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Abstract

Background: Calling genetic variations from sequence reads is an important problem in genomics. There are many
existing methods for calling various types of variations. Recently, Google developed a method for calling single
nucleotide polymorphisms (SNPs) based on deep learning. Their method visualizes sequence reads in the forms of
images. These images are then used to train a deep neural network model, which is used to call SNPs. This raises a
research question: can deep learning be used to call more complex genetic variations such as structural variations
(SVs) from sequence data?

Results: In this paper, we extend this high-level approach to the problem of calling structural variations. We
present DeepSV, an approach based on deep learning for calling long deletions from sequence reads. DeepSV is
based on a novel method of visualizing sequence reads. The visualization is designed to capture multiple sources
of information in the sequence data that are relevant to long deletions. DeepSV also implements techniques for
working with noisy training data. DeepSV trains a model from the visualized sequence reads and calls deletions
based on this model. We demonstrate that DeepSV outperforms existing methods in terms of accuracy and
efficiency of deletion calling on the data from the 1000 Genomes Project.

Conclusions: Our work shows that deep learning can potentially lead to effective calling of different types of
genetic variations that are complex than SNPs.

Keywords: Structural variations, Deep learning, Feature extraction, Visualization, Genetic variations, High-throughput
sequencing

Introduction
High-throughput DNA sequencing technologies have
generated vast amount of sequence data. These data
enable novel approaches for studying many important
biological questions. One example is calling genetic vari-
ations such as SNPs or SVs from sequence data. There
have been many existing computational methods for
sequence-based calling of SNPs or SVs. For example, for
SNP calling, one popular caller is GATK [1]. On the
high level, calling genetic variations from sequence data

can be viewed as a classification problem in machine
learning. That is, given the sequence data at a candidate
variant site, we are to classify the site into one of the
two categories: variant or wild-type. Among many exist-
ing classification approaches, deep learning based on e.g.
convolutional neural network (CNN) is becoming in-
creasingly popular. CNN has outperformed existing ap-
proaches in a number of important applications. Among
these, the most noticeable application of CNN is image
processing, where deep learning has significantly im-
proved the state of the art [2]. A natural research direc-
tion is using CNN for genetic variant calling with
sequence data. Recently, Google’s DeepVariant [3] was
developed to call SNPs and short insertion/deletions
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(indels) from sequence data. The key idea of DeepVar-
iant is viewing the mapped sequence data as images, and
treating variant calling as a special kind of image classifi-
cation. It is reported that DeepVariant can outperform
GATK in SNP calling. This demonstrates the potentials
of deep learning in the sequence data processing domain.
The DeepVariant approach raises a natural research ques-
tion: can deep learning be applied to call other types of
genetic variations from sequence data that are more com-
plex than SNPs and short indels? In this paper, we provide
a positive answer for this question: we show that deep
learning can be used for accurately calling structural varia-
tions from sequence data.
Structural variation refers to relatively long genomic

variation, such as deletion, insertion and inversion.
Structural variation will lead to complications of many
diseases [4], and many cancers are associated with gen-
etic variation [5]. To be specific, we focus on calling long
deletions (longer than 50 bp) in this paper. For deletion
calling, there exists many approaches including Pindel
[6], BreakDancer [7], DELLY [8], CNVnator [9], Break-
seq2 [10], Lumpy [11], GenomeStrip2 [12], and SVseq2
[13], among others. Most of these approaches rely on
one or multiple information (called signatures) extracted
from mapped sequence data: (i) read depth, (ii) discord-
ant read pairs and (iii) split reads. We note that there
are also methods performing sequence assembly for de-
letion calling. While many of the existing methods have
been used in large genomics projects such as the 1000
Genomes Project [14], there exists no single method that
clearly outperforms other approaches.
In this paper, we present DeepSV, a deep learning

based method for long deletion calling from sequence
data. DeepSV builds on the general approach of Deep-
Variant by visualizing mapped sequence reads as images.
The key technical aspects of DeepSV are the novel
visualization techniques for CNN-based deletion calling
and how to work with noisy training data. The
visualization procedure combines all major aspects of
features with regard to deletions: read depth, split read
and discordant pairs. This avoids manual selection of
features for classification. We demonstrate that DeepSV
outperforms existing methods in calling long deletions
on real sequence data from the 1000 Genomes Project.
Our work extends the findings of DeepVariant by show-
ing that deep learning can be useful for calling structural
variations that are more complex than SNPs and short
indels.
The rest of the paper is organized as follows. In Sec-

tion 2, we survey the existing approaches for calling
structural variations from sequencing data, and the ap-
plication of the machine learning in the this subject. In
Section 3, we present our deep leanring based SV calling
method. In Section4, we present the research results. In

the last section, we provide discussions on the DeepSV
approach.

Background
Genomic deletions affect several aspects (called signa-
tures) of the sequence reads mapped onto the given ref-
erence genome near the deletion site. (i) Read depth.
Mapped read depth within a deletion is likely to be
lower than those at wild-type sites. If the deletion is
homozygous and the reads are mapped correctly (e.g.
not mis-mapped due to repeats), read depth within the
deletion should be close to zero. If the deletion is het-
erozygous, read depth within the deletion should still be
lower than expected. Thus, low read depth is a signature
of deletions. (ii) Discordant read pair. Consider paired-
end reads that are mapped near the deletion with two
ends being to the different sides of a deletion. Such read
pair is called encompassing pair for the deletion. The
mapped insert size (i.e. the outer distance of the two
mapped reads of the pair) of an encompassing pair ap-
pears to be longer than usual due to the presence of the
deletion. This is because the mapped insert size includes
the length of the deletion on the reference genome. We
say an encompassing read pair is discordant if the differ-
ence between its mapped insert size and the known li-
brary insert size is at least three times of the standard
deviation of the library insert size. Otherwise, we say the
read pair is concordant. The longer the deletion is, the
more likely an encompassing pair becomes discordant.
(iii) Split reads. When a read overlaps the breakpoints of
a deletion, the read consists of two parts that are not
contiguous on the reference: the part proceeding the left
breakpoint and part following the right breakpoint. Such
a read is called split read. Here, breakpoint refers to the
boundary of the deletion on the reference genome.
When a split read is mapped, the read cannot be mapped
as a whole. Instead, it is mapped onto two discontinuous
regions of the reference. These signatures reveal different
aspects of structural variations. A main advantage of using
split reads is that split reads can potentially reveal the
exact breakpoints of the deletion. In contrast, read depth
and discordant pairs cannot lead to exact breakpoints. See
Fig. 1 for an illustration.
Most existing deletion calling methods utilize the

above three types of signatures. Earlier methods often
use a single signature. For example, BreakDancer uses
only discordant read pairs. The original Pindel only
relies on split-reads. A number of methods combine
multiple signatures and obtained more accurate results.
For example, several methods such as DELLY, MATE-
CLEVER [15], and SVseq2 combined discordant read
pairs and split reads. A main advantage of integrating
multiple signatures is better utilizing the information
contained in the sequence data. However, it is unclear
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what is the best way for integrating different signatures for
deletion calling. A simple approach is weighting different
signatures (e.g. a split read is weighted as 1 and a discord-
ant pair is weighted as 2). Obviously, this leads to the issue
of choosing the weights, which is often difficult in practice
[16]. Indeed, it is known that parameter settings can affect
the results of many existing SV callers [17].
A useful observation is that SV calling can be

viewed as a classification problem. That is, for a can-
didate SV, we want to classify this candidate site to
be either a true deletion (denoted as 1) or a non-
deletion (denoted as 0) based on the given sequence
data near the candidate site. Classification is an im-
portant subject of machine learning and there are
many existing machine learning methods for classifi-
cation. Usually classification involves two steps. First,
a model is trained from training data. Second, the
trained model is used to classify the test data. A main
advantage of using a classification model is that there
is no need to manually choosing the parameters; pa-
rameters are obtained from the training data. There
are existing machine learning based approaches for
SV calling, including GINDEL [18] and Concod [19].
While these machine learning based methods show
promises in accurate calling of SVs, there are also dif-
ficulties faced by traditional classification methods.

One of the most important issues for traditional clas-
sification is feature selection. That is, we need to de-
termine what specific quantities to extract from
sequence data to be used in classification. Due to the
complex nature of structural variations, it is often un-
clear what are the best features.
Recently, deep learning is becoming increasingly popu-

lar. Deep learning approaches (such as convolutional
neural network or CNN) have been applied to several
important problems (e.g. image processing, computer vi-
sion, natural language processing, to name a few) and
led to significant improvements in performance over
existing methods. A main advantage of deep learning is
that it reduces the need of feature engineering and can
potentially better utilize the data. On the other hand, a
main disadvantage is that deep learning usually needs
more complex models that are more difficult to train
than those in traditional approaches. Application of deep
learning in sequence data analysis is in its infancy. A
pioneering work in this area is Google’s DeepVariant.
DeepVariant proposes a novel approach for sequence
data analysis for the purpose of genetic variant calling:
treating mapped sequence data as images and converting
genetic variant calling to an image classification prob-
lem. As shown in Fig. 2, mapped sequence reads have a
natural visualization [20]. Mapped sequence reads near a

Fig. 1 Above the image is high coverage data, and below is low coverage. The split reads are marked with ① and the discordant reads are
marked with ②
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variant (say a short deletion) or wildtype site can be eas-
ily recorded as an image.
This image has different visual appearance at a variant

from that from a wildtype. At a short deletion site, the
image tends to have a gap. Moreover, read depth tends
to be lower than that of the wildtype because short dele-
tion may cause some reads unaligned. DeepVariant relies
on the visual difference of images to perform classifica-
tion for genetic variant calling.
The DeepVariant approach leads to a natural question:

can we use deep learning to call more complex genetic
variants such as long deletions? SV calling can be some-
what more difficult than SNP or short indel calling. First,
SNP calling is more localized: reads relevant to a SNP
can be easily fit into a single image. Reads that are rele-
vant for a long deletion can spread out. For example,
two ends of a discordant read pair over a long deletion
can be mapped to positions that are more than thou-
sands of bases apart. Second, there are more signatures
for long deletions than those for SNPs or short indels.
For example, discordant read pairs are not associated
with SNPs but are important for long deletions. Integrat-
ing these diverse set of signatures in visualization needs
to be worked out. In this paper, we present DeepSV, a
deep learning based method for calling long deletions
from sequence reads, which addresses these difficulties.

Methods
General description of DeepSV
DeepSV is a deep learning based structural variation calling
method. It is based on a new sequence reads visualization
approach, which converts mapped sequence reads to im-
ages. DeepSV follows the general approach of DeepVariant.
Different from DeepVariant, DeepSV aims to calling SVs
(especially long deletions that are longer than 50 bp). There
are two components in DeepSV: training and variant call-
ing. Both components take mapped reads and the reference
genome as input. For model training, DeepSV trains a con-
volutional neural network (CNN) model from sequence
reads with known deletions. Similar to DeepVariant, CNN

model training is based on visualizing mapped sequence
reads near known deletion sites or at wildtype sites. The
key technical aspect of DeepSV is how to train the CNN
from sequence images near a deletion. Recall that long de-
letions have more complex signatures than SNPs or short
indels. Note that deletion can be long and different regions
of a deletion can be quite different in the visualized reads.
For example, near the breakpoint, there is likely a sharp
transition from high read depth to low read depth. In the
middle of a deletion, there may be no such transition but
the read depth can be lower than that near the breakpoint
(See Additional file 1: Figure S1).
In order to accurately call deletions with precise break-

points, it is important to separate these cases. Moreover, to
accommodate various signatures of a deletion, DeepSV im-
plements a visualization procedure that takes advantage of
the rich information contained in an image to integrate vari-
ous signals. In a typical color map, there are 8 bits for red,
green and blue and so there can be 256 choices for each
color. Therefore, one can use various combinations of the
three basic colors to represent the configuration of the
mapped reads. For example, a pixel corresponding a base of
a mapped read can be affected by multiple factors such as
whether the read is split read, the quality of the read, whether
there is a discordant read pair and so on. When the CNN
model is trained, the model is used to call deletions from the
sequence images.

DeepSV workflow
Figure 3 shows the overall workflow of DeepSV. DeepSV
is composed of three parts. In the first part (Fig. 3a),
DeepSV begins by finding candidate deletions in reads
aligned to the reference genome using clustering. In the
second part (Fig.3b), the deep learning model is trained
using a pileup image of the reference and reads around
each candidate variant. Pileup image refers to the verti-
cal alignment of bases at each site, rather than the hori-
zontal alignment of bases as reads. The difference
between pileup image and tiled image is shown in

Fig. 2 The red line is the read-depth value, the green line is split-read value and the insert size spaning the deletion region is larger than
library value
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Additional file 1: Figure S2. In the third part (Fig.3c), the
model is used to call the variants.

DeepSV implementation details
To train a classification model, DeepSV takes the aligned
sequence reads in binary sequence alignment (BAM) file
and a variant call format (VCF) file which containes the
known deletions. From sequence data to mapped image,
DeepSV goes through three stages. Figure 4 illustrates the
DeepSV approach. In the first stage, DeepSV performs fil-
tering operations because the fluctuation of read depths will
affect the clustering results. In the second stage, DeepSV
eliminates false positives by clustering and then determines
precise breakpoints. In the last stage, DeepSV visualizes
mapped sequence reads based on sequence characteristics.

Dealing with noise
Real sequence data tends to have significant noise, which
can make the clustering perform poorly. The following
lists several such cases.

(i) The read depths fluctuate and some positions have
read depths that are either too high or too low than
expected. For example, read depths at some sites in the
non-deletion region can be very low, while read depths
of some sites in a deletion can be very high. Read depth
near the breakpoints fluctuates significantly.

(ii) The difference on discordant paired-end reads
between a deletion and a non-deletion is not
obvious when coverage is low.

To address the above two issues, DeepSV uses the
following techniques to reduce the effect of noises. First,

DeepSV uses a 61 bp long sliding window to filter the

read depths. DeepSV uses the following filter formula: Dσ
γ . The mapping read depths within the window are d1,
d2, ..., d61 (computed by SAMtools [20]), and the D¯ is
the average of the read depths of the window. σ is the
standard deviation of di and γ represents a coefficient.
D¯ can indicate the situation where the read depth is
high in the non-deletion region or low in the deletion
region. σ reflects the fluctuations of depth. The value of
γ is chosen to amplify the trend of the depth values in
the window. Our experience indicates that this filtering
step reduces the effect of the noise in the data, and im-
proves the performance of the clustering. Now we con-
sider discordant reads and split reads. Since the split
read count and the discordant read count can be in-
versely proportional to the read depth near the break-
points, we use the negation of the discordant read
counts and split read counts (instead of the reads counts
themselves). This is to ensure that each feature used in
the clustering has the same trend for deletions or non-
deletions. This improves the performance of the cluster-
ing. Figure 5 shows the clustering details. In the Fig. 5a,
the green dots represent the feature points of the dele-
tion regions, and the red and blue colors respectively
represent the feature points at upstream and down-
stream of the deletion region. When there is no filtering,
many singular values will appear, and these singular
values will be incorrectly assigned to other classes. From
Fig. 5b, we can see many singular values are removed by
filtering. Figure 5c and d show the comparison before

Fig. 3 Overview of the DeepSV. DeepSV extracts candidates training set from the original sequence, and then uses a gradient descent algorithm
to train CNN network, and finally generates images according to gene sequence for calling deletions. The gradient descent algorithm is an
optimization algorithm commonly used in machine learning and artificial intelligence to recursively approximate the minimum deviation model.
a Finding candidate variants and Encoding pileup images. b Training CNN model. c Calling deletions
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and after filtering. DeepSV successfully excludes the ei-
genvalues of special sites by filtering.
In order to ensure that the boundary of clustering is as

close as possible to the breakpoints and improve the accur-
acy of called deletions, DeepSV uses a modified Euclidean
distance formula for the distance measure between two
points used in the clustering. Euclidean formula can better
reflect the distance relationship of space vectors. It is a
commonly used distance formula in clustering algorithm.
Considering that each coordinate in multidimensional vec-
tor contributes equally to Euclidean distance and they often
have random fluctuations of different sizes, we have im-
proved the formula by adding weight adjustment.

Dis tance Ci;C j
� � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

k¼1

η jCik−Cjk j
� �p

s

CiandCj Ci and Cj represent two points of cluster set.
Cik and Cjk CikandCjk are the components of vectors in
the form of (normalized read depth, negated split read

count, negated discordant read count). When the Cik,
Cjk, Cjk values are the normalized depths, η is a fixed
number that is greater than one. For discordant read
count and split read count, η is set to one. The constant
p is a fixed even number.

Clustering process
After dealing with the origin sequence, the k-means
clustering algorithm is used on feature sets. We define
each point in the sets as a triple, (read depth, discordant
read pair count, split-read count). Therefore, we let k = 3
and run k-means clustering to cluster the positions into
three categories. The three clusters are denoted as S1, S2,
S3 S1, S2, S3 which correspond to the upstream, deletion
and downstream regions respectively. Note that at a SV
site, read depth tends to decrease while split read count
and discordant read count tend to decrease. So we com-
pute a feature value m for each position, where m is
equal to the read depth minus split read count and dis-
cordant read count. We compute the average feature

Fig. 4 The process of DeepSV. DeepSV processing data is divided into three steps: filtering, clustering and visualization
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value of all positions in each of the three clusters S1, S2,
S3 S1, S2, S3, which we denote as m1;m2;m3 m1;m2;m3.
We let m m be the minimum of the three mean values.
If the positions from the cluster with the minimum
mean are largely between the points of the other clus-
ters, then this deletion is considered to be a true dele-
tion. Otherwise, it is a false positive. Figure 6 shows the
clustering results. The effect of false positives will be
presented in the results section.
Sometimes the given breakpoints are not very accur-

ate. This can lead to wrong labeling of the training im-
ages, especially near the boundary of the deletion. To
find exact breakpoints, we consider the minimum mean
cluster S2 S2 with mean ¯2 m2 . DeepSV sorts the posi-
tions of S2 S2. The minimum and maximum positions,
denoted as β1 and β 2 β1andβ2, are treated as initial

breakpoints. There are two cases for the interval [β1, β2]
[β1, β2].

(i) [β1, β2] [β1, β2] is close to the given breakpoints.
(ii) [β1, β2] [β1, β2] doesn’t include the given breakpoints

due to the length of the deletion being too long.

We set two pointers ρ1 and ρ1andρ2 ρ2 to β1 β1andβ2
and β 2 respectively. In the first case if the feature value
of ρ1 ρ1 is less than ¯2 m2, then ρ1 ρ1 is moved to the left
by one. Similarly, if the feature value of ρ2 ρ1 is less than
¯2 m2 , then ρ2 ρ2 is moved to the right by one. In the
second case, the two pointers move in the opposite dir-
ection. When this process finishes, the two pointers pro-
vide the estimate of the two breakpoints of this deletion.
Figure 7 shows the breakpoint finding process.

Fig. 5 a, b Represent the clustering result of feature points, in which outliers are drawn in circles, and these boundary outliers are easily clustered
into other categories. c, d Show the process of filtering features, where the box is a sliding window
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Visualizing mapped sequence reads
Model training needs a set of labeled training samples.
For image-based deletion calling, we need two sets of
images: images from the deletion regions (labeled as 1)
and images from the wild-type regions (labeled as 0). In
principle, since the deletions are given in the VCF file,
creating training sample is straightforward. Mapped
reads have the natural pileup form and can be easily
converted to images. 1-labeled images are taken within
the known deletions and 0-labeled images are from out-
side the deletions. We partition the reference genome
into consecutive non-overlapping windows of 50 bp. The
aligned reads in the pileup format are converted into an
image. Once the training data is obtained, one may train
a CNN.
So far, we have labeled regions along the reference

genome to be either deletion or non-deletion. We now
describe how to create images for each region. This is a
critical step because real sequence data tends to be com-
plex. If the visualization approach is not chosen prop-
erly, the CNN may not capture the underlying
information about the deletion from the created images.
Recall that an image is composed of pixels, and

each pixel has (R, G, B) three-primary colors. The

reason for using (R, G, B) image coding sequence is
that the single channel graph can only represent gray
level image, and the expression ability is limited,
while the sequence information is complex. Especially,
the CNN has the advantage of natural image process-
ing. DeepSV takes the following simple approach for
visualizing the reads: each nucleotide (i.e. A, T, C, or
G respectively) is assigned one of these base colors:
red (255,0,0), green (0,255,0), blue (0,0,255) and black
(0,0,0) respectively; then the base color is slightly
modified to integrate the various signatures on dele-
tions. DeepSV considers all the aligned bases (i.e. a
column in the image) at a position of the current re-
gion. For population sequence reads, a large percentage
(95% or higher) of sites are not polymorphisms and the
bases from one site tend to have the same color. This
gives the visual appearance of column-based images.
See Fig. 8 for an illustration. Our experience shows that
such column-based images reveal the key aspects of
deletions.
Integration of deletion signatures. Recall that there are

various signatures on deletions (i.e. read depth, discordant
pair and split read). Read depth is naturally represented by
the pileup images. DeepSV integrates the other two types

Fig. 6 shows that DeepSV can filter out the false positives in VCF by clustering the results that do not conform to the deletion characteristics

Cai et al. BMC Bioinformatics          (2019) 20:665 Page 8 of 17



of signatures by slightly modifying the base colors of the
mapped bases based on the signatures. Note that such
modification is usually mild and does not destroy the
column-based appearance of images. Each read contains
multiple aspect of information, e.g., whether it belongs to
discordant paired-end reads and whether it is split read.
DeepSV uses the following combination of features to de-
termine the color of each mapped base. More specifically,
the color of a mapped base is determined by the four
quantities, which describe the discordant read pair and
split read information at the position. These quantities are
explained in Table 1. The sum of these four quantities
provide the auxiliary components of the coloring. To see
how these four quantities are used to decide the color of a
mapped base, we consider the following example.

Consider a column of aligned bases (which are say all A’s).
We first count the number of discordant paired reads
(which is say 10), and the number of split reads (which is
say 0) that overlap this column. This leads to a color set-
ting (255, 10, 10) for all bases in the column. We then
consider each base of the column one by one. For this, we
find the four features (is paired, concordant/discordant,
mapping quality and map type). Say these features have
values (1, 1, 1, 0). This leads to a binary number 13 = 10 +
1 + 1 + 1 + 0.
As shown in Table 1, each of the four bases has four

binary feature values. This gives total 64 combinations.
We show an example (See Additional file 1: Table S1)
that describes 64 value combinations and color scope.
The color range of A base is (255, 0, 0) ~ (255, 235,

Fig. 7 β1and β 2 represent the initial breakpoints. ρ1 and ρ2 show the moving pointer

Cai et al. BMC Bioinformatics          (2019) 20:665 Page 9 of 17



235), T base is (0, 255, 0) ~ (235, 255, 235), C base is (0,
0, 255) ~ (235, 235, 255), and the G base is (0, 0, 0) ~
(235, 235, 235).
Because the range of deletion length is from 50 bp to

more than 10kbp, a single pileup image cannot cover an
entire deletion and discordant pairs may not be con-
tained in a single image. At the same time, because the
network requires uniform batch size, we need to use
normalized images. DeepSV divides the sequence (in-
cluding deletion region and non-deletion region) into
equal length regions. The length of the region can be
customized by users. In this experiment, DeepSV gener-
ates the fixed length images in units of 50 bp. Note that
the background of each picture is white. This is illus-
trated in Fig. 9.

Training and validating model
DeepSV trains the CNN model with real sequence reads
and benchmarked deletions. Tensorflow [21] is used to
construct the convolutional neural network and the
batch size is set to 128. All genome data analysis is per-
formed on a Linux server with 1080Ti GPUs [22] and a
platform of Digits [23]. The parameters setting of model

on deletion calling are given in the Additional file 1 (sec-
tion 3: The parameters setting of model on deletion
calling).
Picture labeling and normalization. The nucleotide se-

quence of the entire region is divided into 50 bp regions.
DeepSV generates images of 256 by 256 for these 50 bp
and labels each image as 0 or 1. We use all the labeled
images in CNN training and use the trained model to
call the deletion of the test data. The labeled images are
shown in Additional file 1: Figure S4. The deletion call-
ing process is shown in Additional file 1: Figure S5.

Results
We now validate the performance of DeepSV using real
data from the 1000 Genomes Project. The called dele-
tions released by the 1000 Genomes Project (phase
three) are used as the ground truth for benchmark. The
data we use in this paper consist of 40 BAM (binary se-
quence alignment/map format) files with 20 individuals
on chromosomes 1~22. The average insert length is 456
bp, and the standard deviation is between 57 bp~ 78 bp.
The average coverage is 10X and 60X. These individuals
from three different populations including Yoruba in
Ibadan, Nigeria (YRI), Han Chinese in Beijing, China

Fig. 8 Each base is assigned one base color, and each color is composed of three primary colors. According to the characteristics of alignment,
the bases at each site are assigned different colors

Table 1 Visualizing an aligned base. Feature: information carried by the base on deletions

Feature Description

1 is-paired/is-not-paired Is this read paired (1) or single (0)?

2 concordant/discordant paired Is this read discordant (value 1) or not (value 0)

3 mapping-quality Is the mapping quality higher than 20? Value is 0 or 1.

4 map-type Is this read split (value 1) or not (value 0)?
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(CHB), and Utah Residents with Northern and West-
ern European Ancestry (CEU). DeepSV needs training
data. We use about half of data for the purpose of
training, and use the remaining data for testing. The
training data set and the test data set are divided ac-
cording to the following two criteria: (i) ensuring that
the training data is sufficient for the model to con-
verge. (ii) ensuring that the test data is sufficient to
cover various targets to be detected.
Under the premise of satisfying the above two cri-

teria, the ratio of the training set and the test set can
be adjusted according to the actual situation. In this
experiment, the training set and the test set are each
50%. For training, we use the data from chromosomes
1 to 11 of these 20 individuals. For testing, we use
the data from the chromosomes 12 to 22. Data used
in the experiments is given in the Additional file 1:
Table S3.
We compare DeepSV with other eight tools includ-

ing Pindel, BreakDancer, Delly, CNVnator, Breakseq2,
Lumpy, GenomeStrip2, and SVseq2. To show the ad-
vantage of deep learning, we also compare with an
existing machine learning based method, Concod. We
examine various aspects of deletion calling by DeepSV
and other tools, including the accuracy of calling de-
letions of different sizes, breakpoint accuracy, impact
of sequence data coverage, and the effect of model’s
activation on precision and loss.

Calling deletions of different sizes
We first evaluate the performance of DeepSV for calling
deletions of various sizes. We use the deletions on chro-
mosomes 12 to 22 from 20 individuals from the 1000 Ge-
nomes Project as the benchmark. Figure 10 shows the
deletion distribution of these benchmarked deletions. We
divide the lengths of deletions into five categories. The de-
letion length roughly follows a normal distribution.
We compare the accuracy of deletion calling of dif-

ferent deletion sizes on DeepSV and other calling
tools with low or high coverage data. To measure the
performance of deletion calling, we use the following
statistics: precision, sensitivity, and the F-score. The
results on low coverage are shown in Additional file
1: Table S4. The results on high coverage are shown
in Additional file 1: Table S5.

DeepSV for long deletions: the effect of complex SV
We now take a closer look at the performance of
DeepSV on calling long deletions. Deletion can be
classified into homozygous and heterozygous deletion.
Moreover, there can exist other types of structural
variations (e.g. insertion, translocation and inversion)
near the deletion region. This type of structural vari-
ation is called complex SV. The importance of com-
plex SV has been recently noticed in the literature
[24]. A deletion of longer size is more likely to be a
complex SV than shorter deletions. When a deletion

Fig. 9 These images contain different features. Each vertical colorful bar represents bases aligned to this site. The length of the vertical bar
becomes lower in the deletion region but higher in the non-deletion region. a represents the homozygous deletion. b represents the
heterozygous deletion. c shows the non deletion. d describes how pictures are sent into a neural network for training and prediction
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is complex, the images created by DeepSV tends to
be less clear cut than those from a simple deletion.
To evaluate the performance of DeepSV on calling
different types of deletions, we study how DeepSV’s
performance changes when the number of other types
of structural variations (e.g. insertions, translocations
and inversions) increases. The results are shown in
Fig. 11. Our results show that the accuracy of calling
homozygous deletions is not affected by the presence
of other types of SVs in general. The same roughly
holds for heterozygous deletions. For complex dele-
tions, the presence of other SVs reduces the calling
accuracy significantly.

Breakpoint accuracy
In this section, we compare the performance of DeepSV with
other tools on breakpoint accuracy. Figure 12 shows the dis-
tance between the detected and true breakpoints on the all
genome data. Once again, breakpoint predictions given by
DeepSV are closest to the true breakpoint positions. In many
cases, the predicted breakpoint positions of DeepSV are only
up to a few base pairs away from the true breakpoint posi-
tions. Predictions from other tools are usually further away
from the true breakpoint positions. Among them, SVseq2,
CNVnator, Lumpy, and BreakSeq2 appear to have the lower
breakpoint accuracy than other tools. GenomeStrip2 has the
highest resolution in the tools we compared. Our results

Fig. 11 Accuracy of calling deletions for different type. Horizontal axis: number of other types of SVs (e.g. insertion/translocation/inversion) near
the deletions. Vertical axis: deletion calling accuracy (part d)

Fig. 10 Deletion length distribution for deletions in the chromosomes 12 to 22. The deletion length obeys the normal distribution
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suggest that DeepSV appears to capture the key characteris-
tics of breakpoints from the images.

Impact of reads coverage
Sequence reads coverage can have a large effect on dele-
tion calling. Reads coverage also affects the performance
of DeepSV in both training and testing. In order to
evaluate the performance of DeepSV on datasets with
different coverage, we perform down sampling for the
original high coverage data. SAMtools with option “view
-s” is used for down sampling, and four datasets are gen-
erated with average coverage 48 ×, 36 ×, 24 ×, 12 ×
respectively. Table 2 shows the precision, sensitivity of
DeepSV and the other eight tools on the genome data.
In the table, we can see DeepSV has the highest preci-
sion compared with all other tools at various coverage.
The sensitivity of DeepSV is overall comparable with the
best of the other tools.

Deletion calling for various frequencies
To see whether DeepSV performs consistently on differ-
ent population deletion frequencies, we now show the re-
sults of DeepSV on various deletion frequencies within
the population and compare with the other eight tools.
Note that, the precision cannot be calculated because the
deletion frequency for the false positive deletions called
out by each tool is unknown. Therefore, we only list the
sensitivity here. Additional file 1: Table S6 shows the per-
formance of each tool on different deletion frequencies.
The results show that DeepSV outperforms the other
eight tools for different deletion frequencies. The sensitiv-
ity of most tools increases as deletion frequencies increase.
GenomeStrp2 has the better sensitivity for medium dele-
tion frequency of 6–10. CNVnator has the lowest sensitiv-
ity for medium deletion frequency of 1–5.

Deletion calling for an individual not in training
So far, we use data from 20 individuals where half chromo-
somes are used for training and the other half for testing.
Since training and testing are on different chromosomes,
testing is considered to be independent from training. To
further validate our method, we now show deletion calling
performance for an individual (NA12891) that is not used
in the training. The results for this individual with various
coverage are shown in Fig. 13. We can see that DeepSV
performs well for this new individual with performance
similar with those from other individuals.

Machine learning and deletion calling
There are existing methods that use other types of machine
learning approaches for deletion calling. Concod is one such
example. Concod is based on manual feature selection. It
performs the consensus-based calling with a support vector

Fig. 12 Breakpoint accuracy on different detecting tools. The y-axis represents the distance between detected breakpoints and true breakpoints

Table 2 Precision, sensitivity of multiple tools on different
coverage data. P indicates precision. S indicates sensitivity

Tool 12× 24× 36× 48×

P S P S P S P S

Pindel 0.18 0.80 0.45 0.50 0.33 0.60 0.40 0.48

BreakDancer 0.50 0.86 0.39 0.51 0.68 0.63 0.70 0.46

Delly 0.30 0.83 0.43 0.57 0.69 0.51 0.76 0.38

CNVnator 0.17 0.18 0.36 0.20 0.61 0.59 0.75 0.74

Breakseq2 0.69 0.71 0.71 0.75 0.80 0.79 0.86 0.85

Lumpy 0.13 0.87 0.21 0.93 0.32 0.82 0.42 0.73

GenomeStrip2 0.36 0.42 0.82 0.69 0.86 0.78 0.75 0.60

SVseq2 0.57 0.28 0.43 0.22 0.30 0.33 0.23 0.36

DeepSV 0.72 0.81 0.85 0.89 0.91 0.92 0.93 0.90
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machine (SVM) model. We now compare DeepSV with
Concod in deletion calling. Both methods need model train-
ing. We compare the model training accuracy and loss, as
well as the running time of the two methods. Here, model
training loss is the model misclassification error on the
training data on a trained model. That is, we first use train-
ing data to train the model. Then we treat the training data

as the test data to see if the model classifies the training data
correctly. Note that there is an overfitting issue: a model
classifies training data well may not generalize to test data.
Nonetheless, a good machine learning model should have
small training loss. The results are shown in Fig. 14a, b.
As shown in Fig. 14c, d, DeepSV outperforms Concod

in training accuracy. This suggests that DeepSV is better

Fig. 13 Performance of deletion calling for NA12891. To verify the DeepSV’s validity, we test the individual of NA12891 that is independent from
traning and testing

Fig. 14 Compared to traditional machine learning method (e.g., Concod), DeepSV shows a more stable state. The training loss of Concord (a)
and DeepSV (b). The training accuracy of Concod (c) and DeepSV(d)
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in deletion calling than Concod. For running time, Con-
cod has smaller training time when the number of train-
ing samples is small. When the number of training
samples is large, Concod takes longer time than DeepSV
in training. The results are shown in Fig. 15.

Eliminate false positives
After the data is pre-processed, we can eliminate the
false positive deletion in VCF by our clustering app-
proach. In Table 3, we show the number of false posi-
tives detected by DeepSV. Our results show that a
significant number of false positives are removed by the
clustering approach. We also compare the impact of
model training on the removal of false positives and the
presence of false positives in the Fig. 16. We can see that
removing false positives in training significantly im-
proves the training accuracy of the model.

Discussion
On the high level, calling genetic variations from sequence
reads is a process of extracting information in the reads
that are relevant to the variations. Google’s DeepVariant
approach shows that such information can be effectively
extracted from color images constructed from the reads.
A main advantage for this visualization based approach is
that it offers an intuitive way to convert variation calling
to image classification. This naturally leads to deep learn-
ing, which is currently the leading approach for image
classification. Our DeepSV method extends this high-level
approach to the case of structural variations. In particular,
our results show that the visualization approach can be
used for more complex genetic variations. Our results
show that the overhead for visualizing sequence reads is
low. The images contain useful information on structural
variations. Deep learning can outperform other traditional
machine learning since it doesn’t depend on manual selec-
tion of features. This may allow deep learning based
methods to better utilize the data.
Usually deletion calling performance is affected by the

type of data (e.g. sequence coverage and deletion lengths).
A method can perform well for some type of data (say
high coverage on short deletions) but doesn’t perform well
for other types (say low coverage on long deletions). Our
results show that DeepSV performs well in almost all the
settings. This indicates that DeepSV integrates and effect-
ively uses various sources of information in the sequence
data in our simulation.
Similar to other supervised machine learning methods,

DeepSV needs labeled training data. The more accurate
the training data is, the better DeepSV performs for de-
letion calling. With large-scale genomics projects such

Fig. 15 The relationship between training time and sample size about Concod and DeepSV

Table 3 Number of false positives are removed by DeepSV

Sample VCF Count False Positives Reserved Quantity by DeepSV

NA12878 676 98 578

NA18511 802 63 739

NA18525 652 91 561

NA18631 687 78 609

NA18643 633 90 543

NA19017 836 78 758

NA19238 769 67 702

NA19239 722 81 641

NA19240 705 84 621

NA19625 809 92 717
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as the 1000 Genomes Project, high-quality training data
is becoming available. Most existing methods for SV
calling don’t use the known genetic variations. This may
indicate a potential loss of information and missed
chances. DeepSV offers a natural way for using these
benchmarked SVs for accurate calling of novel SVs.
This paper focuses on deletion calling. We note that

there are other types of structural variations such as long
insertions, inversions and copy number variations. A
natural research direction is developing methods for
calling these types of SVs with deep learning. This will
need more thoughts on methodologies. For example,
long insertions are different from deletions in that the
inserted sequences are not present in the reference gen-
ome. This makes the reads visualization more difficult
since DeepSV currently visualizes reads on the reference.
Such issues need to be resolved in order to apply deep
learning to these types of SVs.

Conclusions
We demonstrate a novel method of variation detection,
which breaks through the traditional sequence detection
method. At the same time, our work shows that deep
learning can potentially lead to effective calling of differ-
ent types of genetic variations that are complex than
SNPs.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12859-019-3299-y.

Additional file 1. More specific details about DeepSV.
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