, which triggered scholars to recognize protein
complexes based on the topological properties of protein
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networks. In 2003, Bader and Hogue [9] proposed
MCODE method which is a local-search method to de-
tect protein complexes based on the proteins’ connectiv-
ity values in PPI network. In 2006, Gavin et al. [10]
demonstrated that protein complexes was made up of
core and additional attachment proteins or protein mod-
ules. According to the core-attachment structure of pro-
tein complexes, Leung et al. [11] designed CORE
algorithm which calculated the p-value for all pairs of
proteins to detect cores. Wu et al. [12] proposed
COACH algorithm which detected dense subgraphs as
cores. In 2009, Liu et al. [13] presented a method called
CMC which identified protein complexes based on
maximal cliques. In fact, a protein may belong to
multiple protein complexes, and there may be over-
laps between protein complexes. In 2012, NepusZ
et al. developed a clustering algorithm ClusterONE
[14] to detect overlapping protein complexes. Re-
cently, attributed network embedding methods have
be proved to be remarkably effective in generating
vector representations for nodes in the network [15].
Xu et al. designed a method GANE to predict protein
complexes based on Gene Ontology attributed net-
work embedding [15].
Some classical clustering algorithms such as Markov

Clustering (MCL) [16] and swarm intelligence
optimization algorithm [17, 18] were also developed to
detect protein complexes. Lei et al. [19] proposed F-
MCL clustering model based on Markov clustering in
which automatically adjusted the parameters by introdu-
cing the firefly algorithm. Wang et al. [4] developed a
heuristic graph clustering algorithm called HGCA based
on multiple topological characteristics.
In recent years, quotient space theory has been ap-

plied to cluster. Zhang [20] defined the fuzzy equiva-
lence relation and stratified hierarchical structure, and
established the fuzzy granular computing model in
quotient space in order to solve the uncertain prob-
lem. Xu [21] proposed fuzzy clustering method based
on Gaussian function. The method, with the nature
of the distance metric spaces, merged the individual
particles in information synthesis way for clustering
results. Cluster analysis method [22] based on fuzzy
similarity relations and normalized distance is pro-
posed to solve data structure analysis of complex sys-
tems. The conclusion is suitable for the complicated
systems.
In this study, a new clustering algorithm based on

overlay network chain in quotient space, marked as
ONCQS, was proposed to detect overlapping protein
complexes in weighted PPI networks. Firstly, the GO
annotation data is used to weight the PPI network.
Then, the maximal complete subgraph of the PPI net-
work is found. The maximal complete subgraph of

the current network is regarded as the node in the
next layer of network. According to the compatibility
relation, the overlay network chain in quotient space
is calculated, the protein complexes are contained in
the last layer of the overlay network. The algorithm
ONCQS is tested on four well-known PPI databases
DIP [23], Gavin [10], Krogan [24] and MIPS [25].
The simulation results illustrate that ONCQS algo-
rithm has a higher performance and outweighs than
other five algorithms in mining protein complexes.

Methods
Constructing weighted PPI network
It is inaccurate to mine protein complexes directly in
PPI networks because the data produced by high-
throughput experiments contain a high rate of false posi-
tive and false negative interactions [26, 27].To address
this problem, some scholars integrate protein biologic
data such as gene expression data, subcellular
localization data, GO annotation data [28, 29] to in-
crease the reliability and accuracy of data. A protein
complex is a group of two or more associated polypep-
tide chains. Different polypeptide chains may have same
functions, so we integrate GO annotation data to meas-
ure the interactions. If two interacted proteins vi and vj
have more common GO annotations, their functions are
more similar and their interaction is believed to be more
believable. The weight between protein vi and vj is de-
fined as follows:

Table 1 Pseudo code of maximum complete subgraph
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Wvi;v j ¼
GOvi∩GOv j

�
�

�
�

min GOvij j; GOv j

�
�

�
�

� � ð1Þ

where GOvi and GOv j are the GO annotation set of node
vi and vj respectively, jGOvi∩GOv j j represents the number
of the same annotation between GOvi and GOv j . Our pre-
vious research shows that the Wvi;v j value is greater than
0.6, and the effect is better [30]. If weight between protein
vi and vj is less than 0.6, the interaction will be deleted in
the PPI network. This preprocessing step can help us to
filter out possible false positive interactions [31].

Quotient space theory
Granular computing is a simulation of global analysis
ability of human beings. One of the basic characteristics
in human problem solving is the ability to conceptualize
the world at different granularities and translate from
one abstraction level to the others easily, deal with them
hierarchically. Human beings can solve problems in dif-
ferent sizes of granularity spaces. Different levels repre-
sent different granularity.
There are three main theories of granular computing,

granular computing based on fuzzy logic [32], granular

computing based on rough set and granular computing
based on quotient space. Granularity analysis is in fact
to analyze the quotient set.
Triple structure (X, F, T) is used to represent the prob-

lem in the quotient space. Domain X refers to universe
of discourse, F is the attribute set of X, T is the structure
of X. Define a relation R for the universe of discourse X,
construct corresponding quotient set [X], quotient attri-
bute set [F], and quotient structure [T], and then define
the granularity coefficient to study the quotient
space([X], [F], [T]). The relation R can be equivalence re-
lation or compatibility relation.
For the PPI network G, G = (X, F, T), domain X refers

to the protein nodes in PPI network.

Overlay network chain in quotient space
Given a network G, the maximum complete subgraph of
the network is regarded as a cover according to the
compatibility relation [33]. The pseudo code of the max-
imum complete subgraph algorithm is shown in Table 1.
After the sets of all maximal complete subgraphs is

solved. Then, maximal complete subgraphs are used as
nodes, if two maximal complete subgraphs have com-
mon nodes, two corresponding nodes are defined to be

Fig. 1 Construction of overlay network chain in quotient space
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connected, the new network constructed is called the 1st

level overlay network of G in quotient space, which is
denoted as G1. Figure 1 illustrates the construction of
overlay network chain in quotient space. The network G
has 11 nodes (v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11).
There are 7 maximal complete subgraphs in the network
G, so there are 7 nodes (u1, u2, u3, u4, u5, u6, u7) in the
1st level overlay network G1. u1 represents (v1, v5), u2
represents (v2, v5, v6), u3 represents (v3, v6, v7), u1 and u2
has common nodes v5, u2 and u3 has common nodes v6,
so u1 and u2 are connected in G1, u2 and u3 are con-
nected in G1, u1 and u3 have no common nodes, and
there is no connection between them in G1. Network G1

has two complete subgraphs, the 2nd level overlay net-
work G2 has 2 nodes (w1, w2). w1 represents (u1, u2, u4,
u5, u7), w2 represents (u2, u3, u6, u7), w1 and w2 has com-
mon nodes (u2, u7), so w1 and w2 are connected in G2.
G1 and G2 are different levels of overlay network of G,
(G, G1, G2) is called overlay network chain.
Assuming that Gi is the i

th level overlay network of G, and
Gi+1 is the 1st level overlay network of Gi, therefore, Gi+ 1 is
the (i + 1)th level overlay network of G. (G, G1, G2,…, Gi) is
called overlay network chain in quotient space [34].

The ONCQS main algorithm
A new clustering algorithm ONCQS is developed to de-
tect overlapping protein complexes in weighted PPI

network using overlay network chain in quotient space. A
protein may belong to multiple protein complexes. As
shown in Fig. 2, two protein complexes elF3 complex and
multi-elF complex in the CYC2008 benchmark have three
overlapped proteins.
In overlay network Gi, each node represents a

maximum complete subgraph of overlay network
Gi-1. There may be repeated points and edges be-
tween maximal complete subgraphs. The protein
complexes are contained in the last level of the over-
lay network. Each point can be regarded as a com-
plex. So overlapping protein complexes can be found
by using covering network. As shown in Fig. 1, in
G2, w1 represents (v1, v2, v4, v5, v6, v8, v9, v10), w2

represents (v2, v3, v5, v6, v7, v10, v11), they have four
overlapped nodes.
In algorithm ONCQS, the static PPI network is

usually described as an undirected graph G(V, E)
which consists of a set of nodes V and a set of edges
E, the nodes V represents the proteins and the edges
E = {e(vi, vj)} is the set of edges connecting two pro-
teins vi and vj. First, we use GO annotation data to
weight the PPI network, and then construct multilevel
overlay network. In overlay network theory, if two
maximal complete subgraphs have common nodes,
two corresponding nodes are defined to be connected.
However, in ONCQS algorithm, formula 2 is used to

Fig. 2 An example of overlapping protein complexes
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measure the similarity of two maximal complete sub-
graphs mcsi and mscj.

sim mcsi;mcs j
� � ¼ mcsi∩mcs j

�
�

�
�

mcsi∪mcs j
�
�

�
�

ð2Þ

where |mcsi ∩mcsj| is the number of the common nodes
of mcsi and mscj, |mcsi ∪mcsj| is the summation of the
nodes of mcsi and mscj. Only when sim(mcsi,mcsj) is
great than the granularity coefficient gc, two correspond-
ing nodes are defined to be connected in the next level
overlay network. In ith level overlay network, if there is
no maximal complete subgraph satisfying the similarity
condition, the overlay network chain (G, G1, G2,…, Gi)
can be obtained. The pseudo code of the ONCQS algo-
rithm is shown in Table 2.

At this point, each node in Gi represents a protein
complex. Each node represents a maximal complete sub-
graph, so the proteins in the subgraph have high similar-
ity and the similarity between the subgraphs is poor.

Results and discussion
The proposed ONCQS algorithm is implemented in
Matlab R2015b and executed on a quad-core processor
3.30GHz PC with 8G RAM.

Experimental data set
In this study, the developed methods and computational
analysis were applied to four PPI network, including DIP
[23], Gavin [10], Krogan [24] and MIPS [25]. All the data
used in this study are Saccharomyces cerevisiae protein data.
Protein-protein interactions data: After removing the

noise, the self-interactions and the repeated interactions,
DIP dataset (version of 20160114) included 5028 proteins
and 22,302 interactions, Gavin dataset consists of 1430
proteins and 6531 interactions, Krogan dataset consists of
2674 proteins and 7075 interactions, the MIPS dataset in-
cluded 4546 proteins and 12,319 interactions.
Gene Ontology data: The Saccharomyces cerevisiae

GO annotation data was extracted from GO-slims data-
set. GO-slims data are cut-down version of the GO on-
tologies [31]. GO-slim data provide GO terms to explain
gene product feature in biological process (BP), molecu-
lar function (MF), cellular component (CC). we used
GO slims to annotate PPI data. There are 7014 proteins
in the GO annotation data. Proteins with GO annotation
data cover 98.23% of proteins in the DIP dataset, 100%
of proteins in Gavin, 99.89% of proteins in Krogan,
99.16% of proteins in MIPS.
The standard protein complexes: CYC2008 [35] is

used to evaluate clustering results of Saccharomyces cer-
evisiae, which includes 408 protein complexes. Detailed
data intersection information of experimental data is
shown in Table 3.

Evaluation metrics
The overlapping score OS is used to evaluate the match
quality of a predicted protein complex and standard pro-
tein complex.

OS pc; scð Þ ¼ Vpc∩Vsc

�
�

�
�
2

j Vpc j � j V sc j ð3Þ

where Vpc and Vsc denote the node sets of predicted pro-
tein complex pc and standard protein complex sc, re-
spectively. Usually we set the threshold for 0.2 [17]. If
OS(pc, sc) is greater than 0.2, the predicted protein com-
plex pc is considered to match standard protein complex
sc. OS = 1 shows that the predicted protein complex is
perfectly matched with the standard protein complex.

Table 2 Pseudo code of the ONCQS algorithm
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Three commonly used metrics Precision, Recall and F-
measure are used to measure the efficiency of the pro-
posed ONCQS algorithm and evaluate the performance
of the clustering results.
The Precision denotes the accuracy of the predicted

protein complexes matched by the standard protein
complexes, defined as follows:

Precision ¼ j mpc j
j pc j ð4Þ

where ∣pc∣ represents the number of predicted protein
complexes, ∣mpc∣ denotes the number of the predicted
protein complexes matched by the standard protein
complexes.
The Recall denotes the accuracy of the standard pro-

tein complexes matched by the predicted protein com-
plexes, defined in the following eq. (5):

Recall ¼ j msc j
j sc j ð5Þ

where ∣sc∣ represents the number of the standard pro-
tein complexes, ∣msc∣ denotes the number of the stand-
ard protein complexes matched by the predicted protein
complexes.
The Precision and Recall describe the accuracy of the

algorithm from different aspects. In order to consider
these two indicators synthetically, the F-measure is de-
fined as the harmonic mean of Precision and Recall. F-
measure is defined as follows:

F−measure ¼ 2� Precision� Recall
Precisionþ Recall

ð6Þ

Parameter analysis
The proposed algorithm ONCQS only has one parameter,
granularity coefficient: gc. In overlay network, the similar-
ity of two maximal complete subgraphs is greater than gc,
we consider them connected in the next level overlay net-
work. If the value of gc is too small, the complexity of al-
gorithm will increase. On the contrary, if the value of gc is
too large, the accuracy of the algorithm will decrease. It is
significant to select the appropriate value of gc.
The experiments on four PPI databases with gc from 0.1

to 0.9 were carried out to verify the influence of parameter
gc. The results are shown in Table 4. where PC is the total

Table 3 The data information of the experimental data

Dataset Number of node Number of edge Density GO annotation data

DIP 5028 22,302 0.0018 4939 (98.23%)

Gavin 1430 6531 0.0064 1430 (100%)

Krogan 2674 7075 0.0020 2671 (99.89%)

MIPS 4546 12,319 0.0012 4508 (99.16%)

Table 4 Influence of parameters gc

Dataset gc Precision Recall F-measure PC Perfect AS

DIP 0.1 0.4199 0.7108 0.5279 874 62 5.18

0.2 0.4011 0.7206 0.5153 945 60 4.79

0.3 0.3571 0.7402 0.4818 1095 69 3.70

0.4 0.3561 0.8260 0.4976 1640 103 2.67

0.5 0.3521 0.8284 0.4942 1667 104 2.60

0.6 0.3470 0.8211 0.4878 1781 105 2.53

0.7 0.3499 0.8186 0.4902 1832 103 2.54

0.8 0.3530 0.8186 0.4933 1844 102 2.56

0.9 0.3530 0.8186 0.4933 1844 102 2.56

Gavin 0.1 0.6581 0.4167 0.5103 310 38 7.99

0.2 0.6085 0.4265 0.5015 355 39 6.63

0.3 0.5630 0.4363 0.4916 405 41 5.13

0.4 0.5124 0.4510 0.4797 525 49 3.98

0.5 0.4973 0.4534 0.4743 553 50 3.73

0.6 0.4879 0.4461 0.4661 621 50 3.46

0.7 0.4910 0.4436 0.4661 664 46 3.43

0.8 0.4927 0.4436 0.4669 684 46 3.47

0.9 0.4949 0.4436 0.4679 687 46 3.49

Krogan 0.1 0.5856 0.5956 0.5906 473 68 4.51

0.2 0.5658 0.5980 0.5815 509 67 4.27

0.3 0.5401 0.5980 0.5676 561 68 3.60

0.4 0.4888 0.6422 0.5551 759 80 2.86

0.5 0.2728 0.7230 0.3962 780 81 2.82

0.6 0.3095 0.7230 0.4335 835 83 2.77

0.7 0.2984 0.7230 0.4225 858 78 2.76

0.8 0.3090 0.6005 0.4080 868 79 2.79

0.9 0.4989 0.6471 0.5634 870 79 2.81

MIPS 0.1 0.3784 0.5735 0.4559 703 46 3.95

0.2 0.3689 0.5760 0.4498 721 47 3.78

0.3 0.3375 0.5980 0.4315 803 54 3.10

0.4 0.3231 0.6765 0.4373 1173 72 2.33

0.5 0.3238 0.6765 0.4379 1186 71 2.32

0.6 0.3288 0.6691 0.4409 1244 69 2.31

0.7 0.3299 0.6642 0.4408 1255 67 2.32

0.8 0.3315 0.6642 0.4423 1258 67 2.32

0.9 0.3315 0.6642 0.4423 1258 67 2.33
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number of predicted protein complexes, Perfect is the
count of predicted protein complexes and standard com-
plexes are perfectly matched, OS(pc, sc) = 1. AS represents
the average size of the predicted protein complexes.
F-measure reflects the effectiveness of the algorithm,

and Perfect reflects the accuracy of the algorithm. In
order to comprehensively consider the impact of gc
on the performance of the algorithm, we performed
min-max normalization on F-measure and Perfect.
The parameter F is defined as the harmonic mean of
F-measure and Perfect, as shown in eq. (9).

NFmeasure ¼ F−meausre− min F−measureð Þ
max F−measureð Þ− min F−measureð Þ

ð7Þ

NPerfect ¼ Perfect− min Perfectð Þ
max Perfectð Þ− min Perfectð Þ ð8Þ

F ¼ NFmeasureþ NPerfect
2

ð9Þ

The influence of parameters gc is shown in Fig. 3. F value
gets the best value when gc equals 0.4 in DIP, Gavin and
Krogan. When gc is greater than 0.4 the F value will rise
tends to be stable in MIPS. So set gc for 0.4 in this study.

Comparison based on precision, recall and F-measure
The performance of ONCQS is compared with five
other state-of-the-art protein complex prediction algo-
rithms: MCODE, MCL, CORE, ClusterONE and
COACH. The MCODE and ClusterONE are run using
Cytoscape [36] and the parameters are set to the default
setting. Figure 4 depicts the Precision, Recall and F-
measure of each algorithm on four datasets. As shown in
Fig. 4, it is obvious that the Recall and F-measure value
of our method is much more excellent than other
methods on four datasets. It indicates that ONCQS algo-
rithm can detect protein complexes more accurately. In
Fig. 4a DIP dataset, the ONCQS achieved Precision, Re-
call and F-measure values of 0.3561, 0.8260 and 0.4976,
respectively. The other methods MCODE, MCL, CORE,
ClusterONE and COACH achieved F-measure values
0.0919, 0.0168, 0.1794, 0.3690 and 0.4270. In Fig. 4b
Gavin dataset, the ONCQS achieved the highest Recall
0.4510 and F-measure 0.4797. In Fig. 4c Krogan dataset,
the ONCQS achieved the highest Recall 0.6422 and F-
measure 0.5551, which obviously outperforms other
methods. In Fig. 4d, the methods MCODE,MCL, CORE,
ClusterONE, COACH and ONCQS achieved F-measure
values 0.1524, 0.2321, 0.0796, 0.2755, 0.3548 and 0.4373.
Table 5 depicts the PC, Perfect and AS of each algorithm
on four datasets. Obviously, the algorithm ONCQS can
mine the protein complex more accurately, and the per-
fect value is much higher than other algorithms.

Fig. 3 Influence of parameters gc
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Comparison with standard complexes
In order to show the experimental results more clearly,
we visualized the 379th standard protein complex of
CYC2008 “UTP B complex” and the corresponding min-
ing results of 6 algorithm on Krogan dataset in Fig. 5. As
shown in Fig. 5a, the standard protein complex is bound

together by 6 proteins. Figure 5b shows the results of
MCL and MCODE, the pink area is the result of the
MCL algorithm, and the orange area is the result of
MCODE. MCL algorithm has 2 proteins that are incor-
rect predictions. MCODE predicts three closely con-
nected subgraphs into a protein complex. Figure 5c

Fig. 4 The performance comparisons of various algorithms on four datasets, the blue bar represents Precision, the green bar represents Recall,
the red bar represents F-measure. (a) DIP (b) Gavin (c) Krogan (d) MIPS

Table 5 The performance comparison of several typical algorithms on four datasets

Algorithms DIP Gavin Krogan MIPS

PC Perfect AS PC Perfect AS PC Perfect AS PC Perfect AS

MCODE 49 1 16.73 66 8 9.12 76 11 7.21 63 3 8.33

MCL 189 0 3.76 217 20 6.83 550 17 4.63 922 12 4.67

CORE 1707 6 3.01 294 0 2.58 820 0 2.32 1745 0 2.18

ClusterONE 372 6 4.94 243 13 6.92 241 12 5.26 295 3 4.24

COACH 899 16 8.90 321 12 10.18 355 17 7.55 489 9 10.31

ONCQS 1640 103 2.67 525 49 3.98 759 80 2.86 1173 72 2.34
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shows the results of ClusterONE and COACH, the blue
area is the result of the ClusterONE algorithm, and the
yellow area is the result of COACH. Both ClusterONE
and COACH algorithms have a mispredicted protein. In
Fig. 5d, green area and purple area are the results of
ONCQS and CORE respectively. ONCQS correctly
found 6 proteins. Other algorithms have erroneous pre-
diction of proteins.

Compare the ability to mine overlapping protein
complexes
Individual proteins can participate in the formation of a
variety of different protein complexes, different com-
plexes perform different functions. There are overlaps
between protein complexes. ONCQS method is pro-
posed to mine overlapping protein complexes. The
standard protein complexes in the CYC2008 database
contain many overlapping protein complexes. Figure 2

shows a pair of overlapping protein complexes elF3
complex and multi-elF complex. We analyzed the
matching of the six algorithms in four databases to these
two complexes. The elF3 complex and multi-elF com-
plex were recorded as sc1 and sc2. Their complexes in-
formation is listed in Table 6.
The elF3 complex contains seven proteins, multi-elF

complex contains eight proteins, three of which are com-
mon. Then we analyze the clustering results of the 6 algo-
rithms in four databases respectively. Similarly, only when
the overlapping score is greater than 0.2, the matching is

Fig. 5 Visualization of the 379th standard protein complex of Krogan. (a) Standard (red area) (b) MCL (pink area) and MCODE (orange area) (c)
ClusterONE (blue area) and COACH (yellow area) (d) ONCQS (green area) and CORE (purple area)

Table 6 The complexes information of elF3 complex and multi-
elF complex

elF3 complex (sc1) multi-elF complex (sc2)

YMR012W YLR192C YMR309C
YOR361C YBR079C YMR146C
YDR429C

YER025W YMR309C YOR361C
YNL244C YJR007W YPL237W
YMR146C YPR041W

Zhao and Lei BMC Bioinformatics 2019, 20(Suppl 25):682 Page 9 of 12



considered successful, and when there are multiple suc-
cessful matches, the maximum overlapping score is ob-
tained. The results of the 6 algorithms in DIP, Gavin,
Krogan and MIPS are shown in Tables 7, 8, 9 and 10 re-
spectively. Where pc1 represents the predicted complex

that matches elF3 complex (sc1), pc2 represents the pre-
dicted complex that matches multi-elF complex (sc2). The
boldface indicates that the proteins are predicted
correctly.
As shown in Tables 7, 8, 9 and 10, MCODE, MCL,

CORE and ClusterONE cannot detect overlapping
protein complexes. MCODE and CORE failed to dig
out complexes that match sc1 and sc2 respectively.
COACH can dig out protein complexes that match
sc1 and sc2, the accuracy is not as good as ONCQS.
ONCQS achieved the best performance in identifying
overlapping protein complexes. Both CluterONE and
COACH algorithms are proposed for mining

Table 7 The performance comparison of mining overlapping
proteins in DIP

Algorithm Predicted elF3
complex (pc1)

OS(pc1,
sc1)

Predicted multi-elF
complex (pc2)

OS(pc2,
sc2)

MCODE – – – –

MCL – – – –

CORE YMR146C YDR429C
YBR079C

0.4286 – –

ClusterONE YPR041W YDR429C
YBR079C YMR309C
YMR146C YPL001W
YOR361C YDR091C
YLR192C YPL105C

0.5143 – –

COACH YDR429C YBR079C
YMR146C YMR309C
YNL244C YOR361C
YPR041W YPR086W
YLR192C

0.5714 – –

ONCQS YBR079C YDR429C
YLR192C YMR146C
YMR309C YNL244C
YOR361C YPR041W

0.6429 YBR079C
YJR007W
YPL237W
YPR041W

0.2813

Table 8 The performance comparison of mining overlapping
proteins in Gavin

Algorithm Predicted elF3
complex (pc1)

OS(pc1,
sc1)

Predicted multi-elF
complex (pc2)

OS(pc2,
sc2)

MCODE YDR429C YBR079C
YMR309C

0.4286 – –

MCL YBR079C YDR091C
YDR429C YLR192C
YMR309C
YPR041W YOR361C
YMR146C YNL244C
YNL096C

0.5143 – –

CORE – – – –

ClusterONE YMR309C
YMR146C
YOR096W
YOR204W
YOR361C YPR041W
YNL096C YNL244C
YBR079C YDR091C

0.4286 – –

COACH YNL096C YPR041W
YOR361C
YMR146C
YOR204W YAL035W
YBR079C YDR429C
YLR192C YMR309C
YOL120C YJR123W

0.4286 YNL244C YDR429C
YOR361C YMR146C
YOR204W YAL035W
YBR079C YLR192C
YMR309C YPR041W
YJL190C YBL072C
YJR123W

0.2404

ONCQS YAL035W YBR079C
YDR429C YLR192C
YMR309C YPR041W
YOR361C YMR146C

0.6429 – –

Table 10 The performance comparison of mining overlapping
proteins in MIPS

Algorithm Predicted elF3
complex (pc1)

OS(pc1,
sc1)

Predicted multi-elF
complex (pc2)

OS(pc2,
sc2)

MCODE – – – –

MCL YBR079C YDR429C
YMR146C YMR309C
YNL244C YOR361C
YPL105C YPR041W

0.4464 – –

CORE – – – –

ClusterONE – – YPR041W YNL244C
YOR361C YMR146C
YMR309C YBR079C

0.5208

COACH YMR146C YOR361C
YDR429C YMR309C
YPL105C

0.4571 YMR309C YOR361C
YPR041W YBR079C
YMR146C YNL244C

0.5208

ONCQS YDR429C YMR146C
YOR361C

0.4286 YBR079C YMR309C
YNL244C YOR361C
YPR041W

0.4000

Table 9 The performance comparison of mining overlapping
proteins in Krogan

Algorithm Predicted elF3
complex (pc1)

OS(pc1,
sc1)

Predicted multi-elF
complex (pc2)

OS(pc2,
sc2)

MCODE – – – –

MCL YBR065C YBR079C
YCR060W YDR047W
YDR408C YDR429C
YGL016W YHR034C
YMR309C YOR361C
YPR041W

0.2078 – –

CORE – – – –

ClusterONE YOR361C YER025W
YMR309C YBR079C
YPL105C YMR146C
YBR065C YDR429C
YPR041W

0.3968 – –

COACH YMR146C YMR309C
YDR429C YBR065C
YBR079C YOR361C
YPR041W

0.5102 YJR007W YBR079C
YMR146C YMR309C
YOR361C YPR041W
YER025W YDR429C

0.5625

ONCQS YBR079C YDR429C
YMR146C YMR309C
YOR361C

0.7143 YBR079C YER025W
YJR007W YOR361C
YPR041W

0.4000
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overlapping protein complexes. In this case, Cluster-
ONE cannot detect overlapping protein complexes,
and the performance of COACH is poor. This further
shows that it is meaningful to design efficient and ac-
curate algorithms to mine overlapping protein com-
plexes. ONCQS combines GO functional annotation
information, which can improve the accuracy of the
algorithm.

Conclusion
Protein complexes are involved in multiple biological
processes, and thus the detection of protein complexes
is essential to understand cellular mechanisms. At the
same time, there is overlap between protein complexes.
This paper proposes a new algorithm ONCQS to iden-
tify overlapping protein complexes based on overlay net-
work chain in quotient space. Combining the network
properties of protein interaction networks with the bio-
logical properties of proteins, protein complexes are seen
as nodes in the overlay network. Build an overlay net-
work chain to mine protein complexes. Compared with
the other competing clustering methods, ONCQS can
effectively identify the overlapping protein complexes
and has higher precision and accuracy.

Abbreviations
GO: Gene ontology; MCL: Markov clustering; ONCQS: Overlay network chain
in quotient space; OS: Overlapping score; PPI: Protein-protein interaction
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