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Abstract

Background: Current approaches to identifying drug-drug interactions (DDIs), include safety studies during drug
development and post-marketing surveillance after approval, offer important opportunities to identify potential safety
issues, but are unable to provide complete set of all possible DDIs. Thus, the drug discovery researchers and healthcare
professionals might not be fully aware of potentially dangerous DDIs. Predicting potential drug-drug interaction helps
reduce unanticipated drug interactions and drug development costs and optimizes the drug design process. Methods
for prediction of DDIs have the tendency to report high accuracy but still have little impact on translational research
due to systematic biases induced by networked/paired data. In this work, we aimed to present realistic evaluation
settings to predict DDIs using knowledge graph embeddings. We propose a simple disjoint cross-validation scheme
to evaluate drug-drug interaction predictions for the scenarios where the drugs have no known DDIs.

Results: We designed different evaluation settings to accurately assess the performance for predicting DDIs. The
settings for disjoint cross-validation produced lower performance scores, as expected, but still were good at
predicting the drug interactions. We have applied Logistic Regression, Naive Bayes and Random Forest on DrugBank
knowledge graph with the 10-fold traditional cross validation using RDF2Vec, TransE and TransD. RDF2Vec with
Skip-Gram generally surpasses other embedding methods. We also tested RDF2Vec on various drug knowledge
graphs such as DrugBank, PharmGKB and KEGG to predict unknown drug-drug interactions. The performance was not
enhanced significantly when an integrated knowledge graph including these three datasets was used.

Conclusion: We showed that the knowledge embeddings are powerful predictors and comparable to current
state-of-the-art methods for inferring new DDIs. We addressed the evaluation biases by introducing drug-wise and
pairwise disjoint test classes. Although the performance scores for drug-wise and pairwise disjoint seem to be low, the
results can be considered to be realistic in predicting the interactions for drugs with limited interaction information.

Keywords: Drug-drug interaction, Paired data, Disjoint cross-validation, Realistic evaluation

Background
Adverse Drug Events (ADEs) are a significant threat to
public health. A study by Lazarou et al. [1] estimates
6.7% of hospitalized patients experience serious adverse
drug effects with fatality rate 0.32% in the USA. In 2014,
807,270 cases of serious ADEs were reported in the United
States, resulting in 123,927 lost lives [2]. ADEs present
a financial burden to the healthcare system due to the
costs of further hospitalization, morbidity, mortality, and
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health-care utilization. Drug-drug interactions (DDIs),
which occasionally arise through co-prescription of a drug
with other drug(s), may cause an undesired effect other
than its principal pharmacological action [3]. A significant
number of adverse drug effects (approximately 3-26%)
leading to hospital admission are attributed to unintended
drug-drug interactions (DDIs) [4]. Patient groups such
as elderly patients and cancer patients are more likely to
take multiple drugs simultaneously, which increases their
risk of DDIs [5, 6]. Current approaches to identifying
DDIs, include safety studies during drug development and
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post-marketing surveillance after approval, offer impor-
tant opportunities to identify potential safety issues, but
are unable to provide complete set of all possible DDIs
[7]. Thus, the drug discovery researchers and healthcare
professionals might not be fully aware of potentially dan-
gerous DDIs. Predicting potential drug-drug interaction
helps reduce unanticipated drug interactions and drug
development costs and optimizes the drug design pro-
cess. Thus, there is clear need for automated methods for
predicting DDIs.
In recent years, biological data and knowledge bases

have been increasingly built on Semantic Web tech-
nologies and knowledge graphs are used for information
retrieval, data integration, and federation [8]. Many bioin-
formatics databases have begun to present their data as
Linked Open Data (LOD), a graph data model, using
SemanticWeb technologies [9, 10]. The knowledge graphs
provide a powerful model for defining the data, in addition
to making it possible to use underlying graph structure for
extraction of meaningful information.
Researchers have used features based on the proper-

ties such as targets, side effects, fingerprint (a bit-vector
describing chemical structure) and indications for pre-
diction of drug-drug interactions [11–14]. These features
are either incorporated into a large sparse binary vec-
tor or a dense similarity vector which has few dimen-
sions. Neither representation is ideal for machine learn-
ing tasks, and they both entail effort-intensive feature
engineering. In recent years, several approaches have
been proposed to generate features automatically from
LOD[15]. Approaches such as FeGeLOD [16] and Rapid-
Miner Linked Open Data Extension [17] have used differ-
ent unsupervised feature generation strategies to enrich
data with the features obtained from LOD. Yet, efficient
feature representation can be learned using the knowledge
graph embedding approaches in which the nodes/edges
are mapped to low-dimensional dense vectors [18]. The
representation of the drugs can be learned by graph
embedding approaches in a purely unsupervised and task-
independent way, which would provide informative, inde-
pendent and discriminative features to predict potential
DDIs. It is also possible to use these feature vectors in
other downstream tasks such as drug-target, drug-adverse
effect prediction. Moreover, knowledge graph embed-
dings can be used to make predictions for the drugs that
have no interaction information. Owing to LOD, the pres-
ence of an entity (drug) is sufficient to enable embedding
vectors for machine learning to be extracted. Most drugs
and hence DDIs could be included in the training set with
this intention. Similarity-based approaches, in contrast,
do not allow for the calculation of various similarities
for many drugs due to lack of drug information. Besides,
graph embedding approaches using only one type of inter-
action data (homogeneous graph) such as node2vec [19],

DeepWalk [20] cannot make predictions for those drugs
with no interaction.
In this work, we have extended our previous work

[21] by applying realistic evaluation cross-validation (CV)
schemes on different knowledge graph embedding predic-
tors using DrugBank [22, 23], KEGG [24] and PharmGKB
[25] knowledge graphs to predict potential DDIs. The
results show that performance of drug vector representa-
tion which was used to train classifiers is comparable to
the existing pharmacological similarity methods for DDI
prediction. The AUC score of 0.93 and F-Score of 0.86
were achieved based on ten cross-validations with the
vector representations of drugs for the DrugBank dataset.
When developing a new drug, the researchers are asked

to predict possible interactions of new chemical entity
(potential drug) with approved drugs but often there
is little information available related to that chemical
entity. Moreover, the researchers in the computational
drug discovery field do not use realistic settings to evalu-
ate their predictions, instead preferring to use traditional
CV, which leads to optimistic results. The traditional CV
where test pairs might share components with training
pairs is prone to over-fitting due to systematic biases in
networked/paired data [26–29]. There have been a few
studies which have addressed this issue [27, 28, 30, 31].
Some studies [30, 31] demonstrated how well their meth-
ods perform to make predictions for new drugs which
lacked interaction data. These studies only consider the
case where new drugs and their interactions in the test
set were hidden from training set. Park et al. [27] pro-
posed a more systematical approach, in which he divided
the reference data into 3 classes to evaluate the protein-
protein interaction prediction methods more realistically.
These are C1, C2 and C3; C1, in which test pairs share
both proteins with the training set; C2, in which test pairs
share only one protein with the training set; and C3, in
which test pairs share neither protein with the training
set. However, the setting is rather complex and the fail-
ure to provide an algorithm or code make it challenging
to reproduce the setting. Guney also suggested similar
cross-validation settings for DDI prediction: non-disjoint,
disjoint and pairwise disjoint CV [28, 32]. Non-disjoint
CV is the same as the traditional CV, while disjoint and
pairwise disjoint CV are similar to C2 and C3 scenarios,
respectively. In disjoint CV, the data set is partitioned into
k-groups such that each group contains the DDIs where
one of the drugs can appear only in that group and cannot
appear in other groups. In pairwise-disjoint CV, the data
set is partitioned such that each group contains the DDIs
where both of the drugs can appear only in that group and
cannot appear in other groups. In his disjoint cross vali-
dation setting, however, the partitioning of the pairs into
groups is done according to the first component of the
pair. Simply grouping according to the second component
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would produce different sampling of the data set and thus
might lead to inconsistency across folds.
Here, we propose a simple disjoint CV scheme adapted

from [27–29] to evaluate DDI predictions for the cold-
start drugs which have no DDI information known in the
training set. One advantage of the proposed approach over
Guney’s approach is to produce consistent sampling of
data across folds. Another advantage is to use of single
training data for both test cases in each fold, thus reduc-
ing computational time. We designed two scenarios: (i)
for the prediction of interactions of cold-start drugs with
existing drugs (drug-wise disjoint CV) and (ii) for the pre-
diction of interactions when both drugs in a pair were
cold-start drugs (pairwise disjoint CV). Recently in [33],
authors proposed cross-validation schemes (CV1, CV2)
where CV1 is used to assess the prediction that new drugs
interact with known drugs, while CV2 is used to assess the
prediction that new drugs interact with new drugs. While
CV1 is the same as our drug-wise CV, CV2 combines
two kinds of sampling; within-group and between-group.
Within-group sampling contains DDI pairs between only
a set of drugs that is left for testing while between-group
sampling contains DDI pairs between two different sets of
drugs that are left for testing. Our approach handles two
different scenarios (CV1 and CV2-within group) and pro-
duce one training set and two test sets for one fold. Ours
share the exact same training set in one fold for both CVs.
However, CV2 produces combinations of two samplings
(within-group and between-group) which might produce
different number of rounds/samplings (eg. for 10-KCV, 10
rounds (within-group) and 45 rounds (between-group)).
Averaging the results of these two different samplings
might create a bias since the number of rounds and the
ratio of training set and test set could be hugely differ-
ent. Shi et al. [29] proposes a similar CV approach where
their first scenario (S1) corresponds to traditional CV
and second scenario (S2) corresponds drug-wise CV and
third scenario (S3) is pairwise CV. However, they did not
provide any formal definition and efficient algorithm for
their CV.
Our contribution can be summarized as follows : i)

comparison of different knowledge graph embedding
approaches on DDI prediction task ii) evaluation of dif-
ferent knowledge graphs as background knowledge for
feature learning iii) testing DDI prediction task for the
disjoint CV scenarios.

Related work
Researchers have used various approaches and data
sources to predict novel drug interactions [7]. These
approaches include extracting DDI statements from
medical texts and drug event reports [34], inferring
DDI mechanism [35] by integrating knowledge from
several sources and using network proximities [36].

Previous studies regarding prediction of DDIs have tried
to summarize the related works under various taxonomic
classifications such as similarity-based and classification-
based, similarity-based and feature-based [12, 30]. These
taxonomic classifications do not sufficiently explain the
distinctions between approaches. We classify the stud-
ies under memory-based and model-based approaches
on basis of the taxonomic classification of the Recom-
mender Systems [30, 37]. The memory-based approach
relies on loading similarity scores into memory and rec-
ommending directly (most similar neighbors) based on
this data. With the model-based approach, a model is
derived from data and a recommendation is yielded by this
model.
Memory-based approaches predict a candidate drug

pair based on its most similar known drug pairs. Find-
ing well-known interacting drugs that are very similar to
a drug pair provides evidence to support an interaction
between these candidate drugs. Some of these methods
are described below:
Ferdousi et al. [38] used carriers, transporters, enzymes

and targets (CTET) from the DrugBank database to pre-
dict DDIs. In this study, 2189 approved drugs, 45,530
known drug interactions, and 2,349,236 unknown drug
pairs were investigated. To determine DDIs, they collected
all CTETs associated with each drug and formed binary
vectors. They then aimed to identify DDIs by apply-
ing many similarity methods to these combined vectors.
They subsequently predicted more than 250,000 potential
new DDIs using inner product-based similarity measures
(IPSMs) from these similarity methods. To train the final
classifier, they used 2004 features.
Vilar et al. [13] developed a method based on the molec-

ular structural similarities of drugs. In this study, 928
drugs and 9454 DDI were collected from DrugBank v3.0,
from which the interactions were used as a reference data.
The drug-drug similarity was created through a combina-
tion of DrugBank DDIs and molecular fingerprint model-
ing. The similarity of the drug pairs was calculated based
on the Tanimoto coefficient and molecular fingerprints.
Shi et al. [39] proposes a matrix factorization model

to predict enhancive (positive) and degressive (negative)
drug drug interactions (DDIs) using drug binding proteins
as a feature. They try to find balanced/unbalanced drug
communities on the network of enhancing and depressive
DDIs and predict DDIs for the cold-start scenario.
The most commonly used features for model-based

approaches were pharmacological similarities [40].
Gottlieb et al. [11], by using different drug similarity
metrics, developed a new prediction framework called
INDI. INDI trained a logistic classifier using 7 similarities,
also using them to calculate their maximum likelihood
by using known DDIs. Cheng et al. [14] presented
the HNAI framework for predicting drug interactions
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using phenotypic, therapeutic, structural, and genomic
similarities of drugs. Cami et al. [36] have trained a
logistic classifier by extracting the pharmacological and
graph/network qualities between drugs. Zhang et al.
[41] used a label propagation method on drug chemical
infrastructure, drug side effect and drug off-side effects.
Li et al. [42] have developed a Bayesian network that
combines drug molecular similarity and drug phenotypic
(side effect) similarity to predict the combination effect of
drugs. Zhang et al. [12] collects a variety of drug data and
thus predicts DDIs by integrating chemical, biological,
phenotypic and network data. The work by Shi et al. [43]
is focused on predicting synergistic drug combination
rather than drug-drug interactions using only positive
relationships with one-class SVM. In [44], the authors
integrate four drug features, chemical substructures,
targets, enzymes and pathways, by mapping drugs in
different feature spaces into the common interaction
space through sparse feature learning. Then, the linear
neighborhood regularization is used to describe drug–
drug relations in the interaction space by using known
drug–drug interactions.
There are also other works which use feature vectors

as input to machine learning methods. Luo et al. [45]
proposed a 611 feature vector method based on molec-
ular structure. Later, the logistic model was trained with
these feature vectors to find potential DDIs for 2515 drug
molecules.
Abdelaziz et al. [30] presented Tiresias, a similarity-

based framework for predicting DDIs. They used 1014
features derived from pharmacological similarities and
from drug text and similarity based on the knowledge
graph embeddings (TransH and HolE). Each feature rep-
resents the similarity value of the known interacting drug
pair to the most similar drug pair. An integrated knowl-
edge base consisting of DrugBank, UMLS, DailyMed,
Uniprot and CTD datasets was created as an RDF data
network and this integrated information network includes
entities such as enzymes, chemical structures and path-
ways, drug properties and relationships. This knowledge
graph was used to calculate the global similarity measure
between drugs. Precision, recall, F-score and AUPR were
used as evaluation criteria.
Hameed et al. [46] presented a Positive-Unlabeled

Learning (PUL) approach based on the Growing Self
Organizing Map (GSOM) cluster to estimate the poten-
tial negative data required for binary classification meth-
ods for DDI inference. They predicted that 589 drug
pairs from 6036 DDIs obtained from DrugBank did
not interact with each other, considering these as a
negative class in the binary classification method. The
proposed approach which used the 5-cross validation,
produced Precision of 0.97, Sensitivity of 0.98 and F1-
Score of 0.97.

Methods
The steps of our RDF Graph Embedding based DDI
prediction methodology are shown in Fig. 1. The first
step is to construct knowledge graph data in RDF
format. And then as second step, the feature vector
of drugs is extracted using the knowledge graph by
applying different Graph Embedding approaches namely

Fig. 1 Overview of our methodology
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RDF2Vec [47], TransE [48] and TransD [49]. Note that,
graph embedding approaches such as Node2Vec, Deep-
Walk and LINE can be applied for homogeneous graphs
but can not be used for knowledge graphs that con-
tain multiple entity and relation types. For that rea-
son, we did not use these embeddings for our evalua-
tion. The last step is to predict drug interactions using
extracted feature vectors by applying three different clas-
sifiers: Logistic Regression, Naive Bayes and Random
Forest. We provide a toy example of the drug knowl-
edge graph and the workflow on how to apply Knowl-
edge Graph Embedding to model DDI prediction in
Fig. 2.

Knowledge graph construction
Linked Open Data (LOD) is a technique for publish-
ing, describing, and linking data [50]. Linked open
data is a potential source of background knowledge
for modeling predictive machine learning and build-
ing content-based recommender systems [47]. LOD is
used to identify resources with Uniform Resource Iden-
tifiers (URI) [51] and through standards such as the RDF
(Resource Description Framework) [52] which is a pow-
erful data model to describe and exchange resources on
the Web.
We used an already linked open biological dataset,

called Bio2RDF [53], as background knowledge to extract
drug features. Bio2RDF is an open-source project that
integrates numerous Life Sciences databases available

on different websites, providing a data integration ser-
vice for scientific researchers. Bio2RDF creates a large
RDF graph that interlinks data from major biological
databases related to biological entities such as drug, pro-
tein, pathway and disease. In this study, DrugBank, KEGG
and PharmGKB datasets within Bio2RDF project release
4.0 were used as the background knowledge graph. We
removed DDI links from these knowledge graphs to elim-
inate bias on the prediction task. The number of triples,
entities and relation types related to each dataset are given
in Table 1.

Feature vector extraction
We have tested multiple successful approaches proposed
for knowledge graph embeddings to generate features
from graphs such as RDF2Vec, TransE and TransD.
These approaches are explained in detail in the following
subsections.

RDF2Vec
RDF2Vec is a recently published methodology that adapts
the language modeling approach of word2vec [54] to RDF
Graph Embeddings. Word2vec trains a neural network
model to learn vector representation of words, called
word embeddings. It maps each word to a vector of
latent numerical values in which semantically and syn-
tactically closer words will appear closer in the vector
space. The hypothesis which underlies this approach is
that closer words in word sequence are statistically more

Fig. 2 A toy example on how to apply Knowledge Graph Embedding to DDI prediction. A, B and C nodes represent drug entities
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Table 1 The number of triples, entities and relation types related
to each knowledge sources to be used for embedding learning

Dataset # of triples # of entities # of
relation
types

DrugBank 2,588,933 574,152 76

KEGG 14,362,294 4,362,395 301

PharmGKB 2,976,202 830,433 78

DrugBank + KEGG + PharmGKB 19,806,314 5,645,847 445

dependent. RDF2Vec applies a similar approach on RDF
graphs, considering the entities and relations between
entities by converting the graph into set of sequences
(walks or paths) and training the neural network model
to learn vector representation of entities from the RDF
graph.

• Random GraphWalks
G(V ,E) is a graph with V set of nodes and E set of
edges. The random walk algorithm was used to
generate Pv paths at depth d starting at each vertex v
in V. At first iteration, the algorithm traverses the
direct outgoing edges of a root vertex (vr), then
randomly exploring the connected edges through
visited vertices until d iterations is reached. The
union of all the Pvr walks, starting from all entities
(vr) in the knowledge network were used as a set of
sequences to train artificial neural network models.

• Neural Network Training
Each word (entity) is trained to maximize its log
probability according to the context words within the
fixed-size window. Each word in the vocabulary is
represented by two vectors; input and output vectors.
While learning the input vectors is cheap, learning
the output vectors is very expensive. Approximation
techniques such as hierarchical softmax and negative
sampling have been developed for efficient training.
Word2vec introduces two architectures to obtain
vector embedding representation of words:
Continuous Bag-of-Words (CBOW) and Skip-Gram
(SG).
Continuous Bag-of-Words Model
The CBOWmodel is a two-layer artificial neural
network model that predicts a target word using
context words in near proximity. Given word
sequence w1,w2,w3, ..,wT , CBOW tries to maximize
the average log probability of the target word as
follows:

1
T

T∑

t=1
log(p(wt|wt−c + · · · + wt+c)) (1)

where c is the context window and p defined as :

p(wt|wt−c+· · ·+wt+c) =
exp

(
vTv′wt

)

∑V
w=1 exp

(
vTv′w

) (2)

where v′w is output vector of word w, V is the
complete vocabulary of words and v is the averaged
input vector of all the context words.

Skip-GramModel
While CBOW predicts the word given the context,
the Skip-gram predicts the context of the given word.
It tries to find useful word representations to predict
the words around the target word in a training
document or sentences. Given word sequence
w1,w2,w3, ..,wT and context window size c,
Skip-gram maximizes the average log probability as
follows:

1
T

T∑

t=1

∑

−c≤j≤c,j=0
log(p(wt+j|wt)) (3)

where p is defined using softmax function as follows:

p(wt+j|wi) =
exp

(
v′T
wt+j vwt

)

∑V
w=1 exp

(
v′T
wk
vwt

) (4)

where vw and v′w are the input and the output vector
of the word w, and V is the complete vocabulary of
words.

TransE
TransE uses an energy-based model to embed the knowl-
edge graph into low-dimensional vector space. In TransE,
the relations in a knowledge graph are represented as
translation from head entity to tail entity so that vector
embeddings should satisfy h+ r ≈ t where a triple (h, r, t)
in training set S is composed of two entities h, t ∈ E
(the set of entities) and relationship r ∈ R (the set of
relationships). A vector representation of every entity and
relation in the knowledge graph could be computed by
learning a neural network model, which minimizes energy
function f (h, r, t) = ‖h + r − t‖, vector norm of differ-
ence between head entity plus relation and tail entity
in embedding space (see Fig. 3a). For a triple (h, r, t) in
knowledge graph, the embedding head h would be close
to the embedding tail t by adding the embedding relation
r whereas for any corrupted triple (h′, r, t′) not in knowl-
edge graph, that would be opposite. TransE will minimize
the energy function as follows:

L =
∑

(h,r,t)∈S

∑

(h′,r,t′)∈S′
(h,r,t)

[
γ +d(h+r, t)−d(h′ +r, t′)

]
+

(5)



Celebi et al. BMC Bioinformatics          (2019) 20:726 Page 7 of 14

Fig. 3 Illustrations of Translation-based embeddings; (a) TransE and (b) TransD embedding method

where [ x]+ is positive part of x, γ > 0 is hyperparameter
and d is dissimilarity measure that can be defined as dis-
tance in L1 or L2-norm. S′ is the set of corrupted triples
defined as

S′
(h,r,t) = {

(h′, r, t)|h′ ∈ E
} ⋃ {

(h, r, t′)|t′ ∈ E
}

(6)

Since entity and relation embedding vectors lie on the
same space, TransE is convenient formodeling one-to-one
relations, but is insufficient for one-to-many, many-to-
one and many-to-many relations.

TransD
In TransD, each entity or relation is defined by two vec-
tors; one being the embedding vector of an entity or a
relation, the other the projection vector. The projection
vector represents the way to project an entity vector into
a relation vector space to be used to construct mapping
matrices. In Fig. 3b, each cluster represents an entity pair
appearing in a triplet of relation r. Mrh and Mrt are map-
ping matrices of h and t, respectively. hip, tip (i = 1, 2, 3)
and rp are projection vectors. hi⊥ and ti⊥(i = 1, 2, 3) are
projected vectors of entities. The projected vectors should
satisfy hi⊥ + r ≈ ti⊥ (i = 1, 2, 3). Every entity-relation
pair has a unique mapping matrix. Thus, it can handle
one-to-many, many-to-one and many-to-many relations.
In addition, TransD has no matrix-by-vector operations
which can be replaced by vectors operations.

Prediction and evaluation
Reference DDI datasets
We used various reference DDI data sets to train and eval-
uate our classifiers on embedding features for the DDI
task:

• DrugBank v4: This is an online database that
contains detailed drug information such as drug
structure, pathway, pharmacodynamic and
pharmacokinetic effects of the drug and interaction
data [23]. We have obtained interaction data as of

February 2015 which contains 1514 drugs and 96,942
DDIs.

• DrugBank v5: This is the latest major version of
DrugBank database as of July 2018. It has various
enhancements over early versions [22] and contains
288,856 distinct pairwise DDIs spanning 2551 drugs.

• KEGG: KEGG extracted DDIs from the interaction
tables of Japanese product labels. We obtained 26,664
DDIs where drugs were mapped to DrugBank IDs via
the work done by [55].

Evaluation
In a traditional k-fold CV setting for machine learn-
ing task, the samples are partitioned into equal sized
k-subsets in which one subset is used as a test set and
the remaining data is used to train the model for a fold.
The results of folds are averaged to make a more accu-
rate estimate of model prediction performance. However,
when samples are in the form of a pair of objects, the
traditional CV leads to optimistic results due to the pres-
ence of the same objects in both the training set and the
test set [27]. To make realistic evaluation of DDI predic-
tion task, we propose two scenarios similar to what Park
[27] and Guney [28] suggested for the paired-input meth-
ods: (i) drug-wise disjoint CV and (ii) pairwise disjoint CV.
To create these scenarios, the drugs that form the drug
pairs are split into 2 clusters: cold-start and existing drugs.
The term cold-start drugs implies that these drugs have
no known DDIs in the training set and the term exist-
ing drugs implies the drugs have DDIs in the training set.
Let Drugscoldstart denote the set of hidden drugs for which
no DDIs are known at training. The rest of the drugs will
be called existing drugs denoted by Drugsexisting . The set
of known interacting drugs in reference data, KDDI, will
be partitioned into three subsets; KDDItrain, KDDIdrugwise
and KDDIpairwise such as

KDDItrain = {(d1, d2)|d1 ∈ Drugsexisting ∧ d2 ∈ Drugsexisting}
(7)
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KDDIdrugwise = {(d1, d2)|(d1 ∈ Drugsexisting ∧ d2 ∈ Drugscoldstart)

∨ (d1 ∈ Drugscoldstart ∧ d2 ∈ Drugsexisting)} (8)

KDDIpairwise = {(d1, d2)|d1 ∈ Drugscoldstart ∧ d2 ∈ Drugscoldstart}
(9)

The Algorithm 1 constructs training and test sets for
a given reference DDIs. It inputs the interactions and
drugs in the reference data and the number of folds for
cross-validation and outputs the three datasets; training,
drug-wise and pairwise test sets for each fold. Instead of
dividing the drug pairs into equal size k-groups, we split
the drugs into k-groups where the drugs in one group

Algorithm 1 Splitting algorithm for training set, drug-
wise disjoint and pairwise disjoint test sets
1: Inputs:

drugs : list of drug IDs
pairs: list of pairs containing drug pair
(d1, d2) in the reference data
k_folds: number of folds

2: Output:
cv: a dictionary containing training set,
drug-wise disjoint and pairwise disjoint
test sets

3: Initialize:
remaining = drugs, subset = {}, cv = {}
subset_size = len(drugs)/k_folds 
 size of
the drug subset

4: for i = 1 to k_folds do
5: subset[ i]= random.sample(remaining, subset_size)
6: remaining = remaining − subset[ i]
7: end for
8: for i = 1 to k_folds do 
 define existing and cold-start

drugs
9: cold_start = subset[ i]

10: existing = drugs − subset[ i]
11: train = drugwise_test = pairwise_test =[ ]
12: for (d1, d2) ∈ pairs do 
 assign each pair

to the training, drug-wise disjoint or pairwise disjoint
test sets

13: if d1 ∈ existing and d2 ∈ existing
14: append (d1, d2) to train
15: else if d1 ∈ cold_start and d2 ∈ cold_start
16: append (d1, d2) to pairwise_test
17: else
18: append (d1, d2) to drugwise_test
19: end if
20: end for
21: balance_data(train, drugwise_test, pairwise_test)


 balance the positive and negative samples for each
set

22: cv[ k]= (train, drugwise_test, pairwise_test)
23: end for

will be considered as cold-start drug set and the remain-
ing (k-1) groups will be used as existing drug set for
each fold. In Fig. 4, we give an example of 2-fold CV
partitioning.
In addition, we performed time-slice CV in which an

earlier version of the dataset is used as the training set
and the new version that is created at a later point in
time is used as the test set. Crichton and colleagues[56]
have stated that a time-slice setting where predictors are
evaluated on how well they predict chronologically later
links would be a realistic setting. However, this setting
requires multiple snapshots of data for the evaluation to
be performed.
Let Dt1 = {(xi, yi)|i = 1 to m} denote the first snapshot of

data for training at time t1 with m data points. And let
Dt2 = {(xi, yi)|i = 1 to n} denote the second snapshot of data
at time t2 with n data points. Note that, t2 > t1 in terms
of time. So, for our time-slice CV, after having trained our
classification model with Dt1 , the difference between the
two datasets Dt2 − Dt1 (e.g. novel interactions) is used as a
test set. In order to apply 10-fold CV, we randomly split
the test set to 10 groups and averaged the obtained scores
for every group.

Data balance
For DDI prediction using supervised machine learning,
a binary classifier needs negative and positive example
sets. In previous studies the negative set typically was cho-
sen randomly from unknown interactions. Alternatively,
the set of all unknown interactions could be designated
as the negative set, but designating all unknown inter-
actions as the negative set creates a data balance issue,
influencing performance metrics (such as AUPR and F1-
score). Other studies accounted for this issue through
a random undersampling from these unknown interac-
tions at a ratio corresponding to the positive set [14], or
inferring negatives by clustering [46]. In this study, the
negative samples were taken randomly from unknown
drug pairs in sample size equivalent to the positive
samples.

Evaluationmetrics
While many studies use the AUC score in computational
prediction for DDIs, some studies such as [30, 46] have
emphasized that this score is insufficiently accurate, there-
fore metrics such as AUPR and F1 score are viable alterna-
tives.We used evaluationmetrics including F1 score, AUC
and AUPR to accurately measure the performance of our
classifiers.

Machine learningmodels
We used three well known classes of machine learning
models Logistic Regression, Naive Bayes and Random
Forest to train our classifiers using Scikit-learn machine
learning package. The parameters used for building the
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Fig. 4 To illustrate a partitioning for 2-fold cross validation, we consider a toy example of DDI prediction, in which the reference data has 10 drugs
and 14 DDIs. a The train-test generation workflow for a fold. Drugs are randomly split into 2 groups where one group is used as cold-start drugs to
generate test sets, while the remaining drugs (existing) are used to generate a training set for a fold. Splitting the drugs into 2 groups leads to
partitioning of drug pairs into 3 sets: training set, drug-wise disjoint test set and pairwise disjoint test set. The pairs which include both components
from existing drugs are assigned to the training set. The interactions between existing drugs and cold-start drugs are assigned to the drug-wise
disjoint test set and likewise, the interactions between cold-start drugs are assigned to the pairwise disjoint test set. In other words, the drug-wise
test set will contain the drug pairs each of which shares only one element with training set. The pairwise test set will contain the drug pairs in which
neither component is shared with the training set. b Partitioning of the drug-drug pair space into training and test subsets for each fold. The pair
space is represented by a table with 10 × 10 cells. The drug-drug pair space is divided into different blocks, which account for training, drug-wise
testing and pairwise testing parts, and are filled with red, yellow and green colors respectively

classifiers are as follows; C=0.01 for Logistic Regres-
sion, Gaussian version for Naive Bayes and number of
estimators = 200 and max depth = 8 for Random For-
est. The parameters were tuned according to 10-fold
traditional CV.

Embedding parameters
We generated walks to be used as input to RDF2Vec where
the graph walk parameters are depth = 1,2,3,4 and walks
per entity = 250. And we trained the word2vec model
using CBOW and SG neural network architectures with
the following parameters; window size= 5, number of iter-
ations = 5, negative samples = 25 and dimension = 100.
The size of each drug vector is 100. We opted for embed-
ding parameter values that were used in the study [47].
We conducted several experiments with different param-
eter values but didn’t observe any significant change. To
represent feature vector of a drug pair, we concatenated
embedding vectors of each drug in the pair. Thus, the

classifiers used 200 features for prediction of DDIs. The
default parameters given by OpenKE (openke.thunlp.org)
were used for TransE and TransD models.

Results
We first performed the experiments applying Logistic
Regression, Naive Bayes and Random Forest on Drug-
Bank knowledge graph with different CV using three well
known knowledge graph embedding methods, namely
RDF2Vec, TransE and TransD. The results of the experi-
ments on traditional CV, drug-wise and pairwise disjoint
CV, and time-slice CV are shown in Table 2. The scores
shown in the result tables are the means of ten runs of
each experimental setting. We used DrugBank v5 as ref-
erence data using 10-fold CV for traditional and disjoint
settings and were able to extract features for 2124 drugs of
these 2551, filtering out the drugs that have no calculated
feature vector. Thus, the number of DDIs was reduced to
253,449. For time-slice scheme, DrugBank v4 was used
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Table 2 Evaluation of different embedding methods in various CV schemes

Traditional CV Drug-wise CV Pairwise CV Time-slice CV

Embedding ML Model AUPR F1 AUC AUPR F1 AUC AUPR F1 AUC AUPR F1 AUC

RDF2Vec Logistic Regression 0.78 0.71 0.78 0.76 0.69 0.76 0.73 0.66 0.74 0.75 0.68 0.76

CBOW Naive Bayes 0.68 0.63 0.70 0.68 0.63 0.70 0.68 0.63 0.70 0.71 0.67 0.73

Random Forest 0.92 0.85 0.92 0.79 0.69 0.78 0.75 0.64 0.74 0.80 0.69 0.80

RDF2Vec Logistic Regression 0.79 0.72 0.79 0.77 0.70 0.77 0.75 0.68 0.75 0.76 0.69 0.76

SG Naive Bayes 0.76 0.68 0.74 0.75 0.68 0.74 0.75 0.67 0.73 0.78 0.72 0.78

Random Forest 0.92 0.85 0.93 0.81 0.71 0.80 0.76 0.63 0.75 0.80 0.68 0.80

TransE Logistic Regression 0.78 0.70 0.76 0.73 0.67 0.73 0.72 0.67 0.72 0.75 0.68 0.76

Naive Bayes 0.75 0.69 0.73 0.72 0.68 0.71 0.72 0.68 0.71 0.76 0.72 0.76

Random Forest 0.90 0.83 0.91 0.76 0.69 0.77 0.73 0.64 0.73 0.77 0.65 0.78

TransD Logistic Regression 0.74 0.68 0.74 0.74 0.67 0.74 0.72 0.66 0.72 0.74 0.70 0.75

Naive Bayes 0.72 0.68 0.71 0.72 0.67 0.71 0.72 0.67 0.71 0.73 0.70 0.73

Random Forest 0.91 0.84 0.91 0.77 0.69 0.77 0.73 0.64 0.73 0.78 0.68 0.78

Bio2RDF DrugBank knowledge graph and DDIs from DrugBank v5 were used in the evaluation. We considered these CV settings: traditional CV, disjoint CV (drug-wise,
pairwise) and time-slice CV. The settings are explained in the Evaluation section. (Bold: best score)

to train the classifiers and new interactions added to
DrugBank v5 were predicted using the classifiers trained
on embedding features. RDF2Vec methods (Skip-Gram
and CBOW) have significantly outperformed the other
graph embedding methods. RDF2Vec embedding vec-
tors with Skip-Gram mostly achieved the best perfor-
mance values. The best AUC, AUPR and F1-score values
obtained are 0.93, 0.92 and 0.85 respectively using Ran-
dom Forest learning algorithm with traditional CV. For
the disjoint cases, the scores tended to drop in all machine
learningmodels compared to traditional CV. Although the
Random Forest was the best model for most of cases, we
observed Logistic Regression and Naive Bayes would pro-
duce better F-scores in pairwise disjoint and time-slice
settings.

We next used different knowledge graph sources to
better understand the effect of the learned embedding
vectors on prediction performance using DrugBank v5.
Figure 5 shows the F-scores of DDI prediction task when
different knowledge sources were used to learn embed-
ding feature vectors using the best embedding approach,
RDF2Vec with Skip-Gram. We obtained an F-score of
0.85 for DrugBank, 0.82 for PHARMGKB, 0.86 for KEGG.
Thus, the PHARMGKB and the KEGGdata sources, when
used alone, showed no significant improvement on pre-
diction performance compared to DrugBank. In addition,
when these multiple data sources are used together the
predictive power of drug vectors did not improve sig-
nificantly. We conclude that DrugBank knowledge graph
was sufficient alone to characterize the drugs for DDI

Fig. 5 Comparison of the knowledge graph sources in predicting DDIs by F-scores for traditional CV
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prediction task, instead of using integration of multiple
knowledge graphs.
To show how proposed CV divides the dataset by DDI

types, we compared the distribution of training and test
sets produced by our CV method in terms of DDI types.
For this purpose, we have used 86DDI types for DrugBank
5 dataset obtained from the DeepDDI study [57]. The
DDI types were assigned by classifying the description
sentences into general sentence structures. These general
sentence structures provide information about pharma-
cokinetic or pharmacodynamic mechanisms. Using these
types, we plotted the frequency distribution of DDIs
observed in DrugBank 5 and DrugBank 4. Figure 6 shows
distribution of these interactions. 60% of the 192284 DDIs
in DrugBank 5 were assigned to 3 DDI types. We exam-
ined the distribution of the training set and the test sets to
see whether the test samples follow a distribution similar
to that of the training samples in terms of DDI types. We
compared distributions between the test set and training
set generated using 10-fold disjoint cross validation where
the number of cold-start drugs was determined to be 10%
of the total number of drugs. We observed that the per-
cent distribution of DDI types observed in the test sets
produced by our CV is consistent with those of the train-
ing using Pearson’s chi-squared test (p > 0.05 for all folds,
accepting null hypothesis. See Supplementary Table 1,
Additional file 1). In Fig. 7, the mean percent distribution
of DDI types of ten folds using DrugBank 5 and DrugBank
4 was shown.
Comparison with the state-of-art methods: In spite of the

high number of methods which have been proposed for
DDI prediction, their results have had insufficient basis
for comparison because of the differing terms of their ref-
erence data (known DDIs) and evaluation methodologies
of the studies. We provide the prediction performance

of RDF2Vec Skip-Gram embedding vectors on the previ-
ous benchmark data sets, DrugBank v4 and KEGG, that
were used by other studies in Table 3. The Tiresias frame-
work [30], which is one of the most noteworthy studies,
uses both pharmacological similarities and similarities
from embedding features using DrugBank v4. Tiresias has
reported an F-score of 0.85 and AUPR of 0.92, all fea-
tures included, as their best results and an F-score of
0.81 and AUPR of 0.89 with only pharmacological simi-
larity features (equivalent performance with INDI [11]).
Our embedding using the DrugBank v4 with similar set-
tings achieved a high F-score of 0.86 and AUPR of 0.92.
It shows that the proposed embedding based method
is comparable to current state-of-the-art methods for
traditional CV.

Discussion
Using traditional CV strategies for paired/networked data
creates a bias due to the inherent relations between
paired samples, pointing to the potential danger in using
them for evaluation. We propose a realistic CV scheme
which considers two disjoint scenarios for DDI predic-
tion: (i) drug-wise disjoint CV and (ii) pairwise disjoint
CV. We have shown that a better realistic evaluation can
be attained using the drug-wise disjoint scenario when
drugs have limited interaction information. In fact, the
drug-wise disjoint produced similar results with a time-
slice setting, which is considered a more realistic scenario
than traditional CV. Furthermore, in some cases, it may be
desirable to predict the likelihood of interactions between
newly developed drugs without interaction information.
The pairwise disjoint CV is more appropriate for this case,
even though the pairwise disjoint case can be considered
the worst case scenario in evaluating the performances of
the model for DDI.

Fig. 6 Frequency distribution of DrugBank 5 and DrugBank 4 in terms of different DDI types
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Fig. 7Mean percent distribution of DDI types of training and test sets of (a) DrugBank 5 and (b) DrugBank 4 using proposed 10-fold disjoint
cross-validation method

We provided an empirical evaluation of our proposed
CV for paired data and an algorithm to split paired data
into train and test subsets, while also emphasizing its
differences with the other CV methods proposed in the
literature. Examining this issue from a network theo-
retic perspective (e.g. scale-freeness) will be an impor-
tant step towards a more comprehensive assessment of
the methods. In addition, we designed experiments to
check whether the proposed CV method introduced
additional bias when it split data into training and test
sets, and found no evidence of bias. In this paper, we
focused on comparing different embeddings for realistic
CV settings. The study did not focus on other aspects
of the evaluation such as negative sampling. A limita-
tion of graph embeddings is that they are unable to
provide the mechanistic explanations for predicted poten-
tial DDIs, given that the embedding predictors were
constructed using a black box model (neural network
model). However, knowledge graphs can provide inter-
pretable outcome for a drug pair via mining rules or
the paths of relationships of inferred interacting drug
pairs.

Conclusions
In this study, we showed that the knowledge embeddings
are powerful predictors and comparable to current state-
of-the-art methods for inferring new DDIs. Knowledge
graph embedding approaches enabled us to extract fea-
tures for a large number of drugs. Previous studies used
much lesser known DDI samples (≈ 40 − 50K).
The presence of the same objects in both the training set

and the test set produced flaws in the evaluation for paired
data. We addressed the evaluation biases by introducing
drug-wise and pairwise disjoint test classes. Although the
performance scores for drug-wise and pairwise disjoint
seem to be low, the results can be considered to be realistic
in predicting the interactions for drugs with limited inter-
action information. We also consider temporal evaluation
(referred as time-slicing) setting which takes the tempo-
ral evolution of the interaction graph into account and
how well the links formed later could be predicted. But
this evaluation setting might not be applicable for every
datasets when there exist no multiple snapshots. There-
fore, the proposed disjoint evaluation scheme would be
better choice for paired inputs with no temporal data.

Table 3 Performance values for different CV schemes using DrugBank v4 and KEGG as reference DDIs

Traditional CV Drug-wise CV Pairwise CV

Reference Data ML Method AUPR F1 AUC AUPR F1 AUC AUPR F1 AUC

DrugBank 4 Logistic Regression 0.75 0.70 0.76 0.70 0.65 0.72 0.66 0.60 0.67

Naive Bayes 0.71 0.66 0.72 0.70 0.65 0.70 0.68 0.63 0.69

Random Forest 0.90 0.84 0.91 0.78 0.69 0.79 0.69 0.52 0.70

KEGG Logistic Regression 0.77 0.71 0.78 0.69 0.63 0.70 0.62 0.54 0.62

Naive Bayes 0.73 0.67 0.74 0.71 0.63 0.71 0.66 0.58 0.67

Random Forest 0.85 0.79 0.86 0.78 0.68 0.79 0.67 0.38 0.67

The embedding generated by RDF2Vec with SkipGram was used in the experiments. (Bold: best score)
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