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Abstract

Background: Along with the development of precision medicine, individual heterogeneity is attracting more and
more attentions in clinical research and application. Although the biomolecular reaction seems to be some various
when different individuals suffer a same disease (e.g. virus infection), the final pathogen outcomes of individuals
always can be mainly described by two categories in clinics, i.e. symptomatic and asymptomatic. Thus, it is still a
great challenge to characterize the individual specific intrinsic regulatory convergence during dynamic gene
regulation and expression. Except for individual heterogeneity, the sampling time also increase the expression
diversity, so that, the capture of similar steady biological state is a key to characterize individual dynamic biological
processes.

Results: Assuming the similar biological functions (e.g. pathways) should be suitable to detect consistent functions
rather than chaotic genes, we design and implement a new computational framework (ABP: Attractor analysis of
Boolean network of Pathway). ABP aims to identify the dynamic phenotype associated pathways in a state-
transition manner, using the network attractor to model and quantify the steady pathway states characterizing the
final steady biological sate of individuals (e.g. normal or disease). By analyzing multiple temporal gene expression
datasets of virus infections, ABP has shown its effectiveness on identifying key pathways associated with phenotype
change; inferring the consensus functional cascade among key pathways; and grouping pathway activity states
corresponding to disease states.

Conclusions: Collectively, ABP can detect key pathways and infer their consensus functional cascade during
dynamical process (e.g. virus infection), and can also categorize individuals with disease state well, which is helpful
for disease classification and prediction.

Introduction
The general gene-set or gene module can be used to find
combinatory biomarkers or signatures to indicate par-
ticular phenotypic change of a biological system, e.g. the
disease development or worsening [1–3]. However, such

ab initio predictions usually have less interpretability in
biological researches [4]. Different from these conven-
tional methods, the pathway centered analysis can pro-
vide a new way to balance the discovery of interpretable
biological functions and the detection of new pathway
elements. Thus, these approaches could highlight the
conditional importance of prior-known pathways [5] in a
phenotype change/ transition [6], and also uncover its
new candidate underlying functions [7].
Biological pathway consists of a set of interactive genes

or other biomolecules, which is well-known to execute a
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series of functional cascades for particular cellular re-
sponse/outcome [8]. Nowadays, there are many carefully
curated pathways available to represent creditable func-
tional compositions and interactions [9], which are ex-
pected to targetedly capture the permutation of
established biological functions involved in the pheno-
type changes [10, 11].
Indeed, pathway centered models and methods have

been widely applied in diverse biological and clinical
studies. For instance, the well-known gene set enrich-
ment analysis (GSEA) [12] can recognize dys-regulated
pathway according to the measurement of status change
of a pathway. Similarly, many pathway-level aggregation
methods have been designed to investigate the biological
signatures of different phenotypes on the pathway activ-
ity level [13]. PAGODA can reveal multiple overlapping
aspects of transcriptional heterogeneity for coordinated
variability amongst tested cells, by evaluating biological
pathways as persistent cell-type specific features or tran-
sient processes [14]. The mendelian randomization-
based pathway enrichment analysis (MRPEA), has devel-
oped a pathway association analysis method for correct-
ing the genetic confounding effects of environmental
exposures during the genetic studies of human complex
diseases [15]. Pathifier is a principle curve based algo-
rithm to infer pathway deregulation scores for each
tumor sample on the basis of expression data by trans-
forming gene-level information into pathway-level infor-
mation [16]. A silico Pathway Activation Network
Decomposition Analysis (iPANDA) is designed for ro-
bust biomarker identification from gene expression data,
which estimates the pathway activation scores based on
the degree of differential gene expression and pathway
topology decomposition [17]. There are many further
improvements on these pathway-centered computational
approaches and their applications by machine learning
ideas and technologies [18–20]. A network-based
pathway-expanding approach is applied to take the topo-
logical structures of biological networks into account
[21]; especially, the interaction between internal and ex-
ternal genes of the pathway and between pathways, can
accurately and reliably identify significant pathways re-
lated to the corresponding disease [22]. And a multiple
kernel learning has been proposed to feature selection
by separately per data type and by pathway membership,
and this maximizes the amount of information used to
build effective prognostic prediction due to its usage of
all available data [23].
Actually, there exists some pathway-related studies

based on the time-course experiment and data, e.g. a
pathway-based phylogenetic approach [24], a web-based
software program Network Painter [25], and a new Wnt
signaling time-fit model [26]. However, there is still ur-
gent requirement on the computational characterization

of interactive pathways and their phenotype-associated
states, which should provide a new viewpoint of network
of networks for a biological system [27], and should also
supply new strategy to state prediction for the phenotype
change of a biological system.
Here, as shown in Fig. 1, we present a composite com-

putational framework (ABP: Attractor analysis of Bool-
ean network of Pathway) to investigate the dynamical
biological process (e.g. state transition of biological sys-
tems). ABP reconstructs the Boolean network (BN) of
pathways by the pathway activity profiles, and then ap-
plies the BN attractors to indicate the steady pathway
states, which can quantitatively characterize the bio-
logical system status corresponding to different condi-
tions or phenotypes (e.g. normal and disease). By wide
evaluation on time-course gene expression datasets of
virus infections, ABP has shown its efficiency and accur-
acy on identifying key phenotype-associated pathways
subjected to virus infection; and rebuilding these key
pathways’ consensus functional cascade during individ-
ual specific virus infection; and especially categorizing
individuals with disease state well, which should be help-
ful for disease classification and prediction in personal-
ized medicine.

Methods
Our proposed ABP framework consists of a few main
steps and parameters as illustrated in Fig. 1:

(1) Normalization of gene expression data produced by
high-throughput technologies, e.g. RNA sequencing
or microarray;

(2) Quantification of pathway activity according to
pathway measuring approaches, i.e. GSVA using the
expression data of each sample and gene-sets from
KEGG database;

(3) Selection of key phenotype-associated pathways
through differential significance test (P < 0.05),
where the number of finally selected pathways is
dependent on the maximal number of significantly
dys-regulated pathways at different time points;

(4) Extraction of individual specific time-course path-
way activity profile (i.e. every individual would have
multiple samples collected at consecutive time
points), thus, the organization of pathway activity
profile is a cubic dataset, including key pathways,
individuals, and time points; of note, the number of
key pathways should be less than the number of
time points, which is required by the follow-up BN
construction;

(5) Reconstruction of individual specific Boolean
network based on corresponding time-course path-
way activity profile, which is calculated by BoolNet
method, using binarizeTimeSeries function with
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“scanStatistic” method, windowSize with intervals
from 0.1 to 0.2, sign.level with intervals from 0.05
to 0.15; and applying reconstructNetwork function
with “bestfit” method and default arguments.

(6) Extraction of individual specific attractors
corresponding to each Boolean network, which
represent the individual specific steady pathway
state so as to distinguish dissimilar phenotypes by
unsupervised (i.e. HCL) or supervised (i.e. SVM
with radial kernel) methods.

These key steps applied in above framework will be in-
troduced in details in below.

The calculation of pathway activity scores
Due to the reduced costs of high-throughput technolo-
gies, omics data is being produced under more complex
experimental designs with multiple phenotypic and/or
clinical samples. The Gene Set Variation Analysis
(GSVA) [28] allows to assess the underlying pathway ac-
tivity variation by transforming the gene by sample
matrix into a gene set by sample matrix, which just pro-
vide the relative enrichment (scores) of pathways across
the samples to support follow-up traditional analytical
methods in a pathway focused manner, rather than the
only qualitative enrichment with respect to a phenotype

change. In this study, we apply GSVA to obtain the ac-
tivity scores of KEGG pathways at multiple time points,
which will be further used in following network and dy-
namic analysis on pathway level rather than gene level.
Notably, several approaches have proposed some

pathway-level aggregation methods, but, it still remains un-
clear how they compare with one another due to limited
evaluations. One recent benchmarking investigation has
pointed that there is actually necessity for further im-
proving pathway-level aggregation [29]. As known,
there were remarkable outcome differences for differ-
ent pathway tools even when the same data input.
For example, the results of a tested approach were
typically consistent across different datasets in cancer
studies, yet different between methods [30].
Thus, any alternative kinds of activity score can also

be used in this step if necessary in particular analysis
routines, which would supply tunable analysis strategies
dependent on researcher’s objective and experience.

The rank of dys-regulated pathways
With an assumption of that the subjects / individuals
with the same clinical symptoms should have the similar
molecular / pathway reaction mechanism, the pathway
activity may be various in individuals, but the final
steady state of a network among pathways should be

Fig. 1 The framework ABP (Attractor analysis of Boolean network of Pathway) of pathway-centered dynamical network analysis. It includes several
steps: transforming highthrough-put data into pathway score by GSEA; selecting dys-regulated pathways along time point; inferring network
based on BoolNet; and finally computing attractors for each individual to describe the steady state of disease
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similar among the same symptom group or distinguish-
ing between different symptom groups. Thus, we rank
the differentially activated pathways between different
phenotypic individual groups at each time point, which
are dependent on the difference test of the activity
scores by Wilcoxon rank sum test.

The selection of key pathways during dynamical
biological process
Then, according to the number of high-ranked dys-
regulated pathways at each time point, we determine one
critical time point, and the pathways significantly enriched
(e.g. observed) at this time point are key pathways. These se-
lected key pathways and their activities across consecutive
time points can be regarded as the state indices which could
trace the active pathway during a dynamical process, even in
each subject. Noted, the final state or converged state (rather
than currently observed state) of one pathway is character-
ized and quantified by the steady sate of this pathway in a
subject, and this steady sate is modeled by network attractor
and deduced from following Boolean network analysis.

The re-construction of Boolean network among key
pathways
To characterize the dynamical features of a biological
system among above filtered key pathways, a network of
pathways is constructed based on Boolean network
model. At the starting point for a Boolean Network
Model, N kinds of interacting nodes (i.e. pathways or
meta-genes) are collected, the states of which are mod-
eled as either “on” (active, or up-regulated) or “off” (in-
active, or down-regulated). Then, at any given time, the
system of such N key pathways is just in a system- or
network-state. Along with a dynamical process, the sys-
tem will change from one state to another depending on
the interactions between these pathways. Thus, from any
start state, the system is assumed to happen a confirmed
sequence of state changes and ends up in a stable state
(known as an attractor), and this sequence or trajectory
of such system state change is defined as a Boolean
process corresponding to discretized time-course data.
In practice, the Boolean network model is applied to

convert the gene or pathway expression snapshots over a
time course into a Boolean form by noting which genes
or pathways are active or not. The dynamics of a Bool-
ean network (BN) model (simply using the current state
to determine the next state) can be described as follows:

si tþ 1ð Þ ¼

1
X

j

ajis j tð Þ > 0

0
X

j

ajis j tð Þ < 0

si tð Þ
X

j
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where, the si(t) represents the state of some variable (e.g.
a node in network) i at time point t; aji points the influ-
ence weight of another variable j for this variable i; thus,
the state of variable i at time point t + 1 would be deter-
mined by all other variables’ states at the time point
ahead, i.e. at time point t.
In this study, the BoolNet package is used for the con-

struction and evaluation of Boolean networks, which has
been successfully applied in many biological and bio-
medical researches [31]. In particular, BoolNet is devel-
oped for the reconstruction and analysis of binary gene-
regulatory networks: (i) the Network reconstruct func-
tion is used for inferring Boolean networks from tem-
poral gene expression or pathway activity profiles by
popular reconstruction algorithms; and (ii) the binarize
Time Series function is used for binarizing the real-
valued time series from these reconstruction algorithms.
Noted, the tuning parameters used in BoolNet are
searched by grid method and determined by the follow-
up state clustering performance. Of course, some alter-
native Boolean network analysis methods are worthy of
future benchmark investigations.

The biological state clustering based on attractors of
temporal network of key pathways
As assumed, the attractors represent a final steady state
of a biological system, e.g. the success-infection or
failure-infection states during virus infection. Obviously,
these final states are expected to classify or even predict
the particular phenotypes of individuals. Here, it is rele-
vant to evaluate the indicative power of those state fea-
tures rather than expression features, so that, the
clustering of those states and expressions would be ap-
plicable and comparable, e.g. hierarchical clustering of
pathway states and gene expressions respectively. How-
ever, in math terms, a state of an attractor is just a bin-
ary vector (attractor with simple structure) or a group of
vectors (attractor with loop structure), so the conven-
tional clustering method is not applied before we can
supply the distance matrix among states. To generally
measure the distance between two states (attractors), the
canonical-correlation analysis (CCA) is used to infer the
association information from cross-covariance matrices,
which can indicate the association (distance) between
two groups of vectors, i.e. two attractors.
Given two matrix X and Y, canonical-correlation ana-

lysis is to seek two vectors a and b to maximize the cor-
relation between a ′X and b ′ Y, i.e.

max
a;b

ρ a
0
X; b0Y

� �
¼ max

a;b

a0ΣXYbffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0ΣXXa

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0ΣYYb

p

where, ΣXX = Cov(X, X), ΣYY = Cov(Y, Y), ΣXY = Cov(X,
Y), and Cov(., .) is covariance matrix.
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Then, the distance matrix converted from CCA
matrix between multiple attractors corresponding to
multiple individual Boolean networks, is used to build
the hierarchical tree. Two clusters are divided, expect-
ing one corresponds to Sx group and the other one
corresponds to Asx group. And the clustering accur-
acy, defined as the application efficiency, is evaluated
by the index Acc [32]. Given samples in Sx and Asx
groups that are:

Sif g2i¼1

where the state-based individuals clustering also provide
two individual clusters:

Cj
� �2

j¼1

Then, the application efficiency of network reconstruc-
tion is calculated as:

Acc ¼
min

τ 1;2½ �ð Þ

X2

j¼1

j Cj⊓Sτ jð Þ j

X2

i¼1

j Si j

Besides, the performance measurement of SVM adopts
the AUC with random 5-fold cross-validation, which is
used to evaluate the robustness of SVM features (i.e.
pathway states as indicators).

Results and discussion
Instruction of datasets and experimental steps
To assess ABP, we collected and analyzed serially sam-
pled gene expression data from a challenge study [27],
noted as Rhinovirus UVA data. This data mainly con-
tains 20 human volunteers (subjects) inoculated with live
human rhinovirus (HRV), and each subject was serially
sampled for a few days quantifying temporal whole
blood gene expression by Affymetrix GeneChips tech-
nology, clinical symptom scores self-reported over 8–10
symptoms, and viral shedding from periodic nasopha-
ryngeal titrations [33]. Each subject has different samples
on 15 time points, one time point before viral Inoculum
and the other 14 time points after inoculation. Each sub-
ject was designated as a symptomatic subject (Sx) or an
asymptomatic subject (Asx) by a modified Jackson score
based on these clinical symptoms self-reported [33]. The
analyzed HRV UVA subjects were divided in to Sx group
(10 individuals) and Asx group (6 individuals). Thus, ac-
tually, there were (10 + 6)*15 = 240 gene expression pro-
files used in this data study.
Based on the pathway activities across multiple sam-

ples, we determined the critical time point and corre-
sponding selected pathways. Seeing Fig. 2, the number

of differentially activated pathways achieved maximum
at 12th time point (i.e. 48 h after inoculation), and 13
pathways significantly changed at this time point suggest
a critical point between two groups of subjects. These
selected pathways in Table 1 were applied as the activity
indices aiming to trace the state change of pathways
across consecutive time points in each subject, and the
final state of pathways was determined by the steady sate
of a Boolean network corresponding to each subject.
Noted, at 14 th time point, there were also nine dys-
regulated pathways observed, only two of which were
also observed at 12 th time point (i.e. Fatty acid degrad-
ation and Glycine, serine and threonine metabolism),
and the remains had less significance relevant to the
studied disease. Thus, the selected 13 pathways at 12th
time point should be more pathogen informative in fol-
lowing analysis.

Key pathways associated with individual phenotypes
Rhinovirus (RV) leads the majority of common colds,
and also causes exacerbations in patients with
asthma and chronic obstructive pulmonary disease.
In the detected key pathways by ABP, many signal-
ing pathways were efficiently detected and could be
productive entry pathways for HRV. By examining
the effects of tiotropium on RV infection and RV
infection-induced airway inflammation, RV14 titres,
RNA and cytokine concentrations would be reduced,
along with the reduction of the expression of inter-
cellular adhesion molecule and the number of cellu-
lar acidic endosomes modulating airway
inflammation in rhinovirus infection [34]. Influenza
virus or HRV infections of the upper airway can
cause colds and the flu, and they can also activate
exacerbations of lower airway diseases so as to in-
duce chronic obstructive pulmonary disease and
asthma, where a systems approach has identified the
temporally changing patterns of host gene expression
from these viruses [35], and a transmembrane pro-
tein RNASEK is needed for the replication of HRV,
influenza A virus, and dengue virus [36]. In addition,
a global study has also confirmed that RSV is an im-
portant respiratory pathogen in the elderly, and pre-
ventative measures such as vaccination could
decrease severe respiratory illnesses and complica-
tions in the elderly [37]. Effective drugs and modifi-
cation of pre-existing drugs or regimens would be
improve to increase effectiveness of antiviral therapy,
Pleconaril has some activity against enteroviruses
and some efficacy against rhinoviruses in ongoing
trials [38], e.g. it has been suggested that quercetin
inhibits RV endocytosis and replication in airway
epithelial cells at multiple stages of the RV life cycle
[39].
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In addition, a few our detected biological processes and
functions are also associated with virus infection [40–42],
such as HRV infection, as discovered in Table 1 (Noted, the
metagene id in this table will be used to label the corre-
sponding pathway in following figures for conveni-
ence). For example, the transient receptor potential
(TRP) channel family are potential candidates for
sensing physical and chemical stimuli, and TRP chan-
nels +may be novel therapeutic targets for controlling
virus-induced cough [43]; Amoebiasis, the condition
of harbouring the protozoan parasite Entamoebahisto-
lytica, is a major health problem throughout the
world [44], and parasite virulence can implicate mul-
tiple amoebic and host factors through complex host-

parasite interactions [45]; and HCV infection is able
to induce autophagy and downstream UPR molecules
regulating key autophagic gene expression, which just
can similarly promote human rhinovirus infection via
the autophagic pathway [46, 47].

Temporal module network charactering the dynamical
process of individual phenotype appearance
For each subject / individual, the topological structure of
his / her Boolean network is displayed in Fig. 3. Obvi-
ously, these structures can’t classify the Sx and Asx
groups directly, although there were some group specific
edges observed in the networks. For instance, the regula-
tion association between “Hepatitis C” and “Influenza A”

Table 1 The key pathways detected in HRV dataset
Metagene
ID

Kegg
ID

Pathway
ID

Mgene 1 hsa00062 Fatty acid elongation

Mgene 2 hsa00260 Glycine, serine and threonine metabolism

Mgene 3 hsa00630 Glyoxylate and dicarboxylate metabolism

Mgene 4 hsa03320 PPAR signaling pathway

Mgene 5 hsa04115 p53 signaling pathway

Mgene 6 hsa04725 Cholinergic synapse

Mgene 7 hsa04750 Inflammatory mediator regulation of TRP channels

Mgene 8 hsa04920 Adipocytokine signaling pathway

Mgene 9 hsa04972 Pancreatic secretion

Mgene 10 hsa05143 African trypanosomiasis

Mgene 11 hsa05146 Amoebiasis

Mgene 12 hsa05160 Hepatitis C

Mgene 13 hsa05164 Influenza A

Fig. 2 The number of dysfunctional pathways observed in different time points. The vertical axis of the histogram represents the number of dys-
regulated pathways observed at particular time point; and the horizontal axis of the histogram represents the time points
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pathways, has many observations in the Sx-individual
specific networks (5 in 10) rather than in the Asx-
individual specific networks (0 in 6), which is

represented by the edge (meta-)Gene12 - > (meta-
)Gene13; or the regulation association between
“Amoebiasis” and “Glycine, serine and threonine

Fig. 3 The topological structure of Boolean network corresponding to each subject. The Sx individual is labeled with red box; the Asx individual
is labeled with green box; and the individuals labeled with grey box have not determinate clinical phenotype evidences in original report. Noted,
each gene id is actually a metagene id which represents a particular pathway listed in Table 1
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metabolism” pathways, also has some observations in
the Sx-individual specific networks (4 in 10) but none in
the Asx-individual specific networks (0 in 6), which is
represented by the edge (meta-)Gene11 - > (meta-
)Gene2. Besides, there is a cross-reactivity between hepa-
titis C virus and Influenza A virus reported, and the host re-
sponses to an infectious agent can be influenced by such
cross-reactive memory cells [48]. Thus, the “Hepatitis C”
and “Influenza A” pathways, along with their involved genes

/ proteins, and even their interaction could all play import-
ant roles in HRV infection through a transferable manner.

Attractor of module network indicating the pathways
states corresponding to phenotypes
In addition to the aforementioned comparison and dis-
cussion about topological structures of individual spe-
cific BN, we further compared the individual specific
final states of BN represented by the network attractors

Fig. 4 The attractor states of Boolean network corresponding to each subject. The Sx individual is labeled with red box; the Asx individual is
labeled with green box; and the individuals labeled with grey box have not determinate clinical phenotype evidences in original report
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of networks. As illustrated in Fig. 4, there were several
obvious common pathways observed in active states for
Sx or Asx subjects, e.g. Hepatitis C and Influenza A, in-
dicating the shared molecular mechanism suffering from
virus infection. And most other pathways will be active
or not for different subjects, but not distinguish for Sx
and Asx groups separately. By contrast, integrating all
pathways’ states, a simple clustering (i.e. HCL) can dis-
tinguish the Sx and Asx individuals with an accuracy lar-
ger than 80%, and would be more efficient than that

based on topological structures in a parameter space, as
displayed in Fig. 5a. Next, the AUC of SVM with 5-fold
cross-validation had also been used to evaluate the ro-
bustness of our adopted network attractor based classifi-
cation model. The results in Fig. 5b illustrated again the
classification model trained from pathways’ states can
achieve higher AUC than the classification model
trained from pathways’ topological structures. In
addition, in a bootstrap manner, by removing the sam-
ples at each time point, the attractor based model had

Fig. 5 The efficiency for discriminating Sx and Asx individuals by the state and structure of Boolean network respectively, with statistic of Acc
under different parameters. a The comparison between pathway activity based model and pathway network based model by Acc from clustering
performance. b The comparison between pathway activity based model and pathway network based model by AUC from classification
performance. c The robustness evaluation of pathway activity based model in a bootstrap manner
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been re-built and its performances kept well (i.e. with
robustness) as shown in Fig. 5c. These results supported
again the merit of this systems biology research, which
provided discriminative systematical features (i.e. net-
work features) to characterize the phenotype diversity,
and also revealed the interpretable mechanisms under-
lying individual specific phenotypic changes. It should be
noted that, although there are only 20 individuals in this
data, the number of samples is actually larger than 200.
And in the efficiency evaluation by hierarchical cluster-
ing or SVM, there are indeed 13 features used, which is
less than the number of observations of model. Thus,
the performance obtained here is not trivial. Of course,
the evaluation on more individuals with multiple tem-
poral samples should be further carried on in future
work.

Replicate discovery on independent dataset
To further validate the robustness of ABP, we used an-
other gene expression data also inoculated with live hu-
man rhinovirus (HRV) [27], and this dataset was
referred to Rhinovirus Duke data. This new dataset in-
cludes serially sampled gene expression data from 19 hu-
man volunteers (subjects). Each subject has different
samples in 19 time points, one time point before the
viral Inoculum and the remaining 18 time points behind
inoculation. That means there are actually 19*19 = 361
expression profiles here. According to a modified Jack-
son score computed from the self-reported clinical
symptoms, the analyzed HRV Duke subjects were also
divided in to Sx group (9 individuals) and Asx group (3

individuals) and others [27]. We used the same key path-
ways with an assumption that the pathway reaction
mechanism would be similar in the same disease, and
more importantly this can also validate key pathways in
an independent test. From the results on this dataset, we
actually observed again that Boolean network model can
mimic well a dynamical process that the biological sys-
tem changes from one state to another. Especially, the
steady state of the network attractors can distinguish Ax
and Asx individuals efficiently (Fig. 6), which was also
robust on parameters than that based on network struc-
tures. Notably, in the unsupervised evaluation as cluster-
ing in Fig. 6a, the steady state of the network attractors
obviously outperformed the structure of network. Mean-
while, in the supervised evaluation as classification in
Fig. 6b, the steady state of the network attractors tended
to have satisfactory AUC performance (e.g. > 0.8) on lar-
ger parameter scopes than the structure of network, al-
though the median performance of the structure of
network seemed to be higher possibly caused by sample
unbalance.

Conclusions
In this study, we designed and implemented a computa-
tional framework ABP to investigate the dynamic of bio-
logical process for individual comparisons, especially on
the network of pathways rather than genes. Based on the
quantification of pathways activity (i.e. estimated activity
score based on expression), the Boolean networks are re-
constructed for each individual, so that the important
network attractor can be obtained and applied to infer

Fig. 6 The efficiency for discriminating Sx and Asx individuals by the state and structure of Boolean network respectively on independent dataset,
with statistic of Acc under different parameters. a The comparison between pathway activity based model and pathway network based model by
Acc from clustering performance. b The comparison between pathway activity based model and pathway network based model by AUC from
classification performance
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the final stable biological system state of individuals after
particular phenotypic change (e.g. virus infection).
Noted, some other pathway score like Pathifier has also
been tested, however, the results show it is weak to ob-
tain reasonable Boolean network, which would be caused
by these scores being limited into a numeric region that
would greatly affect the following network inference.
Thus, the optimized combination of pathways activity
estimation and Boolean network construction should be
deserved to future study. Actually, both the structure
and the attractor of the Boolean network can reveal indi-
cative features (e.g. pathway associations or pathway ac-
tivations) distinguishing Sx individuals or its sub-group
from the Asx individuals. They would provide candidate
disease identification or prediction approaches when
there are enough individuals with temporal samples
available [49].
Indeed, our proposed ABP has shown its efficiency

and accuracy on identifying phenotype-associated path-
ways. These identified pathways could explain the
phenotypic change in a state-transition manner, which is
strongly supported by wide analysis and evaluation on
multiple temporal gene expression datasets of HRV in-
fections. A future direction is to further investigate how
to build attractor-focused disease prediction model [50],
and especially to release the model implementation as a
web service for wide bioinformatics and biomedical
study and application.
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