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Abstract

Background: The interactions among proteins act as crucial roles in most cellular processes. Despite enormous effort
put for identifying protein-protein interactions (PPIs) from a large number of organisms, existing firsthand biological
experimental methods are high cost, low efficiency, and high false-positive rate. The application of in silico methods
opens new doors for predicting interactions among proteins, and has been attracted a great deal of attention in the
last decades.

Results: Here we present a novelty computational model with the adoption of our proposed Discriminative Vector
Machine (DVM) model and a 2-Dimensional Principal Component Analysis (2DPCA) descriptor to identify candidate
PPIs only based on protein sequences. To be more specific, a 2DPCA descriptor is employed to capture discriminative
feature information from Position-Specific Scoring Matrix (PSSM) of amino acid sequences by the tool of PSI-BLAST.
Then, a robust and powerful DVM classifier is employed to infer PPIs. When applied on both gold benchmark datasets
of Yeast and H. pylori, our model obtained mean prediction accuracies as high as of 97.06 and 92.89%, respectively,
which demonstrates a noticeable improvement than some state-of-the-art methods. Moreover, we constructed
Support Vector Machines (SVM) based predictive model and made comparison it with our model on Human
benchmark dataset. In addition, to further demonstrate the predictive reliability of our proposed method, we also
carried out extensive experiments for identifying cross-species PPIs on five other species datasets.

Conclusions: All the experimental results indicate that our method is very effective for identifying potential PPIs and
could serve as a practical approach to aid bioexperiment in proteomics research.

Introduction
The analysis of Protein-Protein Interactions (PPIs) is a
matter of cardinal significance to clinical studies, which
may promote researchers valuable understanding of the
internal mechanisms of biological processes and the
pathogenesis of human complex diseases at the molecular
level. With the rapid pace of biological experimental tech-
niques for detecting large-scale protein interactions from

different species, such as TAP [1], Y2H [2], MS-PCI [3]
and protein chips [4], etc., Huge amounts of PPI-related
data have been collected into many publically available
databases since several decades [5, 6]. However, such
biological experiments for predicting PPIs are generally
costly, complicated and time-consuming. Moreover, those
results produced by the methods tend to be a high ratio of
both false positive and false negative [7, 8]. So the rapid
and low-cost computational methods are usually adopted
as a useful supplement for PPI detection.
So far, a number of innovative in silico approaches

have been developed for predicting the interactions
among proteins based on different kinds of data, such as
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protein structure [9], phylogenetic profiles [10], genomic
fusion events [11], etc. However, all these methods re-
quired prior domain knowledge that limits their further
application. On the other hand, owing to a large amount of
protein sequence data being collected, many investigators
have engaged in developing protein sequence-based com-
putational approaches for identification of PPIs, and previ-
ous works indicate that the unique feature information
embedded in protein amino acid sequences may be enough
detecting PPIs [12–17]. For example, Shen et al. [18] pre-
sented a novel algorithm by combining Support Vector
Machines (SVM) with a conjoint triad descriptor to con-
struct a universal model for PPI prediction only based on
sequence information. When applied to predict human
PPIs, it produced an accuracy of 83.90 ± 1.29%. Najafabadi
and Salavati [19] adopted naïve Bayesian networks to pre-
dict PPIs only using the information of protein coding
sequences. They found that the adaptation of codon usage
could lead to more than 50% increase on the evaluation
metrics of sensitivity and precision. Guo et al. [13]
employed auto covariance descriptor for predict PPIs from
non-continuous amino acid sequences and obtained prom-
ising prediction results. This method took full advantage
use of neighbor effect of residues in the sequences. You
et al. [20] proposed an improved prediction approach for
PPI recognition by means of rotation forest ensemble
classifier and amino acid substitution matrix. When
applied to the dataset of Saccharomyces cerevisiae, its
prediction accuracy and sensitivity arrived at 93.74 and
90.05%, respectively. Although many previous methods
have achieved good results for PPIs prediction, there
has still room for improvement.
This article is a further expansion of our previous works

[21, 22]. In this work, we presented a novel in silico method
for predicting interactions among proteins from protein
amino acid sequences by means of Discriminative Vector
Machine (DVM) model and 2-Dimensional Principal Com-
ponent Analysis (2DPCA) descriptor. The main improve-
ment of the method lies in the introduction of a highly
effective feature representation method from protein evolu-
tionary information to characterize protein sequence and
the adoption our newly developed DVM classifier [21, 23].
More specifically, for a given protein amino acid sequence
with length L, it would be transformed into an L × 20
Position-Specific Scoring Matrix (PSSM) by means of the
Position Specific Iterated BLAST (PSI-BLAST) tool [24] to
capture evolutionary information in the protein amino acid
sequence. After multiplication between PSSMs and its
transposition, a 20 × 20 confusion matrix was obtained
accordingly. To acquire highly representative information
and speed up the extraction of feature vector, we adopted a
computationally efficient 2DPCA descriptor to capture
highly differentiated information embedded in the matrix
and achieved a 60-dimensional feature vector. Then, we

concatenated two feature vectors corresponding to two
different protein molecules in a specific protein pair into a
120-dimensional feature vector. Finally, we applied our
DVM model to perform the prediction of PPIs. The
achieved results demonstrate our approach is trustworthy
for predicting interactions among proteins.

Results and discussion
Assessment of prediction performance
In order to avoid over fitting of predictive method and
make it more reliable, 5-fold cross-validation was
employed in this work. The verified dataset was permu-
tated randomly at first and then partitioned into five
parts in roughly equal size, four parts of which were
used for training predictive model, and the rest part for
test. In order to reduce experimental error and ensure
reliability of experimental results, we repeated such per-
mutation and partition process five times, and therefore
corresponding five training sets and five test sets were
generated accordingly. That is to say, we performed 5-
fold cross-validation five times and the mean value of
corresponding evaluation metrics were calculated as the
final validation results. To be fair, all parameters of the
proposed model among different processes kept the
same value. The predictive results performed by combin-
ing 2DPCA descriptor with DVM classifier on Yeast and
Helicobacter pylori (H. pylori) datasets are illustrated in
Tables 1 and 2, respectively. It can be observed From
Table 1 that our proposed approach achieves excellent
performance on the dataset of Yeast. The mean value of
accuracy (Acc), sensitivity (Sen), precision (Pre) and
MCC reaches 97.06, 96.97, 96.89% and 0.9412, respect-
ively. Similarly, when applied to H. pylori, just as listed
in Table 2, the achieved results by our proposed method
are of Acc ≥ 92.89%, Sen ≥ 90.78%, Pre ≥ 94.79% and
MCC ≥ 0.8566. Besides, it can be seen from Tables 1
and 2 that their corresponding standard deviations are
very low on the two datasets. The maximum value of
their standard deviations on the Yeast dataset is only
0.38%, while the corresponding values of standard devia-
tions on H. pylori dataset are as low as 0.39, 0.38, 0.46
and 0.35%, respectively. The receiver operating charac-
teristic (ROC) curves of 5-fold cross-validation based on

Table 1 Predictive results of 5-fold cross-validation performed
by our model on Yeast dataset

Test set Acc (%) Sen (%) Pre (%) MCC

1 97.05 96.55 97.13 0.9410

2 97.14 97.22 96.37 0.9428

3 97.00 96.63 97.25 0.9401

4 97.09 97.18 97.09 0.9419

5 97.01 97.27 96.59 0.9402

Average 97.06 ± 0.06 96.97 ± 0.35 96.89 ± 0.38 0.9412 ± 0.0012
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these datasets are shown in Fig. 1 and Fig. 2, respect-
ively. In those two figures, the vertical axis indicates sen-
sitivity while the horizontal axis denotes 1-sepecificity.
From experimental results in Tables 1 and 2, it can be

concluded that our prediction model is practically feasible
for predicting interactions among proteins. We attribute
its outstanding performance to the feature representation
and adoption of DVM classification algorithm. In our pro-
posed method, PSSM not only captured the location and
topological information for protein amino acid sequence
but also fully dug up corresponding evolutionary informa-
tion. In addition, the advantage of 2DPCA to PCA rests
with the former is more efficient in evaluating covariance
matrix, as it can decrease the intermediate matrix trans-
formation and improve the speed of feature extraction.

Comparisons with SVM-based prediction model
To further verify the PPI-identification performance of
our model, a SVM-based predictive model was con-
structed to recognize PPIs on Human dataset, and then
the predictive results between DVM and SVM were
compared accordingly. The LIBSVM tool we employed
here was gotten from www.csie.ntu.edu.tw/~cjlin/libsvm.
For fairness concerning, the two prediction models used

same feature selection techniques. In the experiment, we
selected the popular radial basis function as kernel func-
tion of SVM. Then, its two super parameters (kernel
width parameter γ, regularization parameter C) were op-
timized by general grid search strategy and their values
were finally tuned to 0.3 and 0.5, respectively.
Table 3 illustrates the prediction results of 5-fold

cross-validation over the two methods based on Human
dataset. When using the DVM-based predictive model
to identify PPIs, we obtained excellent experimental re-
sults with the mean Acc, Sen, Pre and MCC of 97.62,
97.71, 96.63% and 0.9445, respectively. In contrast, the
SVM-based predictive model got inferior results with
lower mean Acc, Sen, Pre and MCC of 93.20, 92.60,
92.90% and 0.8740, respectively, which indicates that
DVM is superior to SVM for detecting potential interac-
tions among proteins. Additionally, it can be seen clearly
from Table 3 that DVM is more stable than SVM as the
former produced smaller standard deviations for the
above four evaluation indexes overall. Specifically, SVM
produced standard deviations of Acc, Sen, Pre and MCC
up to 0.43, 1.41, 1.18% and 0.0082, obviously higher than
the corresponding values of 0.38, 0.28, 0.92% and 0.0045
by DVM. In addition, Figs. 3 and 4 illustrate the ROC
curves through 5-fold cross-validation performed by
DVM and SVM respectively and so we could easily ob-
serve that AUC (area under an ROC curve) values pro-
duced by DVM are visibly greater than those of SVM.
From above validation results, we can assume that DVM

is more stable and effective than SVM in detecting poten-
tial interactions among proteins. There are two fundamen-
tal explanations for this phenomenon. (1) The utilization
of multiple techniques, such as manifold regularization, M-
estimator and kNNs, eliminates the infaust influence of
kernel function to meet Mercer condition and decreases

Table 2 Predictive results of our model through 5-fold cross-
validation on H. pylori dataset

Test set Acc (%) Sen (%) Pre (%) MCC

1 92.62 90.76 94.77 0.8533

2 93.56 91.27 95.44 0.8609

3 92.76 90.80 94.23 0.8556

4 92.62 90.21 94.99 0.8537

5 92.90 90.85 94.53 0.8596

Average 92.89 ± 0.39 90.78 ± 0.38 94.79 ± 0.46 0.8566 ± 0.0035

Fig. 1 ROC curves of our model through 5-fold cross-validation
based on Yeast dataset

Fig. 2 ROC curves of our model through 5-fold cross-validation
based on H. pylori dataset
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the impact of isolated points. (2) Although the number of
parameters (β, γ, and θ) of DVM is more than that of
SVM, these parameters have little effect on the prediction
power of DVM as long as they are set in the appropriate
range. In conclusion, we have reason to believe that DVM
is much more suitable than SVM for PPI prediction in
term of the above feature representation.

Performance on independent dataset
Despite the exciting performance of our method in de-
tecting interactions among proteins on the three bench-
mark datasets including Yeast, H. pylori and Human
datasets, we here still made further analyses to verify our
method on four well-known independent datasets (E.
coli, C. elegans, H. sapien, M. musculus). In this study,
we treated the all samples of Yeast dataset as training
data and those ones coming from the other four inde-
pendent datasets as test data. The feature extraction

followed the same process as before. When our pro-
posed method was applied to predicting candidate inter-
actions among proteins for the four species, we obtained
the mean values of Acc varying from 86.31 to 92.65 as
listed in Table 4. The achieved results demonstrate that
Yeast protein might possess similar functional inter-
action mechanism with the other four different species
and using only protein sequence data could still be
enough to identify potential PPIs for other species. Be-
sides, it also indicates that the generalization ability of
our proposed model is powerful.

Comparisons with other previous models
To date, a lot of in silico methods have been developed
for detecting PPIs. To further verify the predictive power
of our proposed model, we also compared it with some
well-known previous models based on two benchmark
datasets, namely Yeast and H. pylori. Tables 5 gives the

Table 3 Predictive results of 5-fold cross-validation performed by the two models on Human dataset

Model Test set Acc (%) Sen (%) Pre (%) MCC

DVM 1 97.86 98.06 96.57 0.9473

2 97.43 97.37 95.50 0.9393

3 97.04 97.73 96.41 0.9401

4 97.98 97.89 98.07 0.9495

5 97.80 97.51 96.61 0.9462

Average 97.62 ± 0.38 97.71 ± 0.28 96.63 ± 0.92 0.9445 ± 0.0045

SVM 1 93.79 93.40 93.52 0.8855

2 92.69 94.06 91.15 0.8642

3 93.42 91.44 92.57 0.8780

4 92.93 90.78 94.33 0.8688

5 93.18 93.30 92.95 0.8736

Average 93.20 ± 0.43 92.60 ± 1.41 92.90 ± 1.18 0.8740 ± 0.0082

Fig. 3 ROC curves of 5-fold cross-validation performed by DVM-
based model on Human dataset

Fig. 4 ROC curves of 5-fold cross-validation performed by SVM-
based model on Human dataset
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corresponding comparisons of 5-fold cross-validation of
different models based on Yeast dataset. Just as shown
in Table 5, the mean Acc values performed by other
models based on Yeast dataset varied from 75.08% until
93.92%, but our model got the maximum value of
97.06%. Equally, the values of Sen, Pre and MCC ob-
tained by our prediction model were also higher than
those values by other previous models. Furthermore, the
lowest standard deviation 0.0012 indicates our model is
more stable and robust than other models. Owing to an
ensemble learning model is often superior to a single
classifier, although the model proposed by Wong etc. oc-
cupies the minimum standard deviation in all models,
our predictive model is still very competitive in silico
method for predicting potential PPIs.
In the same way, Table 6 shows the comparisons of

the predictive results performed by different models on
H. pylori dataset. Our proposed model achieved the
mean Acc of 92.89%, which is better than other previous
models with the highest predictive Acc of 87.50%. The
same situation also exists for the metrics of Pre, Sen and
MCC. All the above experimental results indicate that
our model combined DVM classifier with 2DPCA de-
scriptor has better predictive performance for PPIs when
compared with some other previous models. The excit-
ing results for the prediction of PPIs performed by our
proposed model might derive from the special feature
representation that could extract distinguishing informa-
tion, and the employment of DVM that has been vali-
dated to be an effective classifier [23].

Conclusions
Owing to the advantages of time, money, efficiency and re-
sources, in silico methods solely utilizing protein amino
acid sequences for detecting potential interactions among
proteins has increasingly aroused wide spread concern in
recent years. In this study, we developed a novel sequence-
based in silico model for identifying potential interactions
among proteins, which combines our newly developed
DVM classifier with the 2DPCA descriptor on PSSM to
mine the embedded discriminative information. We here
adopted 5-fold cross-validation in the experiments to
evaluate the predictive performance, which could reduce
the over-fitting to a certain extent. When applied to the
gold standard datasets, our model achieves satisfactory
predictive results. Furthermore, we also compared our
model with SVM-based model and other previous models.
In addition, to verify the generalization power of our
model, we trained our model using Human data set and
performed the prediction of PPIs based on the other five
species datasets. All the experimental results demonstrate
that our model is very effective for predicting potential
interactions among proteins and is reliable for assisting
biological experiments about proteomics.

Materials and methodology
Gold standard datasets
In this work, we first evaluated our model on a benchmark
PPI dataset named Yeast, which came from the well-
known Database of Interaction Proteins (DIP), version
DIP_20070219 [30]. In order to decrease the interference
of fragments, we deleted those protein sequences less than
50 amino acid residues in length, and picked CD-HIT [31],
a common multiple sequence alignment tool, to align pro-
tein pairs with a sequence similarity threshold of 0.4. Then,
we finally got 5594 interacting protein pairs to be the posi-
tive samples. The construction of negative sample is of
critical importance for training and assessing predictive
model of PPIs. Nevertheless, it is hard to construct high-
credible negative dataset as there was only a very limited
knowledge at present about non-interacting proteins.

Table 4 Predictive results of our proposed model on four
independent datasets

Species Test pairs Acc(%)

E. coli 6954 86.31

C.elegans 4013 92.65

H.sapien 1406 91.64

M.musculus 312 87.72

Table 5 Predictive results of 5-fold cross-validation performed by different models on Yeast dataset

Model Test set Acc (%) Sen (%) Pre (%) MCC

Guo [13] ACC 89.33 ± 2.67 89.93 ± 3.68 88.87 ± 6.16 N/A

AC 87.36 ± 1.38 87.30 ± 4.68 87.82 ± 4.33 N/A

Yang [25] Cod1 75.08 ± 1.13 75.81 ± 1.20 74.75 ± 1.23 N/A

Cod2 80.04 ± 1.06 76.77 ± 0.69 82.17 ± 1.35 N/A

Cod3 80.41 ± 0.47 78.14 ± 0.90 81.66 ± 0.99 N/A

Cod4 86.15 ± 1.17 81.03 ± 1.74 90.24 ± 1.34 N/A

You [26] EELM 87.00 ± 0.29 86.15 ± 0.43 87.59 ± 0.32 0.7736 ± 0.0044

Wong [27] RF + PR-LPQ 93.92 ± 0.36 91.10 ± 0.31 96.45 ± 0.45 0.8856 ± 0.0063

Our method DVM 97.06 ± 0.06 96.97 ± 0.35 96.89 ± 0.38 0.9412 ± 0.0012

Li et al. BMC Bioinformatics 2019, 20(Suppl 25):694 Page 5 of 9



Herein, to keep the balance of the whole dataset, the nega-
tive samples containing 5594 additional protein pairs were
chosen randomly at different subcellular compartments
according to [32]. Accordingly, the final Yeast dataset here
contained 11,188 protein pairs in which positive and nega-
tive samples were just half of each.
To verify the performance of our approach, we also

assessed it based on the other two famous PPI datasets
of Human and H. pylori. The former dataset could be
downloaded from the site of http://hprd.org/download.
By using the same preprocessing steps as described
above, we then obtained 3899 protein pairs as positive
samples and selected 4262 protein pairs coming as nega-
tive samples. Therefore, the final Human dataset con-
tains 8161 protein pairs in total. Using the same
strategy, the final H. pylori dataset contains 2916 protein
pairs altogether, in which positive and negative samples
account for half of each [33]. All these three datasets
could be viewed as gold standard datasets for PPI pre-
diction and were usually leveraged for comparing the
performance of different methods.

2DPCA descriptor
The 2-Dimensional Principal Component Analysis
(2DPCA) descriptor developed by Yang et al. [34] was
originally employed in face representation and recogni-
tion. For an m × n matrix A, a projected vector Y of A
can be obtained by the following transformation.

Y ¼ AX ð1Þ

where X is an n-dimensional column vector. Suppose
the jth training sample could be represented as an m × n
matrix Aj(j = 1, 2,…M), and the mean matrix of all train-
ing samples is recorded as A . Therefore, the scatter
matrix of all samples Gt can be calculated as

Gt ¼ 1
M

XM
j¼1

Aj−A
� �T

Aj−A
� � ð2Þ

Then the following function J(X) can be employed to
evaluate the column vector X:

J Xð Þ ¼ XTGtX ð3Þ
This is the so-called generalized scatter criterion. The

column vector X maximizing the criterion can be
regarded as the optimal projection axis. In practice,
there may exists enormous projection axis and it is not
sufficient to select only on best projection axis. We
herein chose some projection axes (X1, X2, …, Xd) that
are under the orthonormal constraints and need to
maximize the generalized scatter criterion J(X), namely,

X1;X2;…;Xdf g ¼ arg max J Xð Þ
XT

i X j ¼ 0; i≠ j; i; j ¼ 1; 2;…; d:

�
ð4Þ

Actually, those projection axes, X1, X2, …, Xd, are the
orthonormal eigenvectors of Gt just corresponding to
the top d biggest eigenvalues. The optimal projection
vectors of 2DPCA, X1, X2, …, Xd, were then employed to
extract feature representation. For each sample matrix
Ai,

Yk ¼ AiXk ; k ¼ 1; 2;…; d ð5Þ
Then, we got a set of projected feature vectors, Y1, Y2,

…, Yd, which were just the Principal Component of the
sample Ai. In particular, each principal component in
2DPCA algorithm is a column vector, while the counter-
part in PCA is just a scalar. The principal component
vectors obtained by 2DPCA are employed for construct-
ing m × d matrix =[Y1, Y2,…, Yd], which is employed to
build feature representation of the matrix Ai.
Since 2DPCA is based on the two-dimensional matrix

directly rather than one-dimensional vector, so there is
no need to transform two-dimensional matrix into one-
dimensional vector prior for feature representation.
Therefore, 2DPCA has higher computing efficiency than
PCA and it can greatly accelerate the process of feature
extraction.

DVM
With the rapid development of software and hardware
techniques, a large number of machine learning algo-
rithms have spring up over the past several decades. In

Table 6 Predictive results of 5-fold cross-validation performed by different models on H. pylori dataset

Model Acc (%) Sen (%) Pre (%) MCC

Nanni [15] 83.70 79.00 85.70 N/A

Nanni [28] 84.00 86.00 84.00 N/A

Nanni and Lumini [29] 86.60 88.50 85.80 N/A

You [26] 87.50 88.95 86.15 0.7813

Martin [16] 83.40 79.90 85.70 N/A

Wong [27] 89.47 ± 1.05 89.18 ± 1.42 89.63 ± 1.77 0.8100 ± 0.0167

Our model 92.89 ± 0.39 90.78 ± 0.38 94.79 ± 0.46 0.85.66 ± 0.0035
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this article, our newly designed DVM classifier [23] was
used for detecting candidate interactions among proteins.
The DVM classifier belongs to Probably Approximately
Correct (PAC) learning algorithm, which can decrease the
generalization error, and has good robustness. For a test
sample y, the objective of the DVM algorithm is to seek
the k Nearest Neighbors (kNNs) to eliminate the impact
of isolated points. The collection of k nearest neighbors of
y is denoted as Xk = [x1, x2,…, xk]. Similarly, Xk can also be
expressed by Xk = [xk, 1, xk, 2,…, xk, c], where xk, j belongs
to the jth category. Therefore, the goal of DVM is turned
into minimizing the following function:

βk
δ βk
�� ��þ

Xd

i¼1
∅ y−Xkβk

� �
i

� �
þ γ

βk
Xk
p¼1

Xk
q¼1

wpq βpk−β
q
k

� �2

ð6Þ
where βk may be expressed as ½β1k ; β2k ;…; βck � or [βk, 1, βk, 2,
…, βk, c], where βk, i is the coefficient value of the i th cat-
egory; ‖βk‖ is the norm of βk and we here adopted Euclid-
ean norm in the following calculation since it could
prevent over-fitting and improve the generalization ability
of the model. To improve the robustness of the model, we
introduced a robust regression M-estimation function ∅
that is a generalized maximum likelihood descriptor pre-
sented by Huber to evaluate the related parameters based
on loss function [35]. In comparison, we finally selected
the Welsch M-estimator (∅(x) = (1/2)(1 − exp (−x2)) for
decreasing error and thus those isolated points had a small
impact for predictive model. The last part in Eq. (6) plays
the role of manifold regularization where wpq denotes the
similarity degree of the pth and qth nearest neighbors of y.
In the experiments, we adopted cosine distance as similar-
ity measure since it pays more attention to the difference
of direction between two vectors. Next, the Laplacian
matrix related to similarity measure can be denoted as

L ¼ D−W ð7Þ
where W is the similarity matrix whose element is
wpq(p = 1, 2,…, k; q = 1, 2,…, k); D denotes a diagonal
matrix and its element di in row i and column j is the
sum of wqj(q = 1, 2,…, k). Followed by Eq. (7), we refor-
mulated the final part of Eq. (6) into γβTk Lβk . Besides,
we also built diagonal matrix P = diag(pi) whose element
pi(i = 1, 2,…, d) is:

pi ¼ e−
y−Xk βkð Þið Þ2

σ2 ð8Þ
where σ is the kernel width that could be expressed as:

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðθ� y−Xkβk

� �T� y−Xkβk
� �

=d
q

ð9Þ

where d denotes the dimension of y and θ represents a

threshold parameter to suppress the outliers. In the ex-
periments, we adopted 1.0 for θ just same as the litera-
ture [36]. Based on formulas (7), (8) and (9), the
calculation for Eq. (6) could be converted to as follows:

argβk y−Xkβk
� �T βk

P y−Xkβk
� �þ δ βk

�� ��2
2
þ γβTk Lβk

ð10Þ
Based on the half-quadratic regularization strategy, the

solution βk for Eq. (10) could be represented by:

βk ¼ XT
k PXk þ δI þ γL

� �−1
XT

k Py ð11Þ
Once the involved coefficients were determined, the

test sample u could be predicted to be corresponding
category as long as the L2 norm of ‖u − Xkiβki‖ possesses
the global lowest value.

Ri ¼ i u−Xkiβki
�� ��; i ¼ 1; 2;…; c ð12Þ

With the help of manifold regularization and Welsch M-
estimator to curb the impact from those isolated points
and improve the generalization ability, our newly proposed
classifier DVM possesses strong generalization power and
robustness. All samples in the experiments could be di-
vided into two categories in total: interaction protein pair
(category 1) and non-interaction protein pair (category 2).
If the residual R1 is lower than the residual R2, we would
attribute the test sample u to the interaction protein pair,
or else non-interaction protein pair. As for the super pa-
rameters (δ, γ, θ) in DVM, the cost of directly searching
their optimal values is very high. Fortunately, our DVM
classifier is very robust and thus those parameters have
little effect on the performance for our predictive model as
long as they are in the corresponding wide range. Based on
the above knowledge, we optimized the model via the grid-
search method. At last, we selected 1E-4 and 1E-3 for γ
and δ in the experiments. As mentioned earlier, threshold θ
was set to 1.0 during the entire process of the experiments.
In addition, as for large-scale dataset, DVM would take
huge amount of calculation work to obtain the correspond-
ing representative vector, and then multi-dimensional
indexing and sparse representation techniques could be in-
troduced to accelerate the computing process.

Procedure of our proposed model
The overall process of our predictive model could be for-
mulated to two main steps: feature representation and clas-
sification. As the first step, feature representation itself
consisted of 3 sub-steps: (1) The Position Specific Iterated
BLAST (PSI-BLAST) tool [24] was employed for mining
the evolutionary information from protein amino acid resi-
due sequence and every protein molecule was expressed as
a corresponding PSSM matrix. The value of e-value and it-
erations of PSI-BLAST were optimized for 0.001 and 3,
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respectively; (2) Each PSSM matrix and its transposition
were multiplied and the 20 × 20 confusion matrix was ob-
tained accordingly; (3) The application of 2DPCA descrip-
tor, serialization and concatenation operations on the
feature matrices of the corresponding protein pair were
performed in order. Then, the final feature vector was
formed and can be treated as the input of the subsequent
classifier. Similarly, the second step of classification could
be divided into two sub-steps: (1) On the basis of three
benchmark datasets of Yeast, H. pylori and Human, our
proposed model was trained with the feature representation
produced by main step 1. (2) The established model was
then used to predict the potential interactions among pro-
teins on those gold datasets and the predictive performance
of the model was calculated subsequently. Moreover, a pre-
dictive model based on SVM and the same feature repre-
sentation was also constructed for the prediction of PPIs
and the performance comparison between DVM and SVM
based on Human dataset was performed accordingly. The
main schematic flow chart of our model is shown as Fig. 5.

Evaluation criteria
To assess the performance of our proposed model, 4
widely used evaluation indexes were employed in the ex-
periments, such as precision (Pre), sensitivity (Sen), ac-
curacy (Acc), and Matthews’s correlation coefficient
(MCC), which could be defined by:

Pre ¼ TP
TPþ FP

ð13Þ

Sen ¼ TP
TP þ FN

ð14Þ

Acc ¼ TPþ TN
TPþ FPþ TNþ FN

ð15Þ

MCC ¼ TP� TNð Þ− FP� FNð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FNð Þ � TNþ FPð Þ � TPþ FPð Þ � TNþ FNð Þp

ð16Þ
where TP refers to the number of physically interaction
protein pairs (positive samples) identified correctly while

FP represents the number of non-interaction protein
pairs (negative samples) identified falsely. Equally, TN
refers to the number of physically non-interaction sam-
ples identified correctly, while FN represents the number
of physically interaction samples identified mistakenly.
MCC is usually employed in machine learning for evalu-
ating the performance of a binary classifier. Its value is
located in the scale [− 1, 1], where 1 denotes a perfect
identification and − 1 a misidentification. In addition, we
also performed the predictive results to characterize
False Positive Rate (FPR) against True Positive Rate
(TPR) in term of different classification methods on sev-
eral benchmark datasets. Moreover, both Receiver Oper-
ating Characteristic (ROC) curve and the Area Under an
ROC curve (AUC) were employed to visually assess the
predictive power for the related methods. AUC repre-
sents the probability that a positive sample is ahead of a
negative one. The closer AUC is to 1.0, the higher per-
formance of the predictive model.
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Positive Rate
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