Zhou et al. BMC Bioinformatics 2019, 20(Suppl 25):690
https://doi.org/10.1186/s12859-019-3265-8

BMC Bioinformatics

RESEARCH Open Access

NmSEER V2.0: a prediction tool for 2"-O-
methylation sites based on random forest
and multi-encoding combination

Yiran Zhou', Qinghua Cui'? and Yuan Zhou'"

Check for
updates

From 2018 International Conference on Intelligent Computing (ICIC 2018) and Intelligent Computing and Biomedical Inform-
atics (ICBI) 2018 conference
Wuhan and Shanghai, China. 15-18 August 2018, 3-4 November 2018

Abstract

Background: 2-O-methylation (2-O-me or Nm) is a post-transcriptional RNA methylation modified at 2"-hydroxy,
which is common in mRNAs and various non-coding RNAs. Previous studies revealed the significance of Nm in
multiple biological processes. With Nm getting more and more attention, a revolutionary technique termed Nm-
seq, was developed to profile Nm sites mainly in mRNA with single nucleotide resolution and high sensitivity. In a
recent work, supported by the Nm-seq data, we have reported a method in silico for predicting Nm sites, which
relies on nucleotide sequence information, and established an online server named NmSEER. More recently, a more
confident dataset produced by refined Nm-seq was available. Therefore, in this work, we redesigned the prediction
model to achieve a more robust performance on the new data.

Results: We redesigned the prediction model from two perspectives, including machine learning algorithm and
multi-encoding scheme combination. With optimization by 5-fold cross-validation tests and evaluation by
independent test respectively, random forest was selected as the most robust algorithm. Meanwhile, one-hot
encoding, together with position-specific dinucleotide sequence profile and K-nucleotide frequency encoding were
collectively applied to build the final predictor.

Conclusions: The predictor of updated version, named NmSEER V2.0, achieves an accurate prediction performance
(AUROC =0.862) and has been settled into a brand-new server, which is available at http.//www.rnanut.net/nmseer-

v2/ for free.

Keywords: 2-O-methylation, Nm site, Random forest, RNA modification, Functional site prediction

Background
With the soaring development of genomics and molecu-
lar biology, numerous researches have been revealing the
pivotal regulatory functions of a great variety of RNA
modifications [1].

Among 163 kinds of known post-transcriptional RNA
modifications [2], 2'-O-methylation (2'-O-me or Nm),
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which frequently occurs in ncRNAs and mRNAs, is a pe-
culiar methylation modified at 2'-hydroxy of ribose moi-
ety. Standalone methyltransferases and C/D-box small
nucleolar RNA guided enzyme fibrillarin dominate two
major ways of Nm modification [3, 4]. Nm modified at
specific sites can make contributions to the biogenesis
and specificity of rRNA [5, 6], the normal functioning of
tRNA [7], the protection effect towards mRNA against
degradation by DXO [8] and so on. Driven by the essen-
tial functions of Nm, a lot of biochemistry approaches
had been designed to detect Nm sites in ncRNAs [9].
Recently, Dai et al. invented a sensitive high-throughput
experimental method termed Nm-seq which is capable
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to detect Nm sites at low stoichiometry especially in
mRNAs with single-nucleotide resolution, achieving an
unprecedented breakthrough [10].

However, experimental methods are inevitably costly
and labor-exhausting. By contrast, prediction ap-
proaches in silico seem more efficient and convenient.
Along with the explosion of experimental data, predic-
tion algorithms and bioinformatics methods towards
large-scale biomedical problems, such as protein-
protein interaction prediction [11-18], protein struc-
ture analysis [19], eQTL mapping [20] and so on [21-
23], had been developed for the past few years. Review-
ing through previous studies, functional sites predic-
tion, as a blooming sub-field of bioinformatics, have
highlighted many successful application of sequence-
based machine-learning prediction framework [24-28],
in which the sequence information around functional
sites was widely regarded as an easily accessible and
powerful tool to extract informative features of func-
tional sites. In a recent work, our group also established
a computational prediction tool named NmSEER [29],
which was based on the original Nm-seq data (which
depicted Nm sites across abundant mRNA and a few
ncRNA molecules in HeLa and HEK293 cells’ transcrip-
tome) and random forest (RF) machine learning frame.
For clarity, the previous version of NmSEER will be
renamed as NmSEER V1.0 hereafter.

NmSEER V1.0 adopted simple one-hot encoding
and achieved a decent performance on the original
Nm-seq data. However, Dai et al. lately extensively re-
fined the Nm-seq technique and a more credible
dataset became recently available. To deal with the
much more complicated sequence pattern of Nm sites
in this new Nm-seq dataset, a more robust predictor
was in urgent demand. For this purpose, we updated
our predictor to NmSEER V2.0 by means of not only
utilizing the new dataset (Additional file 1: Table S1
and S2), but also adopting multiple sequence encod-
ing strategies and more comprehensive optimization
of the classifier.

Results and discussion

Comparison among multi-algorithms and multi-encodings
After constructing the training set and testing set from
the new Nm-seq data (see ‘Datasets’ subsection), we in-
troduced five single encodings, including one-hot,
PSNSP, PSDSP, KNF and KSNPF [30], into this work
(see ‘Feature encoding schemes’ subsection). In consider-
ation of the successful application of RF in NmSEER
V1.0, we optimized the window size W for all single
encodings under RF via 5-fold cross-validation tests on
the training set (positive-to-negative ratio of 1:10 unless
otherwise stated). As results, W-values of one-hot,
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PSNSP, PSDSP, KNF and KSNPF were finally deter-
mined as 10, 16, 15, 16 and 5, respectively.

In order to investigate the best algorithm compatible
with these five encodings, we trained several models
based on the same training set but different machine
learning algorithms (seven algorithms in total, see ‘Ma-
chine learning algorithms’ subsection) for each encoding.
After optimization of necessary hyper-parameters, we
rigorously performed independent test on the testing set
for all models. The comparison of area under receiver
operating characteristic curve (AUROC) and area under
precision-recall curve (AUPRC) among seven algorithms
based on various encodings are listed in Tables 1 and 2,
respectively. Due to the extremely imbalanced positive-
to-negative ratio of our independent testing set (1:50,
see ‘Datasets’ subsection for more details), the AUPRC
are much lower than AUROC (since precision will drop
much more sharply in such extreme imbalanced dataset
than specificity). Nevertheless, the overall performance
of most ‘algorithm + encoding combinations’ is accept-
able, showing an AUROC >0.8 and AUPRC >0.1 in
such extreme situation. The results also suggest the best
accuracy of RF for most cases, followed by MLP, CNN
and SVM. By contrast, LR, Adaboost and GaussianNB
showed uneventful performance only. One challenging
issue for these machine learning algorithms is the imbal-
anced positive-to-negative ratio of our training set (1:
10). Not all machine learning algorithms are robust to
the imbalanced ratio. However, RF overcome the chal-
lenge and RF models trained on the imbalanced training
dataset even performed better than that trained on the
balanced training dataset (Tables 1 and 2). Therefore, RF
was chosen as the most robust algorithm to build our
NmSEER v2.0 predictor.

Performance improvement by combined encoding
schemes

Inspired by the efficiency of single one-hot encoding in
profiling nucleotide sequence in NmSEER V1.0, we
continued to use one-hot and aimed to achieve better

Table 1 AUROC comparison among seven algorithms based on
multi-encodings by independent test

Algorithm\Encoding ~ One-hot ~ PSNSP  PSDSP  KNF KSNPF
RF 0811 0.804 0.850 0761 0722
LR 0.761 0.762 0.833 0.761 0.740
GaussianNB 0.756 0.753 0.824 0729 0646
Adaboost 0.756 0.765 0.847 0.747 0704
SVM 0810 0.747 0.831 0686  0.730
MLP 0.810 0.777 0.844 0.758  0.759
CNN 0.822 0.771 0.842 0.749 0653
RF (1:1 training set) 0.801 0.797 0.848 0763  0.724
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Table 2 AUPRC comparison among seven algorithms based on
multi-encodings by independent test

Algorithm\Encoding ~ One-hot ~ PSNSP ~ PSDSP  KNF KSNPF
RF 0.191 0.177 0.240 0.102  0.095
LR 0.073 0.077 0.153 0.066  0.067
GaussianNB 0.071 0.075 0.150 0052 0032
Adaboost 0.070 0.075 0.192 0.058  0.056
SVM 0.178 0.113 0.178 0.041 0.095
MLP 0.159 0.087 0226 0064  0.085
CNN 0.145 0.090 0.189 0.064 0033
RF (1:1 training set) 0.155 0.149 0211 0.089  0.09%

accuracy by combining one-hot with some of the
newly-introduced encodings above (i.e., PSNSP, PSDSP,
KNF and KSNPF). Distinct to simple one-hot encoding,
PSNSP and PSDSP encodings depict the position-
specific difference between positive and negative sam-
ples, while KNF and KSNPF encodings emphasize on
finding the frequency pattern of nucleotides or short
sequence motifs. Besides RF’s prominence, Tables 1
and 2 also reflect the much better performance of
PSDSP and KNF encodings in profiling Nm sites, com-
paring with their analogous counterparts, i.e. PSNSP
and KSNPF encodings, respectively. Therefore, RF
models based on the superior PSDSP and KNF encod-
ings were retained for the further combination with
one-hot. In other words, predictors based on three
selected encoding combinations, including one-hot +
PSDSP, one-hot + KNF and one-hot + PSDSP + KNF,
were established. To achieve such encoding combin-
ation, the prediction scores from these three models
were integrated by weighted sum (see ‘Feature encoding
schemes’ subsection). We calculated AUROC and
AUPRC for all combinations according to the inde-
pendent test on the testing set. Figure 1 illustrates
performance of them. It is obvious that the combin-
ation of one-hot + PSDSP + KNF achieved performance
improvement to the largest extent, which implies that
positional specific sequence pattern and position-
independent nucleotide frequency around Nm sites are
both informative in predicting Nm sites. Hence the
one-hot + PSDSP + KNF combination was finally deter-
mined as the most powerful one.

Performance of feature selected model

After determining RF and one-hot + PSDSP + KNF
as the best algorithm and encoding scheme combin-
ation respectively, we were interested in whether
feature selection would be helpful to further improve
the prediction accuracy (see ‘Feature encoding
schemes’ subsection). According to the distribution of
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importance scores, we extracted top 15 and 50 fea-
tures from 30-dimensional PSDSP feature vector and
336-dimensional KNF feature vector, respectively. The
whole one-hot vector was retained since its feature
importance scores did not significantly vary among
features. We subsequently constructed the prediction
models based on these top features and carried out
the same independent test mentioned above. Unfortu-
nately, however, feature selection do not result in im-
provement of overall performance (with the AUROC
of 0.857 and AUPRC of 0.252 after feature selection,
versus the AUROC of 0.862 and AUPRC of 0.254 be-
fore feature selection). Nevertheless, we still list the
top 10 features selected from each encoding in
Table 3, which may be valuable to profile and under-
stand the Nm-related sequence motifs. At last, the in-
tact one-hot + PSDSP + KNF encoding combination
was employed to build the final prediction model.

NmSEER V2.0 server

According to above results, we appointed the RF model
based on one-hot + PSDSP + KNF encoding combin-
ation as the final prediction model of NmSEER V2.0.
Moreover, we built two specific models for predicting
Nm sites in individual HeLa and HEK293 cell type
under the same framework, by using the training data-
set from each cell line, respectively (corresponding
training and testing sets are listed in Additional file 1:
Table S3-S6).

NmSEER V2.0 has been established as a brand-new
sever, which is freely available at http://www.rnanut.net/
nmseer-v2/. The computational framework of NmSEER
V2.0 is illustrated in Fig. 2. For users’ convenience, we
provide three pairs of pre-defined thresholds for
NmSEER V2.0 server, which correspond to the true
positive rate of 0.2, 0.5 and 0.8 in independent test. By
default, the predictor trained on the dataset from both
cell types is enabled, but the user can easily switch to
cell type-specific models on the web interface. Table 4
shows the performance of the default and cell type-
specific models of NmSEER V2.0 at each threshold.

Conclusions

Nm is a widespread post-transcriptional modifications in
both ncRNAs and mRNAs and plays important roles in
various biological processes. In this study, supported by
the new dataset of refined Nm-seq technique, we
updated NmSEER to V2.0 by building a new RF model
with the enhanced one-hot + PSDSP + KNF encoding
combination, which achieves robust prediction perform-
ance (AUROC =0.862 and AUPRC =0.254) in the inde-
pendent test. NmSEER V2.0 has been established as a
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brand-new sever, which is available at http://www.rna-
nut.net/nmseer-v2/ for free.

Methods and materials

Datasets

NmSEER V1.0 was trained with the previous version of
Nm-seq dataset [10], which enabled a dataset of positive
Nm samples across HeLa’s and HEK293’s genome with
single-nucleotide resolution. Nevertheless, Dai et al
refined Nm-seq technology more recently, which
resulted in a new credible dataset (GEO Accession:
GSE90164) where RefSeq ID of transcripts and positions
of Nm sites in transcripts were recorded [10]. We
utilized the similar approach in NmSEER V1.0 [29] to

generate training set and independent testing set from
this brand-new Nm-seq dataset to build NmSEER V2.0.
For detail, we merged all the Nm sites of HeLa and
HEK293 and mapped them into human transcriptome
(Version GRCh38, recorded by RefSeq database) for
preparation [31]. Subsequently, positive samples in
approximate three fourth of transcripts, which harbor at
least one Nm site, were assigned randomly to the train-
ing set, and the rest one fourth were assigned to the in-
dependent testing set. Because of the absence of golden
negative samples from the experimental data, we had to
randomly select non-modified RNA sites as negative
samples. Since in natural transcripts the amount of non-
Nm sites is about 2000-fold more than Nm sites

Table 3 Description of top 10 features from one-hot, PSDSP and KNF encodings

Rank In one-hot PSDSP KNF

1 T at 0 position Dinucleotide at — 1 and 0 position Frequency of GA
2 A at -2 position Dinucleotide at 0 and + 1 position Frequency of TG
3 C at —3 position Dinucleotide at —2 and — 1 position Frequency of AG
4 C at —1 position Dinucleotide at —3 and — 2 position Frequency of CT
5 G at —3 position Dinucleotide at =5 and — 4 position Frequency of GG
6 G at —1 position Dinucleotide at —4 and — 3 position Frequency of AA
7 G at —6 position Dinucleotide at =9 and — 8 position Frequency of CC
8 G at —9 position Dinucleotide at —8 and — 7 position Frequency of TC
9 G at —8 position Dinucleotide at —10 and — 9 position Frequency of CA

o

G at —10 position

Dinucleotide at —6 and — 5 position

Frequency of GC



http://www.rnanut.net/nmseer-v2/
http://www.rnanut.net/nmseer-v2/

Zhou et al. BMC Bioinformatics 2019, 20(Suppl 25):690

Page 5 of 9

' N\
Input nucleotide sequence, select a cell line, set the threshold
G J
4 N
For all sites in the sequence
- J
One-hot PSDSP KNF )
encoding encoding encoding
@ Combining prediction scores by weighted sum @
[ Combined prediction score
{ Predicted positive sites are shown in the result panel ]

Fig. 2 The workflow of NmSEER V2.0 server. Before a task launches, it is necessary to input a nucleotide sequence, select a cell line (by default, Nm
sites from both cell lines are considered) and set a stringency threshold for the predictor. Launched task will call the predictor on the server and final
classification and prediction scores of sites whose scores higher than the user-selected threshold will be shown in the result panel of webpage

according to our observation, it is not possible to check
through all the potential negative samples. Therefore, in
the overall consideration of computational efficiency and
generalization capability, a positive-to-negative ratio of
1:10 for training set and a more rigorous ratio of 1:50
for testing set were determined for the research. Theor-
etically, the imbalanced positive-to-negative ratio is cap-
able of evaluating the real-world performance of
prediction models objectively. Moreover, for the purpose
of emphasizing Nm sites and avoiding the bias to non-
Nm sites adjacent to Nm sites, 50% of the negative
samples were selected from the proximal region of
known Nm sites (i.e. 50 nt flanking windows where the
positive samples settled in the center) and the other 50%
were sampled from the remaining distal regions.

Consequently, we picked 1989 positive samples and 20,
025 negative samples from 950 transcripts to assemble
the training set, and 657 positive samples and 32,363
negative samples from 328 transcripts to construct the
independent testing set (Additional file 1: Table S1 and
S2). In addition, to investigate the relationship between
prediction performance and positive-to-negative ratio, a
subset of training set with positive-to-negative ratio of 1:
1 was extracted.

Machine learning algorithms

We introduced several widely-used machine learning
algorithms, including random forest, logistic regression,
Naive Bayes, Adaboost, support vector machine, multi-
layer perceptron and convolutional neural network, to

Table 4 Performance of NmSEER V2.0 at the true positive rate of 0.2, 0.5 and 0.8

Cell Type True positive rate Threshold Specificity Precision Fq-score
Both (default) 0.2 0.338 0.995 0438 0.274
Both (default) 0.5 0201 0.955 0.186 0271
Both (default) 0.8 0.103 0.763 0.064 0.118
Hela 0.2 0.338 0.994 0.389 0.264
Hela 05 0.205 0.949 0.162 0.244
Hela 0.8 0.104 0.745 0.059 0.110
HEK293 02 0.369 0.997 0.556 0.297
HEK293 05 0250 0.981 0349 041
HEK293 0.8 0.136 0.894 0.132 0.226
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search for the most suitable model. Except multilayer
perceptron and convolutional neural network con-
structed via python software package tensorflow, all the
algorithms were implemented by python software pack-
age sklearn [32], and key hyper-parameters were opti-
mized via 5-fold cross-validation on the training set
(Additional file 1: Table S7). Brief introduction of these
algorithms will be available below.

Random forest (RF)

Random forest model is a meta-classifier which can ma-
ture numerous decision trees by learning from the train-
ing data, and predict through voting across these trees.
NmSEER V1.0 was established under random forest
framework.

Logistic regression (LR)

LR is a generalized linear model to solve binary classifi-
cation problems. Mathematically, logistic regression
modifies linear regression with a sigmoid function,
which leads to the range of (0, 1) that can be regarded as
the prediction probability score.

Naive Bayes

Naive Bayes is a set of traditional machine learning algo-
rithms based on Bayes theorem. In this study, Gaussian
Naive Bayes (GaussianNB) was employed as the
representative.

Adaboost

The core principle of Adaboost is integrating a number
of weak classifiers into a strong classifier, in which a
classifier is fitted by the training data first, and then the
other copies of classifier focus more on learning from
mistakes via adjusting the weights of incorrectly classi-
fied instances.

Support vector machine (SVM)

SVM is a prominent algorithm towards small sample
size, and it is popular in bioinformatics researches
[33, 34]. One key technical advantage of SVM is to
use kernel function to project low-dimension data
into a high-dimension space so that the data will be
more distinguishable.

Multilayer perceptron (MLP)

MLP is a traditional model of neural network. In this
work, we constructed a network model containing 5 hid-
den layers and a softmax output layer. In view of the in-
stability of neural network optimizer, averaged results
from 10 times training were calculated to assess the final
prediction performance result,

Page 6 of 9

Convolutional neural network (CNN)

CNN is a rising deep learning model with an incompar-
able performance in classifying image data [35]. More-
over, its effectiveness to predict functional sites have
also been proved in recent researches [36, 37]. The CNN
model we built here contained 4 convolution layers, a
max pooling layer, a flatten layer, 3 full-connected layers
and a softmax output layer. The final prediction
performance was likewise averaged from 10 times of
training and testing.

Feature encoding schemes

Proper feature encoding scheme plays an extremely
important role in modification site prediction. In this
study, we attempted to utilize several encodings to trans-
late nucleotide sequences of W nt flanking windows on
both sides in which sample sites were deployed at center
(i.e, 2x W+ 1nt in total) into feature vectors as the
input of machine learning models. Flanking windows
which were out of the terminus of RNA modules were
filled by gap characters. Exact W-value of each encoding
scheme was optimized via 5-fold cross-validation tests
on the training data. Elaborate introduction of encoding
schemes will be provided below.

One-hot encoding of positional nucleotide sequence (one-
hot)

One-hot encoding aims to denote each nucleotide as a 4-
dimensional binary vector [29, 38]. In this study, nucleotide
A, G, C, T and the gap character were translated as (1, 0, O,
0), (0,1,0,0),(0,0,1,0), (0,0, 0, 1) and (0, 0, 0, 0), respect-
ively. Consequently, a nucleotide sequence in Wnt flanking
window corresponds to a 4 x (2 x W+ 1)-dimensional bin-
ary feature vector under the one-hot scheme. NmSEER
V1.0 works with only one-hot encoding.

Position-specific nucleotide sequence profile (PSNSP)

PSNSP is a prevalent encoding scheme in extracting
features from sequence information [30, 39]. It profiles
the percentage difference of each nucleotide occurring at
each position between positive and negative sequences
in Wnt flanking window. Namely, PSNSP-value could be
calculated according to the formula:

PSNSP(i,n) = fp(i,n)-fn(i, n) (1)

where i represents the i-th position of sample sequence
and n generalizes four nucleotides A, G, C or T, then
PSNSP(i,n) represents the PSNSP-value of nucleotide #
occurring at position i. fp(i, n) and fu(i, n) are the
frequency of nucleotide # occurring at position i in all
positive sequences and negative sequences, respectively.
For each site in sample sequences, a PSNSP-value was
calculated by formula 1 where corresponding position i
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and nucleotide # as the input parameters, and for gap
characters out of the terminus of transcripts, 0 was used.
Hence a (2 x W+ 1)-dimensional PSNSP feature vector
was generated for each sample.

Position-specific dinucleotide sequence profile (PSDSP)
Researches have revealed the effectiveness of PSDSP
in functional site prediction [30, 40]. Similar to
PSNSP, PSDSP encoding calculates the frequency dif-
ference of each dinucleotide occurring at each pos-
ition between positive and negative sequences in Wnt
flanking window to compose feature vectors. 0 was
used for gap characters. As a result, each sample was
translated into a (2 x W)-dimensional PSDSP feature
vector.

K-nucleotide frequencies (KNF)

As one of the most popular encoding schemes, KNF
is skilled in finding polynucleotide patterns by calcu-
lating the frequency of all possible k-mer polynucleo-
tides in a sequence [25, 27, 30, 41]. Here we used
k=2, 3 and 4 to sample sequences in Wnt flanking
window. Therefore, the dimension of KNF feature
vector is 4% + 43+ 4* = 336.

K-spaced nucleotide pair frequencies (KSNPF)

KSNPF calculates the frequencies of 16 pairs of nucleo-
tides spaced by k-length polynucleotides in a sequence
[30, 42]. Here we used k=0, 1, 2, 3 and 4 for sample se-
quences in Wnt flanking window. Therefore, the dimen-
sion of KSNPF feature vector is 5 x 4 x 4 = 80.

Weighted encoding combination

If single encodings tend to complement each other,
their cooperation will be efficient to improve the pre-
diction performance further, and vice versa. In this
work, the encoding combination was implemented by
calculating weighted sum of prediction scores from 5-
fold cross-validation tests of individual encodings.
The weighted sum formula can be described as:

Score(s) = iwlmi(s), zi’: w;=1 (2)

where Score(s) indicates the combined prediction score
of sample s, n represents the total number of encodings
considered, w; represents the weight of the i-th encoding
and m,(s) indicates the prediction score of sample s
based on the i-th encoding model. For optimization, the
weight of each encoding was tuned from 0 to 1 with the
step of 0.01.
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Feature selection

Unnecessary features in the feature vector sometimes
may encumber the performance of prediction model so
that selecting informative features may be useful for fur-
ther performance improvement. According to the Gini
impurity decrease, random forest model can provide
importance scores of all features. Therefore, referring to
the distribution of importance scores, we could reason-
ably select top informative features from the interested
encodings.

Performance evaluation

Performance was evaluated via independent test on
the abovementioned testing set. In independent test,
machine learning models based on different algo-
rithms and encoding schemes will output prediction
score for each sample, and a sample whose score is
higher than an arbitrary threshold will be classified as
positive prediction. Hence the count of true positive,
true negative, false positive and false negative predic-
tions, which are denoted respectively as TP, TN, FP
and FN, could be calculated. Then we introduced
some typical indicators including sensitivity, specificity,
recall, precision and FI-score to evaluate the predic-
tor’s performance, which are defined as:

Sensitivity = Recall = TPZ—% (3)
Specificity = 7TNT1\L[ P (4)
Precision = T]’Ti—fffP (5)
F—score = 2 % Precision x Recall (6)

Precision + Recall

Furthermore, based on the above-mentioned indica-
tors, we plotted receiver operating characteristic
curves (ROC curve) and precision-recall curves (PRC
curve). ROC curve reveals the relationship between
sensitivity and 1 — specificity under variable thresh-
olds, and PRC curve depicts the tendency of precision
with recall changing. As two golden standards, these
curves can visually evaluate the overall performance
of prediction models. Especially, PRC curve is suitable
for this study because of its stringency on the testing
dataset with imbalanced positive-to-negative ratio. To
quantify the models’ performance, we calculated the
area under ROC and PRC (i.e. AUROC and AUPRC,
respectively) as the decisive indicators. For both of
them, the value closer to 1 reveals the better predic-
tion performance.
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