
Lu et al. BMC Bioinformatics 2019, 20(Suppl 25):684
https://doi.org/10.1186/s12859-019-3258-7
RESEARCH Open Access
Predicting RNA secondary structure via

adaptive deep recurrent neural networks
with energy-based filter

Weizhong Lu1, Ye Tang1, Hongjie Wu1,2*, Hongmei Huang1, Qiming Fu1, Jing Qiu1 and Haiou Li1
From 2018 International Conference on Intelligent Computing (ICIC 2018) and Intelligent Computing and Biomedical Inform-
atics (ICBI) 2018 conference
Wuhan and Shanghai, China. 15-18 August 2018, 3-4 November 2018
Abstract

Background: RNA secondary structure prediction is an important issue in structural bioinformatics, and RNA
pseudoknotted secondary structure prediction represents an NP-hard problem. Recently, many different machine-
learning methods, Markov models, and neural networks have been employed for this problem, with encouraging
results regarding their predictive accuracy; however, their performances are usually limited by the requirements of
the learning model and over-fitting, which requires use of a fixed number of training features. Because most natural
biological sequences have variable lengths, the sequences have to be truncated before the features are employed
by the learning model, which not only leads to the loss of information but also destroys biological-sequence
integrity.

Results: To address this problem, we propose an adaptive sequence length based on deep-learning model and
integrate an energy-based filter to remove the over-fitting base pairs.

Conclusions: Comparative experiments conducted on an authoritative dataset RNA STRAND (RNA secondary
STRucture and statistical Analysis Database) revealed a 12% higher accuracy relative to three currently used
methods.
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Introduction
RNA is a carrier of genetic information, and its structure
plays a crucial role in gene maturation, regulation, and
function [1–3]. Studying the relationship between RNA
function and structure and determining the form and
frequency of RNA folding are important to reveal the
role of RNA molecules in the life process [4–6]. The
most common way to manipulate RNA structures algo-
rithmically is to reduce them to base pairs (i.e., secondary
structures) abstracted from the actual spatial arrangement
of nucleotides. For a valid secondary structure, each base,
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i, can only interact with at most one other base, j, and
form one base pair (i, j) [7, 8].
The secondary structure of an RNA molecule repre-

sents base-pair interactions that fundamentally deter-
mine overall structure [9–11]. Current studies of RNA
molecular structure emphasize the difficulty of RNA sec-
ondary structure analysis [12, 13].
Pseudoknots are substructures of RNA secondary struc-

ture that describe crossed base pairs [(i, j) and (k, l)] in a
sequence, where i < k < j < l. RNA secondary structure pre-
diction in the absence of pseudoknots has been studied
using dynamic programming algorithms described by
Zuker [14] and Mathews [15, 16] and employing m-fold
[17] and GT-fold [18]. From an algorithmic standpoint,
RNA pseudoknotted secondary structure prediction repre-
sents an NP-hard optimization problem [19]; therefore, in
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order to reduce computational complexity, most algo-
rithms ignore pseudoknots [7].
Common RNA secondary structure prediction models

mainly include thermodynamic models, homology com-
parison models, and statistical-learning models [20]. The
thermodynamic model assumes that RNA molecules are
subject to the laws of thermodynamics, and that RNA
structures with a lower free energy are more stable.
Therefore, from all possible secondary structures, that
with smallest free energy represents the optimal pre-
dicted result. A homologous comparison model sear-
ches for commonly mutated base pairs in sequences
from the same source, although homologous sequences
need to be additionally provided as input [21]. The
statistical-learning model can predict the regularity of
known RNA structures through machine learning and
other methods, with accuracies that can potentially ex-
ceed those associated with the method targeting the
minimum free energy.
After translating the RNA secondary structure-

prediction problem into a classification problem of base
pairings in the sequence by using machine-learning al-
gorithms, computational complexity can be reduced,
but only to a certain extent. However, there remain two
difficulties. First, the existence of pseudoknots makes
the folding of RNA sequences more complicated; there-
fore, bases cannot be distinguished using only three
categories of “unpaired bases”, “paired bases near the
head”. and “paired bases near the end”. The E-NSSE
method, which divides bases into five categories, can
only predict plane pseudoknots, but cannot predict
complex structures involving nonplanar pseudoknots.
Second, a machine-learning model using a fixed-sized
vector as the input feature is unsuitable for processing
sequence-type data and cannot process RNA sequences
of variable length.
As a research hotspot in the field of machine learning,

deep learning can mine deeper hidden features from data
[22–24]. A recurrent neural network is a sequence-
oriented neural-network model for deep learning that dis-
plays excellent performance in natural-language process-
ing, image recognition, and speech recognition [25, 26].
However, common deep neural-network models are

restricted to features with a fixed shape and, therefore,
cannot model RNA primary structures with variable
sequence lengths. Here, we applied a long short-term
memory (LSTM) network to establish a secondary
structure-prediction method that is adaptable to RNA
sequences of variable length. A previous study by
Mathews [27] showed that a higher base-pairing
probability calculated by the partition function re-
sulted in a greater the probability of its appearance in
the real structure. Therefore, the type of base and the
output of its partition function was selected as the
feature of the base. Additionally, we introduced a
mask vector to eliminate the effect of the extended
sequence on the model, which allowed the model to
process variable length RNA primary sequences. A
weight vector was used to dynamically regulate the
proportion of the loss function associated with each
base in the total loss function of the sequence, thereby
alleviating the unbalanced distribution of the samples.
However, there may be some conflicting predicted bases
in the predicted result of LSTM, for example, the i-th
base is predicted to be paired with the j-th base, but the
j-th base is predicted to be an unpaired base or paired
with another base. To solve the problem, a energy-based
filter is also proposed to filter the conflicting predicted
result of LSTM.

Methods
RNA secondary structure prediction
A, G, C, U are four different bases in RNA molecules,
several bases are arranged in order to form the primary
structure of RNA [28, 29]. The primary structure of an
RNA sequence S consisting of n bases can be expressed
as S = s1, s2, ... sn, where s1 is the base near the 5′ side, sn
is the base near the 3′ side, si is the i-th base in se-
quence S and si∈{A, G, C, U}.
RNA secondary structure prediction problem, with the

purpose of calculating the pairing results yi of each base
si in sequence S when the primary structure of S is
known, is a classification problem. According to differ-
ent categories of classification, RNA secondary structure
prediction problems can be divided into the following
categories:

(1) Two categories classification: pairing results consist
of the category of paired base (yi = 1) and the
category of not paired base (yi = 0).

(2) Three categories classification: pairing results
include the category of paired base near 5′ side
(yi = 1), the category of paired base near 3′ side
(yi = 2) and the category of not paired base (yi = 0).

(3) Multi-category classification: for a sequence with
pseudoknots, pairing results yi = j(j = 0,1 … n)
means the i-th base is paired with the j-th base if
j > 0, otherwise the i-th base is not paired.

This paper focus on (1, 3).

Adaptive LSTM with energy-based model
The scheme of a RNA secondary structure-prediction
model based on Adaptive LSTM and energy-based filter
is shown in Fig. 1.
The input feature matrix of a sequence is a two-

dimensional tensor X. X [i, j] represents the j-th feature
of the i-th base, the N + 5 dimensional vector X [i] is the
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input feature vector of a base, the first element of x [i] is
the frequency of the base in the sequence, the second to
5th elements represent the type of base, replacing A,U,C,
G and unknown type by [0,0,0,1], [0,0,1,0], [0,1,0,0], [1,0,
0,0] and [0,0,0,0]. The last N elements are the outputs of
the partition function. The output label is set as the
multi-category classification in section 2.1.
This model capable of predicting RNA pseudoknots

comprises adaptive module, LSTM module and energy-
based filter module.
LSTM module consists of an input layer, an LSTM

layer, fully connected layers, and a softmax layer. The in-
put layer maps the input features into higher dimen-
sional feature vectors and inputs them into the forward
LSTM unit lstm_f and the backward LSTM unit lstm_b
in the LSTM layer. After splitting the outputs of the for-
ward LSTM and the backward LSTM, they are input
into the back-propagation neural network comprising
the full connection layer and the output layer for classifi-
cation. The fully connected layers use tanh as an activa-
tion function, and a dropout layer was added to improve
fitting to the test data. The output layer uses softmax as
an activation function and converts the output of the
fully connected layer into a probability distribution vec-
tor that represents the probability that each base in the
sequence belongs to each output category.
The adaptive module is used to make the model han-

dle sequences with variable length and reduce the im-
pact from imbalanced samples.
The energy-based filter module is used to filter the

over-fitting pairs by selecting the structure with lower
free energy. In the output of LSTM, each base si, of
the sequence has an independently predicted category
yi, representing the most likely base index to be
paired with. However, it is possible that some predicted
results could have been duplicated or might have shown
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inconsistencies. For example, the i-th base was predicted
as being paired with the j-th base (yi = j), but the base with
which the j-th base was predicted to be paired with was
not the i-th base (yi ≠ j). The energy-based filter correct
some of these conflicting bases to make the predicted
structure conform to the principle of base pairing and
have lower free energy.

Adaptive LSTM
A mask vector was introduced to enable the model to ef-
fectively process sequences of different length and to en-
sure that the extended base will not affect the normal
training of the model.
Let the maximum length of the sequence the model

can accept be N. For the k-th sequence, its length is nk,
and the original sequence features comprising its feature
of nk bases are x(1), x (2) ... x (nk). Expand the sequence
feature by setting the features of the nk + 1-th to N-th
base, x (nk + 1), x (nk + 2)...x(N), with an arbitrary value,
so that all lengths of all sequences can be unified into a
fixed value, N. An N-dimensional mask vector, Mk, is
generated (Mk = [Mk(i) | i = 1, 2 ... N], Mk(i) = 1) when
i ≤ nk, and Mk(i) = 0 when nk < i ≤N. The mask vector is
used to distinguish between the original and extended
parts of a sequence, and the new sequence represents
the input to the LSTM network. Therefore, the cross-
entropy loss function of this sequence is calculated as
follows:

Lk y; y
0

� �
¼ 1

n

Xn
i¼1

Mk ið Þ
Xm
j¼0

y
0
i; j½ � log y i; j½ �ð Þ ð1Þ

where n is the length of the sequence, m is the number
of categories, the two-dimensional arrays y and y’ repre-
sent the prediction result and the real label, respectively,
and y [i, j] indicates the probability that the i-th base be-
longs to the j-th category.
When calculating the cross-entropy of the i-th base in

the k-th sequence, Mk(i) will appears as a product in the
calculation of the gradient formula. When the i-th base
is from the original sequence, (i ≤ nk) [Mk(i) = 1], the gra-
dient value will not be changed by Mk(i), and the net-
work weight will be updated similar to that in a
conventional method. When the base is not found in the
original sequence (nk < i ≤N) [Mk(i) = 0], the gradient
value will be 0, and the network weight will not be up-
dated. Therefore, the invalid prediction by the model of
extended bases will not affect the update of the model.

Dynamic weighting method
Among the two categories used for classification of RNA
secondary structure prediction, the ratio of the number
of bases belonging to the paired and unpaired categories
~ 6:4 in the RNA STRAND dataset; however, in the
multi-category classification problem, the ratio is ~ 6/n:
6/n: …: 6/n:4. As n increases, there will be an uneven
distribution of samples, which might lead a model to
predict all bases as in the unpaired category, because
the number of bases belonging to that category in the
real structure is much larger than that of any other
categories.
To address this problem, a dynamic weighting method

was added to the model. For the k-th sequence, a weight
vector, Wk, was generated. If the i-th base is a paired
base in the real structure, the value of Wk(i) equals the
number of unpaired bases in the sequence; otherwise,
the value of Wk(i) is 1. After adding the dynamic weight-
ing method, the loss function of the k-th sequence is as
follows:
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Energy-based filter
As the result of translating the RNA secondary structure-
prediction problem into a classification problem of base
pairings, there exist some conflicting pairing result in the
output of LSTM. The energy-based filter is used to deal
with this problem.
In laws of thermodynamics, RNA structures with a

lower free energy are more stable [16], so the energy-
based is used to randomly change the label of con-
flicting base pairings according to the free energy of
the structure to make the structure more likely to its
real structure.
According to the Watson-Crick base complementary

pairing principle [23], each base s(i), can only interact
with at most one other base, s(j), to form one base pair
(s(i), s(j)) and {s(i), s(j)} ∈{{A,U},{C,G},{G,U}}. As a result,
the predicted result of i-th base y(i) can be reserved if
the two following conditions are met:

(1) y(y(i))=i
(2) (s(i), s(y(i))) is in {(A, U), (U, A), (C, G), (G, C), (G,

U), (U, G)}

If these conditions are not met, y(i) should be set as 0
to classify the i-th base as unpaired base.
By setting all the conflicting bases to unpaired bases, it

may incorrectly turn false positive samples into false



Table 1 Datasets

Dataset Number Average Max Min

TMR 721 361.1 463 102

ASE 454 332.6 486 189

SPR 622 77.3 93 54

SRP 383 224.7 533 66

RFA 313 118.9 553 40
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negative samples, energy-based filter is improved from
reducing unmatched pairs to filter pairing results by the
free energy of secondary structure. The flow chart of
energy-based filter is shown in the right upper of Fig. 1
and the energy-based filter algorithm is as follows:
In Extract_bases(y), bases with conflicting pairing re-

sult will be extracted from y (the predicted result of
Adaptive LSTM) into conflicting base list S(i) and its
index Id(i), i∈{0,1 … m− 1}, S(i), Id(i)∈{1,2 … k}, where m
is the number of conflicting bases, k is the length of the
primary sequence, i is the index of each base in the con-
flicting bases list, Id(i) is the index of the i-th base in its
primary sequence, S(i) represents the predicted result of
Adaptive LSTM of i-th conflicting base (the Id(i)-th base
in its primary sequence).
The pairing result matrix Mmxn, denoting n pairing re-

sults, is randomly initialized with 0 or 1, each column of
the matrix represents the pairing result of the m con-
flicting bases. In the j-th pairing result, if M(i,j) = 1, it
means the predicted result of Adaptive LSTM of i-th
conflicting base is retained, if M(i,j) = 0, it means the
predicted result of Adaptive LSTM of i-th conflicting
base is not accepted and S(i) should be set as 0 to clas-
sify this base to unpaired base.
Correct(M[:,j]) is to correct the j-th pairing result ac-

cording to the j-th column of M: y’ is a copy of y, in the
j-th pairing result, for each conflicting base, if M(i,j) =
1and the y (Id(i))-th base in primary sequence is con-
flicting base or unpaired base, keep y’(Id(i)) and set
y’(y (Id(i))) = Id(i), else set y’(Id(i)) = 0.
Reducing unmatched pairs is to correct the predicted

result according to the two conditions.
In Calculate_energy(y’), E(j) is the free energy of the

j-th pairing result. And Mbest is the structure with
lowest free energy in M till now.
Change each pairing result: for each base of each

pairing result, if M(i,j) =Mbest(j), set M(i,j) = 1-M(i,j) in a
low possibility p1, else set M(i,j) = 1-M(i,j) in a high pos-
sibility p2.

Evaluation metrics
Accuracy (ACC) is a commonly used evaluation metrics
in classification. Sensitivity (SEN) and specificity (PPV)
are commonly used in RNA secondary structure predic-
tion [30]. Matthews correlation coefficient (MCC) is an
evaluation metrics that combines sensitivity and specifi-
city. This paper uses SEN, PPV, MCC and ACC to
evaluate the model, they are calculated as follows:

sen ¼ TP
TP þ FN

ð3Þ

ppv ¼ TP
TP þ FP

ð4Þ
mcc ¼ TP � TN−FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þp

ð5Þ

acc ¼ TP þ TN
TP þ TN þ FP þ FN

ð6Þ

Where TP (true positives) means the number of cor-
rectly predicted bases; FN (false negatives) means the
number of bases that are not correctly predicted; FP
(false negatives) means the number of unpaired bases
that predicted to be paired; TN (true negatives) means
the number of correctly predicted unpaired bases [31].
The range of SEN, PPV and ACC is between 0 and 1,
while the range MCC is between − 1 and 1, and the
higher these evaluation metrics are, the better the
model is.

Results and discussion
Dataset. The dataset of this paper comes from authorita-
tive dataset RNA STRAND [32], including five subsets:
TMR (The tmRNA website [33]),SPR (Sprinzl tRNA
Database [34]),SRP (Signal recognition particle database
[35]),RFA (The RNA family database [36])and ASE
(RNase P Database [37]).There are 2493 sequences in
the 5 datasets, the maximum and average length is 553
and 267.37 respectively. The number of sequences, the
average sequence length, the minimum length and the
maximum length are shown in Table 1. 90% of these se-
quences are randomly selected as training data and the
rest 10% are testing data.

Comparison between adaptive-LSTM with and without
energy-based filter
To prove the validity of the energy-based filter, a com-
parative experiment was carried out on the five datasets.
Figure 2 shows the accuracy comparison of adaptive
LSTM with energy-based filter(y-axis) and adaptive
LSTM without energy-based filter(x-axis) on 249 test
RNAs and the size of each points indicates the length of
sequence. The number of points above the dotted line
y = x are much more than the number of points under
the dotted line. There are 172 RNAs (above the dotted
line y = x) predicted by adaptive-LSTM with filter with
higher accuracy than the accuracy predicted by adaptive-



Fig. 2 Scatter of accuracy comparison between adaptive-LSTM with and without filter
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LSTM. On the dataset ASE and TMR adaptive-LSTM
with filter predicted 100 and 100% of test RNAs are bet-
ter than the prediction by adaptive-LSTM.
In the Fig. 2, most of the RNAs in dataset SPR (in

black) with energy-based filter have lower accuracy than
without the filter. There are two possible reasons. The
first one is the average length of the sequences in SPR
dataset is much shorter than other datasets and their
folding structures are relatively simple. Less free energy
gap of the simple structures leads to energy-based filter
failure. The second possible reason is the percentage of
bases with unknown base type is 11.44% on SPR dataset,
while the percentage on TMR, ASE, SRP, RFA are 0.04,
0.02, 5.93%, which will cause inaccuracy of free-energy.
Since the energy-base filter heavily relies on the free en-
ergy, the two reasons may make the energy-based filter
failed over adaptive-LSTM.

Comparison between adaptive LSTM and other three
classical methods
ProbKnot [38] assembles maximum expected accuracy
structures from computed base-pairing probabilities in
O(N2) time. Cylofold [39] is an RNA secondary structure
prediction method with no algorithmic restriction in
terms of pseudoknot complexity. Centroidfold [40] use
novel estimators to maximize an objective function which
is the weighted sum of the expected number of the true
positives and that of the true negatives of the base pairs.
Comparison experiments between adaptive LSTM with

energy-based filter and these three classical method was
operated, the SEN, PPV, ACC and MCC of ProbKnot
are 0.757, 0.587, 0.646 and 0.319, the SEN, ppv, ACC
and MCC of Cylofold are 0.414, 0.319, 0.406 and
0.014, the SEN, PPV, ACC and MCC of Centroidfold
are 0.673, 0.605, 0.654 and 0.307, the SEN, PPV, ACC
and MCC of Adaptive LSTM are 0.927, 0.613, 0.689
and 0.483, the SEN, PPV, ACC and MCC of adaptive-
LSTM with energy-based filter are 0.685, 0.883, 0.780
and 0.592.
Table 2 shows the MCC and ACC of the adaptive-

LSTM (Adaptive), adaptive-LSTM with energy-based
filter (Filter) and other classic RNA secondary structure-
prediction methods. Adaptive LSTM is better than other
three methods in all metrics and energy-based filter can
further improve the ACC and MCC. Because the Cylo-
fold algorithm does not allow for missing bases, it



Table 2 MCC and ACC of adaptive LSTM and other three
methods

Dataset Metrics ProbKnot Cylofold CentroidFold Adaptive Filter

TMR MCC 0.105 −0.043 0.106 0.434 0.581

ACC 0.531 0.485 0.561 0.630 0.786

SPR MCC 0.591 * 0.668 0.786 0.751

ACC 0.796 * 0.834 0.891 0.870

SRP MCC 0.262 −0.184 0.177 0.421 0.475

ACC 0.613 0.396 0.584 0.708 0.690

RFA MCC 0.398 0.256 0.299 0.451 0.699

ACC 0.677 0.624 0.650 0.661 0.834

ASE MCC 0.238 0.043 0.286 0.323 0.484

ACC 0.611 0.523 0.642 0.556 0.720

Average MCC 0.319 0.014 0.307 0.483 0.592

ACC 0.646 0.406 0.654 0.689 0.780

Boldface represents the highest MCC or ACC in comparison with the other
three methods
*indicates Cylofold does not generate results on SPR dataset, since Cylofold
can not accept the sequence with missing bases in SPR dataset
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generated no results for SPR datasets in which the se-
quence information was incomplete.
Compared with the three classical methods, Adaptive

LSTM have higher ACC in four datasets and higher
MCC in all datasets, after adding the energy-based filter,
the MCC is further improved to 0.78 on average. Be-
cause the Cylofold algorithm does not allow for missing
bases, it generated no results for SPR datasets in which
the sequence information was incomplete.
Case study on RNA with pseudoknots
RFA_00633 (hepatitis delta virus ribozyme) is an RNA
sequence with pseudoknots and represents a noncoding
RNA molecule found in the hepatitis delta virus that is
necessary for viral replication and reportedly the only
catalytic RNA required by a human pathogen for
Fig. 3 Native secondary structure of RFA_00633
viability [41]. The length of its primary sequence is 91
bases, and its native secondary structure is shown in
Fig. 3.
Figure 4 shows the predictive results from the Prob-

Knot, adaptive LSTM with energy-based filter, Centroid-
fold and Cylofold. There were no pseudoknots in the
predicted structures, and the ACC values were 51.6 and
40.7% for ProbKnot and centroidfold, respectively Fig. 4a
and c. Figure 4d shows the predicted structure with
pseudoknots by cylofold, with an ACC of 63.7%.
Adaptive LSTM without energy-based filter cannot

predict a valid result to construct a secondary structure
because there are conflicting pairing bases. The structure
predicted by the adaptive LSTM showed an ACC of
93.4%, which exceed that of the other three methods.
Conclusions
This paper proposed a RNA secondary structure predict-
ing method based on Adaptive LSTM with energy-based
filter. This method addressed problems associated with
truncating sequences in order to address problems asso-
ciated with the variability in RNA-sequence length, with
truncation often resulting in the loss of sequence in-
formation and incompleteness. Additionally, we added a
dynamic weighting algorithm to alleviate problems re-
lated to the unbalanced distribution of samples and use
energy-based filter to remove the conflicting pairing result.
Experimental results showed that this method effectively
improved the accuracy of RNA secondary structure pre-
diction, as the MCC metrics were 16% higher than other 3
classical algorithms on average, and energy-based filter
can further improve the MCC to 59.2% which is 28%
higher than other methods. For tests using the TMR data-
set harboring sequences with large span lengths, MCC
and ACC values were 43.4 and 63%, respectively, which
were 33 and 9.9% higher than that of the ProbKnot algo-
rithm, respectively.



Fig. 4 Predicted secondary structure of RFA_00633. a ProbKnot. b Cylofold. c Centroidfold. d Adaptive LSTM with energy-based filter
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Our future research will focus on improving the net-
work structure by adding convolutional layer or atten-
tion layer and use cross validation, which could further
enhance the predictive accuracy of the model.
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