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Abstract

and give a hint about the function of a protein.

than employing only one.

Background: Membrane transport proteins (transporters) play an essential role in every living cell by transporting
hydrophilic molecules across the hydrophobic membranes. While the sequences of many membrane proteins are
known, their structure and function is still not well characterized and understood, owing to the immense effort
needed to characterize them. Therefore, there is a need for advanced computational techniques takes sequence
information alone to distinguish membrane transporter proteins; this can then be used to direct new experiments

Results: This work proposes an ensemble classifier TooT-T that is trained to optimally combine the predictions from
homology annotation transfer and machine-learning methods to determine the final prediction. Experimental results
obtained by cross-validation and independent testing show that combining the two approaches is more beneficial

Conclusion: The proposed model outperforms all of the state-of-the-art methods that rely on the protein sequence
alone, with respect to accuracy and MCC. TooT-T achieved an overall accuracy of 90.07% and 92.22% and an MCC 0.80
and 0.82 with the training and independent datasets, respectively.

Keywords: Transporter prediction, Ensemble learning, Amino acid composition

Background

Membrane transport proteins control the movement
of molecules across the membrane so that essential
molecules such as sugars and amino acids enter the cell
while waste compounds leave the cell. It is estimated that
membrane transport proteins encode 2% to 16% of open
reading frames in prokaryotic and eukaryotic genomes,
highlighting the importance of transporters in all living
species [1]. Any defective or mis-regulated membrane
proteins can disturb the body’s homoeostasis, thereby
causing disease. Therefore, the study of cell membranes
is critical for understanding the causes of many diseases
and determining how to treat them. Membrane proteins
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are exceptionally attractive targets for the pharmaceutical
industry. Indeed, over half of today’s FDA-approved drugs
target them [2].

While many sequences of membrane proteins are
known, due to the large number of recent genome
projects, their structures and functions remain poorly
characterized and understood. This is related to the
immense effort necessary to characterize them because
of their flexibility and instability, which creates challenges
at many levels, including crystallization, expression, and
structure solution. This unbalanced reality between the
number of available sequences and the experimentally
characterized ones has created many obstacles in the
advancement of biology and drug discovery. Therefore,
there is a need for advanced computational techniques
that take sequence information alone to distinguish mem-
brane transporter proteins; this can then be used to direct
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new experiments and offer clues about the function of a
protein.

Earlier efforts applied homology searches of experimen-
tally characterized databases to detect novel transporters,
homology searches are still commonly used by many tools.
For example, TransATH [3] (Transporters via Annota-
tion Transfer by Homology) is a system that automates
Saier’s protocol based on sequence similarity. TransATH
includes the computation of subcellular localization and
improves the computation of transmembrane segments.
The parameters of TransATH are chosen for optimal per-
formance based on a gold standard set of transporters and
non-transporters from S. cerevisiae. TransATH reports
an overall accuracy of 71.0%. In addition, Barghash et al.
[4] annotated transporters at family and substrate lev-
els from three organisms using sequence similarity and
sequence motifs. A major limitation of homology meth-
ods, however, is that they can generate false assignments
because homologous sequences do not always have signif-
icant sequence similarities. Likewise, proteins with high
sequence similarities do not always share the same func-
tion [5].

More advanced methods attempt to overcome the lim-
itations of homology methods by utilizing features from
the protein sequences that better reflect the relation
between the sequences and the target function. For exam-
ple, TrSSP (Transporter Substrate Specificity Prediction
Server) [6] is a web server for predicting membrane trans-
port proteins and their substrate category. The TrSSP tool
applies SVM in combination with the Amino Acid index
(AAindex) and Position-Specific Scoring Matrix (PSSM)
to predict top-level transporters and achieves a trans-
porter prediction accuracy of 78.99% and 80.00% and a
Matthews correlation coefficient (MCC) of 0.58 and 0.57
during the cross-validation and the independent testing,
respectively.

SCMMTP [7] uses a novel scoring card method (SCM)
that utilizes dipeptide composition to identify putative
membrane transport proteins. The SCMMTP method
first builds an initial matrix of 400 dipeptides and uses the
difference between positive and negative compositions as
an initial dipeptide scoring matrix. This matrix is then
optimized using a genetic algorithm. SCMMTP achieved
an overall accuracy of 81.12% and 76.11% and an MCC of
0.62 and 0.47 with the training and independent datasets,
respectively.

Li et al. [8] uses SVM to predict substrate classes of
transmembrane transport proteins by integrating features
from PSSM, amino acid composition, biochemical prop-
erties, and Gene Ontology (GO) terms. They achieved
an overall accuracy of 98.33% and an MCC of 0.97 with
the independent dataset. Their method incorporates the
GO annotation as a feature that is likely to be missing in
non-annotated sequences.
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Ou et al. [9] applies a word-embedding natural language
processing approach to protein sequences of transporters.
The protein sequence is defined as using both the word
embedding and frequencies of its biological words. They
achieved outstanding substrate specificity for the trans-
porters but not for transporter detection. The accuracy
for transporter prediction only reached 83.94% during
the cross-validation and 85.00% with the independent
datasets.

The findings from previous studies on transporter pre-
diction can be summarized as follows: Support Vector
Machine (SVM) shows superior performance compared
to other machine-learning algorithms [7-9]. Moreover,
the PSSM profile is a highly accurate feature for demon-
strating the evolutionary information in protein sequence
functional classification [6, 7, 10].

This work focuses on distinguishing membrane trans-
porter proteins from other non-transporter proteins. The
main contributions of this work can be summarized as
follows:

e We explore the practicality of using traditional
homology search techniques to detect transporter
proteins.

e We compare the performance of various
discriminators/features on SVM models and
introduce a new feature, called psi-composition,
which shows superior performance to all other
examined features.

e We propose a new tool, TooT-T, which employs an
ensemble classifier that is trained to optimally
combine the predictions obtained from homology
annotation transfer and psi-composition based
models to determine the final prediction. The
ensemble exploits the low correlation between the
predictions obtained by various methods to build a
more robust classifier. The proposed model
outperforms all of the state-of-the-art methods that
rely on the protein sequence alone, with an overall
accuracy of 90.07% and 92.22% and an MCC on 0.80
and 0.82 for the training and independent datasets
respectively.

Methods

Overview

We propose an ensemble classifier that combines the
results generated by two distinct methods, namely homol-
ogy annotation transfer and machine learning, to detect
transporter proteins. First, given a query protein Q, a
traditional homology search of the Transporter Classifi-
cation Database (TCDB) is performed utilizing BLAST. A
query is predicted as transporter if a hit is found using
three predetermined sets of thresholds. The three predic-
tions are delivered into the ensemble. Then, three vari-
ations of psi-composition features —psiAAC, psiPAAC,
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and psiPseAAC— are computed and input into their
respective trained SVM models, the subsequent predic-
tions are delivered to the ensemble. Finally, the trained
ensemble meta-model predicts the final class as trans-
porter T or non-transporter N7. Figure 1 delineates an
overview of the prediction steps. Detailed descriptions of
each step are presented in the following sections.

Dataset

The same benchmarking dataset used by most transporter
predictors, such as TrSSP [6], SCMMTP [7], Li et al. [8],
and Ou et al. [9], was used to build this system.

This benchmarking dataset provided by Mishra et
al. (available at http://bioinfo.noble.org/TrSSP/?dowhat=
Datasets) is collected from the Swiss-Prot database. The
dataset initially contained 10,780 transporter, carrier,
and channel proteins that were well characterized at
the protein level and had clear substrate annotations.
Then, Mishra et al. removed the transporters with more
than two substrate specificities, sequences with biological
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function annotations based solely on sequence similar-
ity, and sequences with greater than 70% similarity. The
final dataset of Mishra et al. contained a total of 1,560
sequences, divided into training and test sets, as presented
in Table 1.

Position specific iterated alignment compositions

The PSI-BLAST [11] (3 iterations, e-value cutoff 0.001)
search was performed on a sample protein sequence
using a modified version of the Swiss-Prot database
(release 2018_6) to find homologous sequences. The mod-
ified Swiss-Prot database does not include the exact
hits of test sequences. Regions in the database hit
sequences that were not aligned with the query pro-
tein were discarded. The query protein (Q) and the
aligned regions of its hits (%, kg, ..., h,) were then used
to compute position-specific iterated amino acid com-
position (psiAAC), pair amino acid composition (psi-
PAAC), and pseudo amino acid composition (psiPseAAC)
as follows:

Homology annotation transfer

Input: Query protein Q

Machine learning

BLAST(Q) PSI-BLAST(Q) B Quey
v v : Aligned to the query
O G
| I:l Not Aligned to the query
TCDB Swiss-Prot
| [l | ]
Remove the unaligned
segments from HSP
AAC PAAC PseAAC
v
TCDB_exact | [ TCDB high || TCDB_med | SVM-PSIAAC || SVM-PSiPAAC || SVM-PsiPseAAC |

v

Meta Model (GBM)

Fig. 1 TooT-T overview

output
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Table 1 The dataset

Class Training dataset Testing dataset
Transporter 780 120
Non-Transporter 600 60

Total 1380 180

Position Specific Iterated Amino Acid Composition (psiAAC)
The AAC of the query protein (Q) and each of its fil-
tered hits (11, ha, . . ., hy,) were calculated separately as the
fractions of all 20 natural amino acids and as:

F;

Ci = —

i3 i=(1,2,3,..20) (1)

where F; is the frequency of the i amino acid and L is
the length of the sequence. The AAC is represented as a
vector of size 20:

AAC(Py)=]c1,¢€2,C3y ..y €20] x € (Qhy,hy... hy)

2)

where ¢; is the composition of i amino acid. The
mean of individual AAC compositions represents the psi-
AAC for Q and was computed as:

1
AACH(Q) = g D JAAC(Py)

X € (Q,hl,hz...,hn)

3)

Position Specific Iterated Pair Amino Acid Composition
(psiPAAC)
Similarly, the individual PAAC descriptors for the query

protein (Q) and each of its filtered hits (43, ko, ..., hy,)
were calculated as
J F;j ..
ij = -1 i,j=1(1,2,3,..20) (4)

where F;; is the frequency of the i and j amino acids
as a pair (dipeptide) and L is the length of the sequence.
Like AAC, PAAC is represented as a vector of size 400, as
follows:

PAAC(Py) = [d1,1,d1,2,d1,3, . d2020]

(5)
X € (Q,hl,hz...,hn)

where d; is the dipeptide composition of the i and j
amino acid. The mean of individual PAAC compositions
represents the psiPAAC for Q and was computed as:

1
PAAC,5(Q) = i > PAAC(Py)

X € (Q,hl,hz...,hy,)

(6)

Position Specific Iterated Pseudo Amino Acid Composition
(psiPseAAC)

The PseAAC is a combination of the 20 components of
the conventional amino acid composition and a set of
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sequence order correlation factors that incorporates cer-
tain biochemical properties, originally proposed by Chou
[12]. Given a protein sequence of length L:

RiRyR3R4...Ry. (7)

a set of descriptors called sequence order-correlated fac-
tors are defined as:

6= > O, Riv1)
0 = 755 Yit ORi, Riya)
05 = 713 Y1 ORi, Riys)
8)

O = 2 Yot ORi Riyy)
The parameter X is chosen such that (A < L). A correla-

tion function is given by:

O, R) = = {[H1(R) — Hi(R)]* +[ H2(R)) — Ha(R)]>

[SSR

+[M®R)) — M(R)]*}
(9)

where Hj(R) is the hydrophobicity value, Hy(R) is
hydrophilicity value, and M(R) is side chain mass of the
amino acid R;. Those quantities were converted from the
original hydrophobicity, original hydrophilicity, and orig-
inal side chain mass values by standard conversion as
follows:

HY(Ri) — 55 Yy 5 (Re)

\/ 220, [Hp )~ g T, Hy ko |
20

where HY (R;) is the original hydrophobicity value for the
amino acid R; that was taken from Tanford [13]; H3 (R;)
and M°(R;) are converted to Hy(R;) and M(R;) in the
same way. The original hydrophilicity value H5(R;) for
the amino acid R; was taken from Hopp and Woods [14].
The mass M°(R;) of the R; amino acid side chain can
be obtained from any biochemistry textbook. PseAAC is
represented as a vector of size (20 + 1) as follows:

Hi(R) = (10)

PseAAC(Py) = [S1, 5205 215 -+» S20-4+2]

(11)
x€(Qhyhy. .. hy)

where s; is the pseudo-amino acid composition such that:

i

[/ S— <i<
ST ey L=l
(12)

b .
YR e Y 6 20 <i <20+ A

where f; is the normalized occurrence frequency of the
of the ith amino acid in the protein sequence, 6; is
the j% sequence order-correlated factor calculated from
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Equation 8, and w is a weight factor for the sequence order
effect. The weight factor w puts weight on the additional
PseAAC components with respect to the conventional
AAC components. The user can select any value from 0.05
to 0.7 for the weight factor. The default value given by
Chou [12] is .05.

The mean of individual PseAAC compositions repre-
sents the psiPseAAC for Q and was computed as follows:

1
PseAACi(Q) = -~ Y PseAAC(P,)

X € (Q,hl,hg...,hn)

(13)

Support-vector machine

The SVM is a powerful machine-learning tool that is used
in many biological prediction tools, such as [6] and [9].
We used SVM with an RBF kernel as implemented by R
€1071 library version 1.6-8. The best combination of C
and y parameters was determined utilizing a grid-search
approach.

Annotation transfer by homology

Unlike the discrete representation of a protein sample in
the psi-compositions, here the protein sample was repre-
sented by its amino acid sequence and used in a similarity
search-based tool (BLAST) to find similar matches in
the TCDB [15]. The TCDB uses the classification system
approved by the International Union of Biochemistry and
Molecular Biology (IUBMB) for membrane transport pro-
teins, known as the transporter classification (TC) system.
The TCDB is a curated database of accurate and exper-
imentally characterized transporters from over 10,000
published references. If the BLAST search produced a
hit, the query was predicted to be a transporter. Since
applied thresholds play an essential role in the quality of
prediction, different thresholds were utilized, as shown in
Table 2.

Ensemble classifier

We applied an ensemble technique known as stacked gen-
eralization, or stacking [16] to develop TooT-T. Instead of
combining the predictions from multiple predictors using
a simple function (such as voting), stacking trains a new
model to perform the aggregation.

Table 2 Different Blast thresholds on TCDB
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The stacking framework involves two levels of learn-
ing. The first level contains base-classifiers that learns
directly from the training data. The second level con-
tains a meta-classifier, that is trained using the predic-
tions from the base-classifiers. The training instances of
the meta-classifier were generated while performing the
cross-validation. Algorithm 1 illustrates how the training
dataset of the meta-classifier is generated [17].

Algorithm 1 Stacking with K-fold cross validation
{xyi}xi € R%y; €

Require: Training data D =
{T,NT})
Ensure: An ensemble classifier H
1: Step 1: Adopt cross validation approach in preparing
a training set for meta-classifier
2: Randomly split D into K equal-size subsets: D =
{DI;DZr e rDK}

3: fork < 1to K do

4 Step 1.1: learn base-classifiers

5: fort < 1to T do

6: learn a classifier /1y, from D \ Dy

7: end for

8: Step 1.2: construct a training set for meta-
classifier

9: for x; € D do

10: Get a  {x,y},  where x; =
(M1 (), hra (%), -« - e (%) }

11: end for

12: end for

13: Step 2: learn meta-classifier

14: Learn a new classifier /' from the collection {x}, y;}
15. Step 3: re-learn base-classifiers using all data

16: fort < 1to T do

17: learn a classifier /; based on D

18: end for

19: return H(x) = W' (h1 (%), h1(x), ..., hr(x))

When a new query protein is input into TooT-T, the
class of the query is predicted by the six base classifiers:
three from SVM models that use psiAAC, psiPAAC, and
psiPseAAC features respectively, and three using annota-
tion transfer by homology utilizing different thresholds:

Name BLAST Threshold Motivation

TCDB_exact e-value=0; percent identity 100% exact match

TCDB_high e-value 1e-20; percent identity 40%; query thresholds recommended by Butler et al. [3]
coverage 70%; subject coverage 70%; and for TCDB Blast
difference in length of 10%

TCDB_med e-value 1e-8% threshold recommended by Barghash

et al. [4] as an acceptable normalized BLAST
threshold when dealing with a TC system
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Table 3 Average performance of different models
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Name Sensitivity (%) Specificity (%) Accuracy (%) MCC

SVM psiPAACH 86.73 £0.29 87.99 £0.54 87.29 £0.11 0.7448 +0.0027
blast-PAAC 87.03 £0.37 86.08 £0.24 86.62 £0.22 0.7299 £0.0045
psiAACH 82.69 £0.21 90.64 £0.41 86.13 £0.15 0.7278 £0.0036
psiPseAAC* 80.18 £0.58 91.51 £045 85.13 £0.40 0.7125 £0.0075
blast-AAC 84.97 £0.35 84.14 £0.52 84.61 £0.22 0.6897 £0.0050
PSSM 83.83 +£0.59 82.03 £0.59 83.06 £0.21 0.6579 +0.0038
blast-PseAAC 84.59 £0.53 78.19 £0.82 81.81 £0.35 0.6306 +0.0077
PseAAC 80.45 £0.42 70.62 £0.70 76.19 £0.44 0.5149 +0.0098
AAC 79.73 £0.50 70.66 £0.89 75.79 £0.51 0.5069 +0.0101
PAAC 77.93 £0.31 72.14 £0.56 7541 £0.31 0.5014 £0.0062

The table shows mean =+ sd performance of ten different runs of the 10-CV, in ascending order of accuracy. The asterisk symbol (*) refers to the features used in TooT-T

TCDB_exact, TCDB_high, and TCDB_med. The six pre-
dictions are then input into the meta-classifier, which out-
puts the final prediction. The Gradient Boosting Machine
(GBM), as implemented by caret package in R, was uti-
lized to develop the meta-classifier.

Performance evaluation

The performance of different models was evaluated on the
training dataset using 10-fold cross-validation (10-CV), in
which the training dataset was randomly partitioned into
ten equally sized sets. A single set was kept as the valida-
tion data, and the remaining nine sets were used to train
the respective model. The trained model was then tested
using the validation set. The cross-validation process was
repeated ten times, and each of the sets was used once as
the validation data. The performance of each model was
averaged to produce a single estimation. Since the 10-fold
performance varies with different random splits, and to
make the error estimation more stable, we repeated the
10-CV ten times with different random partitions, and the
performance variations between runs were captured by
computing the standard deviation. It has been reported
[18] that the repeated version stabilizes the error esti-
mation, and therefore it reduces the variance of the k-cv
estimator. Throughout the rest of the paper, the cross-
validation performance is reported as mean £ sd of the ten
different runs of the 10-CV.

Furthermore, the independent dataset was also used to
perform a thorough evaluation experiment. The data in
the independent dataset were not used during the training
process and are completely unknown to our models. Four
main evaluation metrics are were used to evaluate the per-
formance: sensitivity, specificity, accuracy, and the MCC.
Sensitivity, which calculates the proportion of positives
(transporters) that are correctly identified.

TP
TP+ FN

Specificity, which measures the proportion of non-
transporters that are correctly identified.

TN
TN + FP

Accuracy, which refers to the proportion of correct pre-
dictions made divided by the total number of predictions.

Sensitivity = (14)

Specificity = (15)

TP+ TN

TP+ FN + TN + FP

The MCC s less influenced by imbalanced tests because
it takes into account true and false positives and negatives.
MCC values range from 1 to —1, where 1 indicates a per-
fect prediction, O represents no better than random, and
—1 implies total disagreement between prediction and
observation. Higher MCC values mean that the predic-
tor has high accuracy with positive and negative classes as

Accuracy = (16)

Table 4 Impact of incorporating evolutionary information on the accuracy

Encoding Accuracy(%) blast-X to X psi-X to X psi-X to blast-X
X X blast-X psi-X increase(%) increase(%) increase(%)
AAC 75.79 84.61 86.13 +08.82 +1034 +01.52

PAAC 7541 86.62 87.29 +11.21 +11.88 +00.67
PseAAC 76.19 81.81 85.13 +05.62 +08.94 +03.32
Average 75.80 84.35 86.18 +08.55 +10.39 +01.84

The table notes differences in accuracy and the percentage of improvement when incorporating different evolutionary information to the baseline compositions. The
highest improvement in accuracy was achieved by psi-compositions, with an average improvement of 10.39%
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Table 5 Performance of annotation transfer by homology

Name Sensitivity (%) Specificity (%) Accuracy (%) MCC

ATH TCDB_exact 56.92 95.17 73.55 0.5440
TCDB_high  85.90 85.50 85.72 0.7112
TCDB_med 9038 64.17 78.98 0.5737

The table shows the performance homology annotation transfer with the training
dataset using different thresholds. The best prediction power was achieved using
the TCDB_high threshold. The predicted transporter from TCDB_exact was more
reliable due to its high specificity. ATH= Annotation Transfer by Homology

well as less misclassification with the two classes. MCC is
considered to be the best singular assessment metric when
the data are imbalanced [19-21].

3 (TP x TN — FP x EN)
" J(TP+EP) x (IP + EN) x (IN + EP) x (IN + EN)
(17)

MCC

Results and discussion

Performance of transporter classification of different
features

The goal is to find the most discriminative features to
represent a protein sequence, Table 3 presents the cross-
validation performance of various features on SVM mod-
els.

The examined features include: the baseline composi-
tions where no evolutionary information is incorporated
(AAC, PAAC, PseAAC), the commonly used feature to
encode evolutionary information PSSM (implemented as
in [6] using the same psi-composition thresholds (3 itera-
tions, e-value cutoff 0.001)), compositions computed from
sequences retrieved from the BLAST search (blast-AAC,
blast-PAAC, blast-PseAAC) (e-value cutoff 0.001), and the
proposed features (psiAAC, psiPAAC, psiPseAAC). Since
the training data is balanced, we focus on the accuracy to
evaluate the performance of different models.

Table 6 Cross-validation performance of the proposed model
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The baseline compositions do not exhibit great variation
in performance and have an average accuracy of 75.80%.
The accuracy is further boosted when evolutionary infor-
mation is incorporated. While PSSM is most commonly
applied in the literature to encode evolutionary informa-
tion, we find that in most cases features that combine
amino acid composition with evolutionary information
(as described in the “Methods” section) yield higher accu-
racy for transporter prediction. Since the PSSM feature
is also extracted from PSI-BLAST output, it is expected
to show an improved performance to at least the BLAST-
compositions, but this is not what is portrayed by our
results. One explanation for this could be that the com-
monly used PSSM feature is computed from the original
PSSM profile output from PSI-BLAST search to make it
fixed in size 20 x 20. The PSSM feature, although superior
to the baseline, does not capture properties to the extent
shown by the amino acid composition on the returned
sequences. Among all tested features, psiPAAC obtained
the highest accuracy of 87.29%.

The high performance of the psi-composition features
is a result of incorporating two distinctive approaches,
namely amino acid composition and evolutionary infor-
mation. The idea is that multiple homologous sequences
can reveal more about the function of a protein than a
single sequence. Homologous sequences can be inferred
when they share more similarity than would be expected
by chance [22]. Similarity tools such as BLAST help to
minimize false positives (non-homologs with significant
scores; Type I errors) but do not necessarily detect remote
homologs (homologs with non-significant scores; Type
II errors) [22]. PSI-BLAST is more sensitive in terms
of finding such remote homologs, and thus utilized by
the proposed features. Furthermore, the alignment results
of PSI-BLAST contains valuable information about the
most conserved regions in the protein, such conserva-
tion can reflect the function of the protein. Computing

name Sensitivity (%) Specificity (%) Accuracy (%) MCC
SVM psiAAC 82.69 +00.21 90.64 +00.41 86.13 +00.15 0.7278 +0.0036
psiPAAC 86.73 £00.29 87.99 £00.54 87.29 £00.11 0.7448 +0.0027
psiPseAAC 80.43 £0043 9147 £00.46 85.23 £00.34 0.7142 +0.0069
ATH TCDB_exact 56.92 95.17 73.55 0.5440
TCDB_high 85.90 85.50 85.72 0.7112
TCDB_med 90.38 64.17 78.98 0.5737
Proposed_Ensemble* 90.15 +00.24 89.974+00.34 90.07 +00.07 0.7995 +0.001

The table lists the mean = sd performance of ten different runs of the 10-CV of the proposed ensemble. It also shows the performance of each of its constituent classifiers

“The proposed model; ATH = Annotation Transfer by Homology
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Table 7 Independent testing performance of the proposed

model
name Sensitivity (%) Specificity (%) Accuracy (%) MCC
SVM psiAAC 83.33 95.00 87.22 0.75
psiPAAC 89.17 88.33 88.89 0.76
psiPseAAC 80.00 96.67 85.56 0.73
ATH TCDB_exact 56.67 91.67 68.33 046
TCDB_high 86.67 80.00 84.44 0.66
TCDB_med 92.5 5833 81.11 0.56
Proposed_Ensemble* 94.17 88.33 92.22 0.82

The table shows the performance of the proposed ensemble and each of its
constituent classifiers
“The proposed model; ATH = Annotation Transfer by Homology

the average amino acid composition from the aligned
homologous sequences thus provides a better indication
of the function, and less noise, compared to computing the
composition from a single sequence.

The impact of incorporating different sources of evo-
lutionary information is presented in Table 4. The com-
positions computed from a single BLAST search had
an average improvement from the baseline of 8.55%.
The psi-composition further enhanced the accuracy,
with an average improvement from baseline of 10.42%.
The improved performance between psi-compositions
and BLAST-compositions was expected because, unlike
BLAST, which only uses a general scoring matrix, PSI-
BLAST uses a position-specific scoring matrix (PSSM)
to detect sequences with a similar conservation pat-
tern to the PSSM, thus making PSI-BLAST more sen-
sitive to weak but biologically significant sequence
relationships [11].

Performance of annotation transfer by homology

The performance of annotation transfer by homology
against TCDB under different thresholds is presented
in Table 5. The choice of a proper similarity thresh-
old is critical. As shown in Table 5, there is a trade off

Table 8 Pearson correlation coefficient of constituent classifiers

Page 8 of 10

between sensitivity and specificity, where a stricter thresh-
old (TCDB_exact) results in low true transporter (sen-
sitivity) detection but more reliable elimination of non-
transporters (specificity). However, when the thresholds
are set to be more tolerant (TCDB_med), the percentage
transporter detection increases but at the cost of more
false predictions. A good balance between sensitivity and
specificity was achieved using thresholds suggested by [3],
and the overall accuracy reached 85.72%, slightly lower
than the best machine-learning method psiPAAC. Never-
theless, this gives a different solution viewpoint, which we
utilize in the ensemble classifier.

Ensemble classifiers

The performance of the ensemble classifier, and each of its
constituent classifiers in the cross-validation and indepen-
dent dataset is presented in Tables 6 and 7. The ensem-
ble classifier consistently outperformed its classifiers in
detecting transporters (sensitivity) while maintaining a
credible false positive rate. Overall, it surpassed all other
tested models in terms of accuracy and the MCC.

It was previously shown by [23, 24] that ensemble clas-
sifiers benefited the most when the individual classifiers
making up the ensemble were both accurate and have
low correlation (i.e., making errors in different parts of
the input space). The constituent classifiers in our ensem-
ble achieved the highest accuracy, and the correlations
between them are presented in Table 8. When combining
the prediction of only the three models on the machine-
learning side, we observed no improvement in overall
accuracy. This is reasonable since the machine-learning
models in our case were highly correlated. The obtained
performance was mainly achieved by combining a differ-
ent view — annotation transfer by homology, which has
comparable accuracy to machine-learning classifiers but
lower correlation.

Comparative performance of the proposed tool with other
published work

Table 9 compares the performance of the proposed model
with other published work. The highest prediction accu-
racy was achieved by Li et al. [8]. The high performance of
their model was mainly due to using the Gene Ontology

model psiAAC psiPAAC psiPseAAC TCDB_exact TCDB_high TCDB_med
pSIAAC 1.00 0.81 0.90 0.56 0.63 052
psiPAAC 0.81 1.00 0.80 051 061 0.50
psiPseAAC 0.90 0.80 1.00 0.55 0.62 0.52
TCDB_exact 0.56 051 0.55 1.00 0.65 051
TCDB_high 0.63 0.61 0.62 0.65 1.00 0.78
TCDB_med 0.52 0.50 0.52 0.51 0.78 1.00

The table shows the correlation between the constituent classifiers of the ensemble. Among themselves, the homology annotation transfer exhibit a lower correlation
compared to those of the machine-learning models. This lower correlation motivates the use of ensemble techniques and helps to build a more powerful model
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Table 9 Comparison with other published work

Tool Sensitivity(%) Specificity (%) Accuracy (%) MCC

Ind. cv Ind. cv Ind. cv Ind. cv

SCMMTP [7] 80.00 83.76 6833 77.68 76.11 81.12 047 0.62
TrSSP [6] 76.67 76.67 81.67 7846 80.00 78.99 0.57 0.58
Ouetal. [9] 100.00 83.14 77.50 84.48 85.00 83.94 0.73 0.68
Proposed model 94.17 90.15 88.33 89.97 92.22 90.07 0.82 0.80
Lietal. [8] 96.67 99.50 95.83 97.44 96.11 9833 091 0.97

(GO) annotation of the proteins as features. Such high
performance is to be expected, considering the fact that all
the sequences in the benchmark dataset were well anno-
tated and extracted from the Swiss-Prot database. The
goal of TooT-T is to predict novel unannotated trans-
porters proteins.

The other tools did not incorporate annotations of pro-
teins as features and relied solely on the protein sequence
to extract features to distinguish between transporters
and non-transporters. They therefore provide a better
comparison with the proposed tool. Ou et al. [9] tool
achieved better sensitivity (100%) than the proposed tool
(94.17%) in the independent dataset. However, the speci-
ficity was (77.50%) compared to (88.33%) obtained by the
proposed tool. The proposed tool achieved (7%) higher
accuracy, and (0.09) higher MCC than Ou et al. [9] tool
in transporter detection. Overall, TooT-T achieved bet-
ter accuracy, specificity, and MCC than all tools reported
in all other published works, both in independent and
cross-validation testing.

Conclusion

We propose an ensemble classifier that can distinguish
transporter membrane proteins from other proteins. The
ensemble classifier is trained to optimally combine the
prediction obtained from machine-learning and homol-
ogy annotation methods to produce the final prediction.
The machine-learning components of the ensemble con-
sist of SVM models that incorporate a novel feature
extraction method psi-composition. The psi-composition
combines traditional amino acid composition with the
alignment results of PSI-BLAST and shows superior pre-
diction performance to models built using other features,
including the PSSM profile. While the prediction obtained
from annotation transfer by homology was not superior
to the best machine-learning models, it provided a dif-
ferent viewpoint on the solution. The proposed ensemble
exploits the fact that different methods misclassify dif-
ferent sequences to build a more credible model. It was
demonstrated through repeated 10-fold cross-validation
and independent dataset tests that the proposed ensemble
outperformed its constituent classifiers and all other state-
of-the art predictors that rely on the protein sequence
alone.
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