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Abstract

Background: Protein structural class predicting is a heavily researched subject in bioinformatics that plays a vital
role in protein functional analysis, protein folding recognition, rational drug design and other related fields.
However, when traditional feature expression methods are adopted, the features usually contain considerable
redundant information, which leads to a very low recognition rate of protein structural classes.

Results: We constructed a prediction model based on wavelet denoising using different feature expression
methods. A new fusion idea, first fuse and then denoise, is proposed in this article. Two types of pseudo amino
acid compositions are utilized to distill feature vectors. Then, a two-dimensional (2-D) wavelet denoising algorithm
is used to remove the redundant information from two extracted feature vectors. The two feature vectors based on
parallel 2-D wavelet denoising are fused, which is known as PWD-FU-PseAAC. The related source codes are
available at https://github.com/Xiaoheng-Wang12/Wang-xiaoheng/tree/master.

Conclusions: Experimental verification of three low-similarity datasets suggests that the proposed model achieves
notably good results as regarding the prediction of protein structural classes.

Keywords: Prediction of protein structural classes, Different feature expressions, Parallel 2-D wavelet denoising,
Fusion

Background
Protein structural class prediction is a heavily researched
subject in bioinformatics and performs a vital role in
many related fields and applications, such as protein
functional analysis, protein folding recognition, protein
binding, rational drug design and so on [1–11]. How-
ever, in the light of newly discovered proteins, it will
take time and money to determine the structure of pro-
teins by traditional experimental methods, so many
computational methods have been proposed to predict
protein structural classes. Because the sequence of

amino acids determines the specific spatial structure of
protein, the method of predicting structural classes by
sequence is a concise and effective way, which can help
guide the direction of biological experiment, save the
cost of biological experiment and provide useful infor-
mation for a heuristic approach [9–12]. In particular,
when the feature information of proteins is extracted,
they often contain considerable redundant information,
resulting in an unsatisfactory recognition rate for struc-
tural classes of protein.
To solve the problems of redundant information and

low recognition rates, many computational methods
have been proposed to predict protein structural classes
during the past 30 years. One such method is the feature
extraction method based on the information in amino
acid sequences. Initially, amino acid composition [12,
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13] (AAC) was used to extract the feature information.
This method calculated the proportion of twenty amino
acid residues in the sequence and expressed the feature
information of the sequence by numerical vectors.
Pseudo amino acid composition [14–19] (PseACC) was
also used to extract its feature information. This method
considered not only the composition of amino acid resi-
dues but also their hydrophobicity and other physical
and chemical properties. In addition, peptide compos-
ition [20, 21] was adopted to extract its feature informa-
tion. Compared with the previous two methods, this
method considered the sequence factor between amino
acid residues. These methods have achieved good pre-
diction results on high similarity datasets but poor re-
sults on low similarity datasets. The prediction accuracy
of these methods can reach more than 90% on high
similarity datasets but only approximately 50% on low
similarity datasets. Some improved feature extraction
methods have been proposed. Lukasz et al. proposed the
SCPRED method [22], which constructed feature vectors
based on predictive secondary structure. Zhang pro-
posed a TPM matrix to represent the feature on the pre-
dictive secondary structure [23], and Dai et al. [24]
proposed a statistical feature method on the predictive
secondary structure feature, which takes the secondary
structure feature as part of the feature vector. In Ding
[25], a multidimensional representation vector is con-
structed to predict protein secondary structural classes.
Some methods for fusing multiple features such as fea-
ture selection [26] are also proposed. Chen et al. pro-
posed the fusion of multiple features [27], which
combined the derived structure information of se-
quences with the physicochemical properties [28]. Nanni
et al. proposed a new feature fusion method based on
the features of the primary sequence and the features of
the secondary structure based on prediction [29]. Wang
et al. [30] fused the improved simplified PSSM with sec-
ondary structure features. In addition, some other clas-
sical feature extraction methods have been proposed,
such as Dehzangi et al., who used piecewise distribution
and piecewise autocovariance ideas [31]. It is noted that
it is hard for the above feature fusion algorithms to re-
duce the redundancy of feature information, which thus
makes prediction accuracy hard to improve. Based on
this properity, Liu et al. used a recursive feature selec-
tion algorithm to select the optimal feature vector [32].
The second is the classification algorithm. As far as

the four common cases of structural classes, all-α, all-β,
α/β and α + β are concerned, how to distinguish them
accurately is essential an efficient multi-classification
problems. Multiple classification and various machine
learning algorithms have been applied to protein classifi-
cation prediction, such as neural networks, fuzzy cluster-
ing, Naive Bayes, support vector machines (SVM), K-

nearest neighbors (KNN) and the correlation coefficients
methods [12, 33–40]. However, because the dataset used
in protein structure prediction is usually small sample
data, and the neural network classification algorithm re-
quires a large amount of data, its performance cannot be
fully developed. The fuzzy clustering algorithm also faces
the same problem because the sample size is too small
to cluster well, resulting in poor prediction results. For
Naive Bayesian classification, the premise is that there is
no correlation between the features and attributes, and
it is sensitive to the form of data input. These factors
affect the performance of classification prediction to a
certain extent. Support Vector Machine can also play a
role in classification performance when there are few
data samples, but the process of searching parameters is
highly time-consuming. The K-nearest neighbor algo-
rithm is simple in theory, easy to implement, simple and
efficient. This algorithm is also suitable for classification
of small sample data. Later, some improved classification
algorithms have been proposed. For example, Chen et al.
proposed a method of fusing multiple support vector
machines [41]. This method divides the extracted feature
vectors into three parts, each part is input into a corre-
sponding classifier, and then synthesizes the classifica-
tion results of the three parts, voting to determine the
category of the samples to be tested. The improved
method is to fuse the same classifier. After that step, the
fusions of different types of classifiers have been pro-
posed, such as Dehzangi and other classifiers [42]. The
classifiers are AdaBoost, M1, LogitBoost, SVM, MLP
and Naive Bayes. However, the problem that redundant
information in the feature vector affects the
generalization ability of the model has not been solved
by these methods.
In this article, to deal with this problem, the newly de-

veloped model for predicting structural classes of pro-
teins is put forward based on different feature
expression methods, known as PWD-FU-PseAAC. In
order to prove the superiority of the proposed method,
the extracted feature vectors are based on the primary
sequence information of proteins. First, the features of
the primary sequence of proteins are distilled by the
traditional feature expression methods, type 1 pseudo
amino acid composition (PseAAC) [43] and type 2
pseudo amino acid composition [44]. Since type 1
PseAAC is popularly used in many researches, here we
explain a little about type 2 PseAAC. In Chou [44], type
2 PseAAC is also called ‘amphiphilic pseudo amino acid
composition’, whose form is like AAC except much
more information about the distribution of the hydro-
phobic and hydrophilic amino acids of a protein. Second,
two-dimensional multiscale wavelet denoising is used to
process the feature vectors extracted by two feature ex-
pression methods, removing the redundant information
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from them. In the field of mathematics, a new direction
of rapid and groundbreaking development is wavelet
analysis, which has been increasingly widely utilized in
the field of bioinformatics, particularly for protein struc-
tural prediction and functional analysis. This analysis
has the characteristics of local transformation in the
time domain and frequency domain and may effica-
ciously extract information from signals and perform
multiscale fine analysis of functions or signals through
scaling and translation operations. Wavelet denoising
[45] is one of the significant branches of wavelet ana-
lysis, which can efficaciously eliminate redundant infor-
mation of the extracted feature vectors, making the
information more stable and efficacious, and improving
the accuracy of prediction. Due to the complexity of the
protein structure, it can be reasonably to employ two-
dimensional (2-D) wavelet de-noising rather than one-
dimensional (1-D) wavelet de-noising. To illustrate the
validity of 2-D wavelet denoising, it is compared with
the 1-D wavelet denoising in the following experimental
parts. Third, the new feature vectors are obtained by fus-
ing the two different feature vectors after denoising. Fi-
nally, the optimal feature vectors are treated as input
data of the KNN to predict structural classes of proteins.
To estimate the performance of our presented model,
we adopt the jackknife test as a validation method to
carry out relevant experimental analysis on the three
low-similarity datasets. The final experimental outcomes
indicate that our model has higher overall prediction ac-
curacies than other methods.

Methods
Datasets
To compare with current methods fairly and objectively,
three low-similarity benchmark datasets, the 25PDB
[46], the 1189PDB [47] and the 640PDB [48], are se-
lected as our experimental datasets, which are structural
protein sequences with internal similarities of less than
25, 40 and 25%, respectively. The datasets have four cat-
egories, the details of which are shown in Table 1.

Feature extraction
In this article, the traditional feature expression
methods, two types of pseudo amino acid compositions,
are applied to convert the primary sequences of protein
into numerical feature vectors. As known to all, pseudo

amino acid composition is an improved expression on
the basis of amino acid composition, not only consider-
ing the frequency of amino acid residues in the sequence
but also considering the physicochemical properties of
amino acid residues. There are two types of pseudo
amino acid composition: parallel correlation type and se-
quence correlation type. For convenience, the pseudo
amino acid composition of the parallel correlation type
is called type 1 pseudo amino acid composition, and that
of the sequence correlation type is called type 2 pseudo
amino acid composition.

(1) Type 1 pseudo amino acid composition

Type 1 pseudo amino acid composition was proposed
by Chou in 2001 [43]. This composition considers not
only the hydrophilicity and hydrophobicity of amino acid
residues, but also the quality of side chain groups of
amino acid residues. Type 1 pseudo amino acid compos-
ition is used to extract the features of structural protein
sequences.
Thus, a protein sequence can be transformed into 20+

λ dimensional numerical vectors, that is, PPseAAC _ type1 = [
p1, p2, ......, p20 + λ]

T, where pu can be calculated from eq.
(1):

pu ¼

f u
X20

i¼1

f i þ ω
Xλ

j¼1

θ j

1≤u≤20ð Þ

ωθu−20
X20

i¼1

f i þ ω
Xλ

j¼1

θ j

20þ 1≤u≤20þ λð Þ

8
>>>>>>>>><
>>>>>>>>>:

ð1Þ

where fi is the frequency of 20 amino acid residues in
protein sequence P; w is the weight factor, which is gen-
erally set to 0.05; λ is the hierarchical factor, which is
less than the total length of the sequence N; θj is the se-
quence correlation coefficient of the j-th layer, which
can be calculated from eq. (2):

θλ ¼ 1
L−λ

XL−λ

i−1

Φ Ri;Riþλð Þ ð2Þ

In addition:

Φ Ri;Rj
� � ¼ 1

3
H1 Rj

� �
−H1 Rið Þ� �2 þ H2 Rj

� �
−H2 Rið Þ� �2 þ H3 Rj

� �
−H3 Rið Þ� �2n o ð3Þ

Among them, H1(Ri), H2(Ri) and H3(Ri) represent the
hydrophobicity, hydrophilicity and the quality of side
chain groups of amino acid residues, respectively.

(2) Type 2 pseudo amino acid composition

Table 1 Detailed information of the two datasets

Dataset Number of proteins

all-α all-β α/β α + β Total

25PDB 443 443 346 441 1673

1189PDB 223 294 334 241 1092

640PDB 138 154 177 171 640
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Type 2 pseudo amino acid composition was proposed
by Chou in 2005 [44] because it considers the hydrophil-
icity and hydrophobicity of amino acid residues, also
known as amphipathic pseudo amino acid composition.
In this article, type 2 pseudo amino acid composition is
also used to extract the features of structural protein
sequences.
Thus, a protein sequence can be transformed into 20+

2r dimensional numerical vectors, with PPseAAC _ type1 = [
p1, p2, ......, p20 + 2r]

T, where pu can be calculated from
equation (4):

pu ¼

f u
X20

i¼1

f i þ ω
X2r

j¼1

τ j

1≤u≤20ð Þ

ωτu
X20

i¼1

f i þ ω
X2r

j¼1

τ j

20þ 1≤u≤20þ 2rð Þ

8
>>>>>>>><
>>>>>>>>:

ð4Þ

where r is the hierarchical factor, which is less than the
total length of the sequence N; τj is the sequence correl-
ation coefficient of the j-th layer, which can be calcu-
lated from eq. (5):

τ1 ¼ 1
L−1

XL−1

i¼1

H1
i;iþ1

τ2 ¼ 1
L−1

XL−1

i¼1

H2
i;iþ1

τ3 ¼ 1
L−2

XL−2

i¼1

H1
i;iþ2

τ4 ¼ 1
L−2

XL−2

i¼1

H2
i;iþ2

⋯⋯⋯

τ2λ−1 ¼ 1
L−λ

XL−λ

i¼1

H1
i;iþλ

τ2λ ¼ 1
L−λ

XL−λ

i¼1

H2
i;iþλ

; ; ; λ < Lð Þ

8
>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

ð5Þ

In addition:

fH1
i; j ¼ H1 Rið Þ�H2 Rj

� �

H2
i; j ¼ H2 Rið Þ�H2 Rj

� � ð6Þ

where H1(Ri) refer to the hydrophobicity of amino acid
residues, and H2(Ri) refer to the hydrophilicity of amino
acid residues.

Two-dimensional wavelet denoising
The process of wavelet denoising includes the following
three parts: wavelet transform, processing of wavelet co-
efficients and wavelet inverse transform [49]. There are
three commonly used methods of wavelet denoising:

wavelet threshold denoising, modulus maximum denois-
ing and spatial correlation denoising. To suppress the
noise in the high frequency section and remove redun-
dant information, the wavelet threshold denoising
method is adopted. In other words, the wavelet denois-
ing method used refers to the wavelet threshold denois-
ing method in this paper.
This method’s decomposition and reconstruction can

be expressed as follows:

f 0↔

f 1L↔f f 2L↔f::: f n−1L ↔f f nL

f nHf f nHH
f nHV
f nHD

f 2Hf f 2HH
f 2HV
f 2HD

f 1Hf f 1HH
f 1HV
f 1HD

8
>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð7Þ

where f 0 represents the original signal; f iL represents the
i-th layer low frequency component obtained by wavelet
decomposition; f iH represents the i-th layer high fre-
quency component obtained by wavelet decomposition;
It contains three high-frequency components, in which
f iHH refers to the horizontal component, f iHV refers to

the vertical component and f iHD refers to the diagonal
component.
Then, the above can be expressed as:

f f 0 ¼ f 0L
f k−1L ¼ f kHH⊕ f kHV⊕ f kHD

� �
⊕ f kþ1

HH ⊕ f kþ1
HV ⊕ f kþ1

HD

� �
⊕ f kþ1

L

� �� � k ¼ 1; 2:::n ð8Þ

where ⊕ represents the direct orthogonal sum.
In addition, formula (8) can also be expressed as (9):

f 0 ¼ f nL⊕
Xn

k¼1
f kHH⊕ f kHV⊕ f kHD

� � ð9Þ

The flow chart of 2-D wavelet denoising is shown in
Fig. 1.
In Fig. 1, the input is the original 2-D data and the

output is the new obtained 2-D data, the intermediate
procedures of the 2-D wavelet denoising is mainly as fol-
lows, which is summarized and deduced from references
[48–53]:
1) Set the wavelet basis function x, decomposition

scale n and threshold value t.
2) Through the wavelet transform, 2-D data are

decomposed into four components, one of which is a
low frequency component, and the other three of which
are high frequency components: a horizontal compo-
nent, a vertical component and a diagonal component.
3) The low frequency component obtained from step 2

can be further decomposed into a new low frequency
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component and three new high frequency components:
horizontal component, vertical component and diagonal
component. Repeat this process until the decomposition
scale n is reached.
4) A threshold value is applied to quantize high fre-

quency coefficients obtained by each decomposition.
5) The lastly decomposed and quantized high-

frequency component is reconstructed by wavelet trans-
form with the only low-frequency component to form a
new low-frequency component. The process is repeated
n times upward until the new 2-D data are synthesized.
The algorithm’s pseudocode is shown in Table 2.
Clearly, the key of the wavelet denoising method is

undoubtedly to select the value of threshold and
threshold function, which has the greatest impact on
the effect of wavelet denoising. There are generally
three ways to select the value of threshold: default

threshold, given threshold and forced threshold. In
this article, the default threshold determination model
is selected to calculate the value of the threshold
because it is convenient and concise. Furthermore,
there are two common threshold functions: a soft
threshold function and a hard threshold function. We
choose a soft threshold function for quantifying be-
cause it makes reconstructed signals considerably
smoother than the hard one.

Construction of prediction model
In this article, a new method, called PWD-FU-PseAAC,
is proposed to predict the structural classes of protein
sequences. First, the feature information of protein se-
quences is extracted by the traditional feature expression
method, type 1 pseudo amino acid composition and type
2 pseudo amino acid composition. Each protein se-
quence is converted to 20+ λ dimensional numerical
vectors by type 1 pseudo amino acid composition, and
each protein sequence is converted to 20+ 2r dimen-
sional numerical vectors by type 2 pseudo amino acid
composition. Second two-dimensional wavelet denoising
is used to denoise the two feature vectors separately.
Then, the two feature vectors after denoising are fused,
which refers to splicing the first and last vectors of the
two parts to form 40+ λ + 2r dimensional feature vec-
tors. Moreover, the optimal 40+ λ + 2r dimensional fea-
ture vectors are fed into the KNN classifier for
predicting. The jackknife test is used to test the perform-
ance of the model on the 25PDB, the 1189PDB and the
640PDB. According to the predicting accuracy, the pa-
rameters of the model are adjusted continuously to
optimize the performance of the model. Finally, four

Fig. 1 Flow chart of 2-D wavelet denoising

Table 2 Pseudocode of the 2-D wavelet denoising algorithm

Input: 2-D data, d1 Output: new 2-D data, d2

1 set x, n, t, j = 0; //set wavelet function, decomposition scale, threshold
value and pointer j.

2 (L [j], h1[j], h2[j], h3[j]) = wavedec2(x, d1) //decompose data.

3 (h1[j], h2[j], h3[j]) = threshold(t, h1[j], h2[j], h3[j]); //quantize high
frequency coefficients.

4 for→j = 0 to n-1: //the process of decomposition.

5 (L [j + 1], h1[j + 1], h2[j + 1], h3[j + 1]) = wavedec2(x, L [j]);

6 (h1[j + 1], h2[j + 1], h3[j + 1]) = threshold(h, h1[j + 1], h2[j + 1], h3[j +
1]); j = j + 1;

7 for→i = n-1 to 0: //the process of reconstruction.

8 L [i-1] = waverec2(x, L [i], h1[i], h2[i], h3[i]); i = i-1;

9 d2 = waverec2(x, L [i], h1[i], h2[i], h3[i]); //reconstruct data.
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measures are used to evaluate the performance of the
predicting model. The advantages of choosing the classi-
fier KNN are its efficiency and simplicity. Although
KNN’s classifying effect is not as good as that of support
vector machine (SVM), KNN requires considerably less
running time than SVM, as the latter requires consider-
ably effort to determine the optimal parameters. There-
fore, considering the classifiers comprehensively, we
choose KNN instead of SVM. The flow chart of the
model is shown in Fig. 2.

In Fig. 2, new method of PWD-FU-PseAAC is as fol-
lows. The feature information of protein sequences is
extracted by type 1 pseudo amino acid composition and
type 2 pseudo amino acid composition, respectively.
Then, 2-D wavelet denoising is used to denoise the two
feature vectors, respectively. Next, the two feature vec-
tors after denoising are fused to form a 40+ λ + 2r di-
mensional vector, which is entered to the KNN classifier
for predicting.

Performance evaluation
Four validation methods are commonly applied to esti-
mate the performance of the prediction model: the self-
consistency test, independent dataset test, k-fold cross-
validation and jackknife test [53–57]. Because of the ob-
jectivity and strictness of the jackknife test, in this ex-
periment, we make use of it to examine the performance
of our prediction model. The sensitivity (Sens), specifi-
city (Spec), overall accuracy (OA) and Matthews correl-
ation coefficient (MCC) are applied to assess the
performance of our method. These measures are
expressed in the following formula:

Fig. 2 Flow chart of the PWD-FU-PseAAC method

Table 3 Prediction results of type 1 PseAAC by different values
of λ on the 25PDB

Class λ

Jackknife test(%)

1 2 3 4 5 6 7 8 9

all-α 77.43 94.58 88.71 85.10 88.94 88.49 87.36 88.26 87.81

all-β 89.16 90.52 90.52 89.39 88.94 88.04 90.29 90.29 90.52

α/β 78.03 88.73 86.42 83.53 87.57 86.71 86.99 89.31 91.62

α + β 68.03 78.23 76.87 75.28 76.42 75.28 72.11 73.47 71.20

OA 78.18 87.98 85.59 83.32 85.36 84.52 84.04 85.11 84.94
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Sens ¼ TP
TP þ FN

ð10Þ

Spec ¼ TN
FP þ TN

ð11Þ

OA ¼ TP þ TN
TP þ TN þ FP þ FN

ð12Þ

MCC ¼ TP � TN−FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þp ð13Þ

where TP denotes the number of true positives, FP de-
notes the number of false positives, TN denotes the
number of true negatives, and FN denotes the number
of false negatives.

Results and discussion
Choice of λ and r parameters
In this article, two types of pseudo amino acid composi-
tions are used to extract feature vectors, and different
parameters of λ and r will lead to inconsistency of the
feature information contained in the extracted feature
vectors, thereby affecting the final prediction results.
Therefore, it is necessary to choose the optimal value of

λ and r, and the range of λ and r are 1 to 9, therefore,
this section chooses the optimal parameter of λ or r be-
tween 1 and 9. In this paper, using the 25PDB as the re-
search object, the validity of these feature vectors
extracted from two different types of pseudo amino
acids is discussed respectively. The wavelet basis func-
tion of two-dimensional wavelet denoising is db4, the
wavelet decomposition scale is 3, and the K value of the
KNN classifier is set to 3. The experimental results of
the overall prediction accuracy of protein structural clas-
ses and the prediction accuracy of each class are shown
in Table 3 and Table 4.
From Tables 3 and 4, it can be concluded that differ-

ent λ1 and λ2 values do have an impact on the prediction
results. When λ and r are 2, the overall prediction accur-
acy is the highest, 87.98 and 76.99% respectively. There-
fore, the optimum λ and r for both types of pseudo
amino acid compositions is 2.

Choice of the wavelet function and decomposition scale
The traditional feature expression method, type 1
pseudo amino acid composition and type 2 pseudo
amino acid composition, are adopted in this article,
which still contains considerable redundant information.
To obtain more efficacious information, two-
dimensional wavelet denoising is used to process the fea-
ture vectors extracted by two feature expression
methods separately, removing the redundant informa-
tion from them.
However, the choice of wavelet function and decom-

position scale will determine the denoising effect of the
models and then further affect the final overall predic-
tion accuracy. To further obtain efficacious information
on structural proteins, we chose different wavelet func-
tions and different decomposition scales to examine the

Table 4 Prediction results of type 2 PseAAC by different values
of r on the 25PDB

Class r

Jackknife test(%)

1 2 3 4 5 6 7 8 9

all-α 76.07 74.49 70.88 73.81 72.23 71.11 71.11 68.17 63.43

all-β 87.81 88.49 85.78 83.75 84.65 83.75 82.39 79.46 79.46

α/β 76.01 79.77 78.90 82.08 85.55 83.82 86.71 85.55 87.57

α + β 61.45 65.76 60.09 62.59 56.46 51.47 50.34 47.62 44.22

OA 75.31 76.99 73.64 75.19 74.12 71.91 71.85 69.34 67.60

Table 5 Prediction results on the 25PDB by different wavelet
functions and different wavelet decomposition scales using type
1 PseAAC

Wavelet Scales

Jackknife test (%)

2 3 4 5

db2 78.60 80.27 82.07 87.09

db4 83.68 87.99 94.08 94.68

db6 75.79 83.38 89.30 93.37

sym2 78.60 80.27 82.07 87.09

sym4 77.05 85.18 90.79 91.63

sym6 78.06 78.30 81.59 84.82

coif1 76.75 83.32 87.15 90.50

coif3 78.90 86.01 91.57 91.69

bior2.2 71.07 79.20 82.90 86.61

bior2.4 73.52 82.37 84.88 83.68

Table 6 Prediction results on the 25PDB by different wavelet
functions and different wavelet decomposition scales using type
2 PseAAC

Wavelet Scales

Jackknife test (%)

2 3 4 5

db2 74.90 84.28 88.58 91.21

db4 78.84 76.99 86.01 86.25

db6 78.00 85.00 89.90 91.15

sym2 74.90 84.28 88.58 91.21

sym4 79.01 83.32 91.57 93.37

sym6 75.43 83.44 87.45 89.60

coif1 76.27 83.14 91.57 91.45

coif3 78.90 76.93 80.63 82.96

bior2.2 77.82 86.61 88.64 86.07

bior2.4 74.30 88.16 92.77 93.19
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effect on the prediction models, including db2, db4, db6,
sym2, sym4, sym6, coif1, coif3, bior2.2 and bior2.4, and
the decomposition scale from 2 to 5. We discussed the
optimal denoising parameters of the feature vectors ex-
tracted by type 1 PseAAC and type 2 PseAAC.
The 25PDB is selected as the sample for finding the

optimal parameters. Table 5 and Table 6 show that the
two related factors of the wavelet function and decom-
position scale do affect the effect of denoising, thereby
affecting the overall prediction accuracy of the method.
When the decomposition scale is 5 and the db6 wavelet

function is adopted, the effect of wavelet denoising is op-
timal in Table 5; when the decomposition scale is 5 and
the sym4 wavelet function is adopted, the effect of wave-
let denoising is optimal in Table 6. Hence, to obtain
good prediction results, we choose 5 as the decompos-
ition scale and db4 wavelet as the wavelet function to
denoise feature vectors extracted by type 1 pseudo
amino acid composition; we choose 5 as the decompos-
ition scale and sym4 wavelet as the wavelet function to
denoise feature vectors extracted by type 2 pseudo
amino acid composition. In addition, Table 5 and Table

Fig. 3 Prediction results by type 1 PseAAC on different decomposition scales and wavelet basis functions on the 25PDB

Fig. 4 Prediction results by type 2 PseAAC on different decomposition scales and wavelet basis functions on the 25PDB
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6 show that when the decomposition scale is 2, regard-
less of the type of wavelet basis function chosen, the
overall prediction accuracy is lower than other scales.
With the increase of the decomposition scale, the overall
prediction accuracy has an upward trend. To describe
this trend more intuitively, we drew line charts of the
overall prediction accuracy under different wavelet basis
functions and decomposition scales, as shown in Figs. 3
and 4.
As shown in Figs. 3 and 4, with the increase of decom-

position scale, the overall prediction accuracy obtained
by experiments is improved under different conditions
of wavelet basis functions. When the decomposition
scales are 4 and 5, the overall prediction accuracy ob-
tained by the experiment is notably close, which indi-
cates that with the increase of the scale, the overall
prediction accuracy will tend to be stable, will not con-
tinue to increase, or even may decline. Moreover, it can
be seen from the Figs. 3 and 4 that although the choice
of decomposition scale and wavelet basis function will
affect the overall prediction accuracy of the experiment,

the influence of the decomposition scale is greater than
that of the wavelet basis function.

Comparison with 1-D wavelet denoising
To verify the superiority of the two-dimensional (2-D)
wavelet denoising method, we compare it with the one-
dimensional (1-D) wavelet denoising method. The
1A1W structural protein sequence in the 25PDB was se-
lected as the experimental sample to compare the
denoising effect. The decomposition scale is 5, and the
sym4 wavelet is chosen as the wavelet basis function.
The K value in the classifier KNN is still 3. We use the
24-dimensional numerical feature vectors extracted from
the 1A1W protein sequence through the type 2 pseudo
amino acid composition as the original signal. to intui-
tively show the comparison of the two denoising effects,
we choose the form of graph to show. The comparison
results of one-dimensional wavelet denoising and two-
dimensional wavelet denoising are shown in Fig. 5.
As seen from Fig. 5, the original signal is notably

messy, because it contains considerable redundant infor-
mation, therefore, it seems to fluctuate. After 1-D wave-
let denoising, although the signal has changed, the effect
of denoising is not strong. After 2-D wavelet denoising,
the signal is clearly different from the original signal, be-
coming smoother and more stable, indicating that the
effect of denoising is notably good. This finding is ob-
served in our study. We use variance to accurately de-
scribe the difference within the signal. The variance of
the original signal is 30.526. After one-dimensional
wavelet denoising, the variance of the signal is 14.274.
After two-dimensional wavelet denoising, the variance of

Fig. 5 Comparisons of 1-D wavelet denoising and 2-D wavelet denoising on the 25PDB

Table 7 Prediction results by choosing different values of K on
the 25PDB

Class K

Jackknife test(%)

1 2 3 4 5 6 7 8 9

all-α 97.97 98.65 95.71 96.84 93.23 94.36 93.91 94.58 93.00

all-β 98.87 99.10 98.65 98.87 98.42 98.65 98.65 98.87 98.65

α/β 97.98 97.40 95.67 96.24 93.93 94.80 93.64 93.64 92.77

α + β 97.51 89.80 94.78 89.11 89.57 85.71 86.17 83.45 85.26
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the signal becomes 6.189. In summary, the denoising ef-
fect of the 2-D wavelet is better than that of the 1-D
wavelet.
To sum up, two-dimensional wavelet denoising is bet-

ter than one-dimensional wavelet denoising, and this 2-
D wavelet denoising method can be used not only in
structural classes but also in other types of protein clas-
sification models.

Selection of the K value in the K-nearest neighbor
classifier
K- nearest neighbor classifier, which is based on the
similarity of sample points to select the first K sample
points for voting classification. However, this K value is
often unknown, and choosing different K values will
produce different prediction results. Therefore, to obtain
better prediction results, it is necessary to select the op-
timal K value. In this section, the optimal K value is se-
lected from 1 to 9. Under different K values, the
prediction accuracy of each class and the overall predic-
tion accuracy of the protein structure class sequence are
shown in Table 7. Under different K values, the

prediction accuracy of each class and the overall predic-
tion accuracy of the protein structure class sequence are
shown in Table 7.
As shown in Table 7, different K values have a certain

impact on the prediction results. In model 1, with the
increase of K values, the overall prediction accuracy de-
creases. When K is 1, the overall prediction accuracy is
the highest, 97.91%, while when K is 9, the overall pre-
diction accuracy is the lowest, 91.33%. To visualize the
overall prediction accuracy under different K conditions,
we use a line chart to describe it, as shown in Fig. 6.
From the Fig. 6, it is clear that different K values will
affect the prediction results of the experiment, and with
the increase of K values, the overall prediction accuracy
has a downward trend.

Comparison of different strategies
In this paper, a feature fusion model based on parallel
two-dimensional wavelet denoising is proposed. To bet-
ter demonstrate the improvement of the prediction ac-
curacy of the models, this section compares with other
strategies.
Compare various strategies on the 25PDB. In the table,

strategy 1 refers to the use of type 1 pseudo amino acid
composition only; strategy 2 refers to the use of type 2
pseudo amino acid composition only; strategy 3 refers to
the combination of type 1 pseudo amino acid compos-
ition and two-dimensional wavelet denoising; strategy 4
refers to the combination of type 2 pseudo amino acid
composition with two-dimensional wavelet denoising;
and strategy 5 refers to the first combination of features
extracted from type 1 and type 2 pseudo amino acid
composition. The feature vector fusion is then combined
with two-dimensional wavelet denoising; strategy 6

Fig. 6 Prediction results by choosing different values of K on the 25PDB

Table 8 Comparison of different strategies on the 25PDB

Dataset Prediction accuracy(%)

Strategy all-α all-β α/β α + β OA

25PDB 1 53.05 44.24 75.72 16.55 45.79

2 53.05 45.37 73.41 17.23 45.79

3 98.19 98.19 97.11 94.10 96.89

4 93.00 98.87 94.80 92.97 94.92

5 96.16 99.32 97.98 94.78 97.01

6 99.97 98.87 97.98 97.51 98.09
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refers to the model proposed in this paper. Among these
strategies, the parameters λ and r in the two types of
pseudo amino acid composition are both 2. In the classi-
fier, the K value in KNN ranges from 1 to 9, and the pa-
rameters in two-dimensional wavelet denoising are also
the best denoising wavelet basis function and decompos-
ition scale. The experimental results are shown in
Table 8 and Fig. 7.
From Table 8 and Fig. 7, it can be seen that the

overall prediction accuracy of model 1 proposed in
this paper reaches the highest level, 98.09%, and it
can be seen from the table that the idea of parallel
two-dimensional wavelet denoising proposed in this
chapter is effective. Compared with strategy 5, first
fusing feature vectors and then denoising, the overall
prediction accuracy is improved by 1.08%, while the
application of two-dimensional wavelet denoising im-
proves the prediction accuracy by 1.08%. The meas-
urement results have a great impact. Strategy 1 and
Strategy 2 do not use two-dimensional wavelet
denoising, and their prediction accuracy is far from
that of other strategies. In conclusion, the fusion idea
proposed in this model is highly effective.

The influence of different classifiers on prediction results
Three classifiers: Naive Bayes, KNN and SVM are used
to explore the effects of different classifiers on the pre-
diction results. The parameters of two types of pseudo
amino acid composition are 2. The denoising parameters
of two-dimensional wavelet denoising for the extracted
feature vectors of type 1 pseudo amino acid compos-
ition: the wavelet basis function is db4 wavelet, the de-
composition scale is 5, and the denoising parameters of
two-dimensional wavelet denoising for the extracted fea-
ture vectors of type 2 pseudo amino acid composition:
the wavelet basis function is sym4, and the decompos-
ition scale is 5. The K value of KNN is the best 1. For
SVM, the radial basis function is used as the kernel
function, and the grid search strategy is used for the se-
lection of C and G parameters. The search ranges of
both are 2− 10 to 210. The jackknife method was used to
test the influence of three classifiers on the prediction
results on the 25PDB. The experimental results are
shown in Table 9 and Fig. 8.
As shown in Table 9 and Fig. 8, when the KNN is used

as the classifier, the overall prediction accuracy is the
highest, 98.09%. The prediction accuracy of each cat-
egory is the highest, and only the prediction accuracy of
the α + β class is the highest in parallel with other cat-
egories. When Naive Bayes is used as the classifier, the
overall prediction accuracy is 82.90%, which is consider-
ably less than the KNN. This finding shows that the
Naive Bayes is not as effective as the KNN in this experi-
mental condition. When SVM is used as the classifier,
the overall prediction accuracy is 97.85%. The possible
reason for this finding is that the range of the parameter
search is not appropriate, which causes the performance
of SVM not to be as good as that of KNN. Moreover,

Fig. 7 Comparison of different strategies on the 25PDB

Table 9 Influence of different classifiers on prediction results on
the 25PDB

Classifier Prediction accuracy(%)

all-α all-β α/β α + β OA

Naive Bayes 95.49 97.29 90.75 49.66 82.90

KNN 99.97 98.87 97.98 97.51 98.09

SVM 98.65 97.97 97.11 97.51 97.85
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SVM takes considerably more time to find parameters
than KNN; therefore, considering the classifiers compre-
hensively, the classifier of this model chooses KNN.

Prediction performance of our method
The performance of a method determines whether it can
be applied by everyone. Therefore, as our study is no ex-
ception, the traditional performance evaluation methods
are utilized to verify the performance of our methods. In
model 1, based on two types of pseudo amino acid com-
position methods and parallel 2-D wavelet denoising, a
machine learning prediction model with the fusion of
two features is proposed, which is called PWD-FU-
PseAAC. First, the feature information of protein se-
quences is extracted by type 1 pseudo amino acid com-
position and type 2 pseudo amino acid composition; in

other words, the primary protein sequences are con-
verted into 20 + λ dimensional and 20 + 2r dimensional
numerical vectors respectively. Second, the 2-D wavelet
denoising method is used to denoise the two feature vec-
tors separately and remove their redundancy. Then, the
two feature vectors after denoising are fused, which re-
fers to splicing the first and last vectors of the two parts
to form 40 + λ + 2r dimensional feature vectors. Finally,
the optimal feature vectors are input into the KNN clas-
sifier for prediction, and the results are verified by jack-
knife. The optimal parameters of the prediction model
can be obtained from the previous experimental ana-
lysis. The values of λ and r in both types of PseAAC
are 2. The db4 wavelet is used as the wavelet func-
tion, and 5 is chosen as the decomposition scale to
denoise the feature vectors extracted by type 1
PseAAC; Sym4 is chosen as the wavelet function and
5 is chosen as the decomposition scale to denoise the
feature vectors extracted by type 2 PseAAC. The K
value in the classifier is set to 1. The performance of
the model is evaluated on the 25PDB, the 1189PDB
and the 640PDB. The experimental results are shown
in Table 10.
The results of four standard performance measures

are shown in Table 10. From the results that emerged in
Table 10, we note that we acquire 98.09, 97.25 and
96.09% overall accuracy on the 25PDB, the 1189PDB
and the 640PDB, respectively. The overall accuracy ob-
tained on three datasets was highly satisfactory. More-
over, the Matthews correlation coefficient (MCC) of
α + β class proteins are lower than other classes for the
three datasets. Hence, there are many challenges to iden-
tifying protein sequences of the α + β class with high
very efficacy.

Fig. 8 Influence of different classifiers on prediction results on the 25PDB

Table 10 Prediction performance of model 1 on three
benchmark datasets

Dataset Class Sens(%) Spec(%) MCC OA(%)

25PDB all-α 97.97 99.84 0.983 98.09

all-β 98.87 99.84 0.989

α/β 97.98 99.17 0.967

α + β 97.51 98.62 0.957

1189 all-α 98.21 99.66 0.980 97.25

all-β 99.32 99.87 0.993

α/β 99.10 97.23 0.950

α + β 91.29 99.41 0.930

640 all-α 95.65 99.20 0.954 96.09

all-β 98.05 99.59 0.979

α/β 97.18 96.98 0.928

α + β 93.57 98.93 0.936
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Comparison with existing methods
To objectively compare our method with previously re-
ported methods, we carried out experiments under the
same conditions as the previous methods. Among these
methods, the MEDP [58] method is based on evolution-
ary information, and a new feature expression method is
proposed. The SCPRED [22] method is based on pre-
dictive secondary structure to construct new feature vec-
tors. The PKS-PPSC [59] method is based on predictive
secondary structure to construct feature vectors, but it
uses chaotic game representation and information en-
tropy to construct feature vectors. The method reported
by Zhang et al. [23] is based on predictive secondary
structure information, based on this information, the
TPM matrix feature representation is proposed. The
PSSS-PSSM [25] method combines predicted secondary
structure features with the PSSM matrix. The PSSS-
PsePSSM [60] method combines predicted secondary
structure features with improved PSSM matrix, and pro-
poses a new fusion feature expression. The WD-PseAAC
[53] method extracts feature vectors based on SVM,
using a single feature expression method and then
denoises them with wavelet denoising. Our method is to
denoise the extracted feature vectors and then fuse
them.
The experimental results are summarized in Table 11

and Figs. 9, 10, 11. From the experimental results in
Table 11 and Fig. 9, the overall prediction accuracy of
98.1% is gained on the 25PDB, which is the highest and
5.0 to 23.3% higher than those of other methods. Fur-
thermore, from the experimental results in Table 11 and
Fig. 10, the overall prediction accuracy of 97.3% is also
obtained on the 1189PDB, which is the highest and 6.5

Table 11 Comparison with other methods on three benchmark
datasets
Dataset

Prediction accuracy(%)

Method all-α all-β α/β α + β OA

25PDB MEDP [58] 87.8 78.3 76.0 57.4 74.8

SCPRED [22] 92.6 80.1 74.0 71.0 79.7

PKS-PPSC [59] 89.2 86.7 82.6 65.6 81.3

Zhang et al. [23] 92.4 87.4 82.0 71.0 83.9

PSSS-PSSM [25] 96.6 87.1 83.0 78.9 86.6

PSSS-PsePSSM [60] 96.4 90.5 90.2 81.2 89.5

WD-PseAAC [53] 95.7 97.7 94.8 84.4 93.1

This paper 98.0 98.9 98.0 97.5 98.1

1189 MEDP [58] 85.2 84.0 84.4 45.2 75.8

SCPRED [22] 89.1 86.7 89.6 53.8 80.6

PKS-PPSC [59] 89.2 86.7 82.6 65.6 81.3

Zhang et al. [23] 92.4 87.4 82.0 71.0 83.2

PSSS-PSSM [25] 94.2 88.4 85.3 71.8 85.0

PSSS-PsePSSM [60] 91.9 91.8 87.7 73.9 86.6

WD-PseAAC [53] 98.7 99.0 94.0 68.9 90.8

This paper 98.2 99.3 99.1 91.3 97.3

640 MEDP [58] 84.8 75.3 86.4 53.8 74.7

SCPRED [22] 90.6 81.8 85.9 66.7 80.8

PKS-PPSC [59] 89.1 85.1 88.1 71.4 83.1

Zhang et al. [23] – – – – –

PSSS-PSSM [25] – – – – –

PSSS-PsePSSM [60] 87.0 81.2 84.7 70.8 81.0

WD-PseAAC [53] 92.8 95.5 92.1 78.9 89.5

This paper 95.7 98.1 97.2 93.6 96.1

Fig. 9 Comparison with other methods on the 25PDB
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to 21.5% higher than those of other methods. Moreover,
from the experimental results in Table 11 and Fig. 11,
the prediction results are also satisfactory for the
640PDB. The prediction accuracy of the four classes is
the highest, and the overall prediction accuracy is the
highest, 95.0%. At the same time, there are other signifi-
cant changes that deserve our attention. For example,
the overall prediction accuracy of our method can
achieve such good results on three datasets because we
have greatly enhanced the prediction rates of α/β class

proteins and α + β class proteins, while the prediction
rates of other methods for α/β class proteins and α + β
class proteins are notably low. One of the reasons that
the overall prediction accuracy of protein structural clas-
ses has been relatively low is that it is difficult to predict
α/β and α + β proteins.
In summary, through the analysis of the above experi-

mental results, we can conclude that our models can ef-
ficaciously forecast the structural classes of protein
sequences, even on the low-similarity datasets. The

Fig. 10 Comparison with other methods on the 1189PDB

Fig. 11 Comparison with other methods on the 640PDB
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reason why our method is better than others is that al-
though the traditional method is used to extract feature
vectors, the feature extraction method that we adopt
may not be as good as others. However, after feature ex-
traction, we use two-dimensional wavelet denoising to
denoise the redundant information in the feature vector,
which makes it more recognizable. In addition, other re-
searchers also use the method of wavelet denoising, but
this paper proposes a new fusion strategy based on
wavelet denoising.

Conclusions
A new method, PWD-FU-PseAAC, is proposed to fore-
cast the structural classes of protein sequences. The
method ameliorates the shortcomings of traditional fea-
ture expression methods, which contain considerable re-
dundant information that cannot result in inefficiency.
Therefore, in this paper, a new idea of fusion has been
proposed, in which a parallel 2-D wavelet denoising al-
gorithm is adopted to process the extracted feature vec-
tors before fusing them. Through related experiments,
we not only verify the effect of the wavelet denoising al-
gorithm on the models but also compare the overall ac-
curacy of our models with those of other methods.
Ultimately, we can conclude that our method is good for
predicting the structural classes of protein sequences
and is expected to be applied in other fields related to
bioinformatics [61–74]. The related source codes and
datesets are available at https://github.com/Xiaoheng-
Wang12/Wang-xiaoheng/tree/master.
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