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Abstract

Background: Gene regulatory networks (GRNs) can be inferred from both gene expression data and genetic
perturbations. Under different conditions, the gene data of the same gene set may be different from each other,
which results in different GRNs. Detecting structural difference between GRNs under different conditions is of great
significance for understanding gene functions and biological mechanisms.

Results: In this paper, we propose a Bayesian Fused algorithm to jointly infer differential structures of GRNs under
two different conditions. The algorithm is developed for GRNs modeled with structural equation models (SEMs),
which makes it possible to incorporate genetic perturbations into models to improve the inference accuracy, so we
name it BFDSEM. Different from the naive approaches that separately infer pair-wise GRNs and identify the difference
from the inferred GRNs, we first re-parameterize the two SEMs to form an integrated model that takes full advantage
of the two groups of gene data, and then solve the re-parameterized model by developing a novel Bayesian fused
prior following the criterion that separate GRNs and differential GRN are both sparse.

Conclusions: Computer simulations are run on synthetic data to compare BFDSEM to two state-of-the-art joint
inference algorithms: FSSEM and ReDNet. The results demonstrate that the performance of BFDSEM is comparable to
FSSEM, and is generally better than ReDNet. The BFDSEM algorithm is also applied to a real data set of lung cancer and
adjacent normal tissues, the yielded normal GRN and differential GRN are consistent with the reported results in
previous literatures. An open-source program implementing BFDSEM is freely available in Additional file 1.

Keywords: Gene regulatory networks, Gene expression, Genetic perturbations, Structural equation models,
Differential GRN, Bayesian inference

Background
GRNs visually reflect the gene-gene interactions, which
are significant for understanding gene functions and bio-
logical activities. In the past few years, a series of inference
algorithms have been proposed to reconstruct topology
structures of GRNs. Some computational methods were
only developed to infer GRNs from gene expression data,
such as Boolean networks [1], mutual information models
[2, 3], Gaussian Graphical models [4, 5], Bayesian net-
works [6, 7] and linear regression models [8, 9]; several
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other methods were also built to improve the accuracy of
inference by integrating genetic perturbations with gene
expression data, among which the algorithms based on
SEMs [10–13] are one of the most popular approaches.
Most of the existing computational methods mainly

focus on inferring GRNs under one single condition,
but can not jointly identify changes in GRN struc-
tures when the condition (e.g. environments, tissues,
diseases) changes. However, the differential analysis of
GRNs under different conditions is also of significant
importance to identify gene functions, discover biological
mechanisms of different tissues and find genes related to
diseases [14–16].
Intuitively, a naive approach for identifying the structure

difference between GRNs under different conditions is to
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separately infer GRNs with existing methods and identify
the difference by comparing the resulted GRNs. However,
in this way, the similarity betweenGRNs are not taken into
consideration, so the accuracy is probably unsatisfactory.
Recently, several algorithms were developed to jointly
infer GRNs from gene expression data under different
conditions. For example, Mohan et al. [17] and Dana-
her et al. [18] proposed penalized algorithms based on
multiple Gaussian graphical models to jointly infer GRNs
under different conditions exploiting the similarities and
differences between them. Wang et al. [19] developed an
efficient proximal gradient algorithm to jointly infer GRNs
modeled with linear regression models and identify the
changes in the structure. However, the Gaussian graphical
models can not identify directed networks, and the above
algorithms were all developed for inferring GRNs from a
single data source. Zhou and Cai [20] modeled GRNs with
SEMs to integrate genetic perturbations with gene expres-
sion data, and developed a fused sparse SEM (FSSEM)
algorithm to make joint inference. Ren and Zhang [21]
proposed a re-parametrization based differential analysis
algorithm for SEMs (ReDNet), they re-parameterized the
pair-wise SEMs as one integrated SEM incorporating the
averaged GRN and differential GRN, and then identified
the difference GRN directly from the integrated model.
Both FSSEM and ReDNet made joint differential analysis
for directed GRNs modeled with SEMs, their simulation
studies demonstrated that FSSEM and ReDNet signifi-
cantly outperformed naive approaches based on SML [13]
and 2SPLS [22], respectively.
In this paper, we propose a Bayesian Fused Differen-

tial analysis algorithm for GRNs modeled with SEMs
(BFDSEM) to jointly infer pair-wise GRNs under different
conditions. Following the fact that GRNs under different
conditions differ slightly from each other, the sparsity of
separate GRNs and differential GRN are both taken into
consideration. In addition, there is no limitation on the
structure of GRNs, that is, both directed acyclic GRNs
(DAGs) and directed cyclic GRNs (DCGs) are supported.
Computer simulations are run to compare the perfor-
mance of our proposed BFDSEM to FSSEM and ReDNet,
the results demonstrate that BFDSEM has somewhat con-
sistent results with FSSEM and has better performance
than ReDNet.

Preliminaries
The Bayesian Fused Lasso for linear regression models
Linear regression models can be represented as follows:

y = Xβ + e. (1)

where X =[ x1, x2, · · · , xp] is the design matrix including
p predictor variables, y =[ y1, y2, · · · , yn]T denotes the
response vector and β =[β1,β2, · · · ,βp]T is the coeffi-
cient vector to be estimated.

Tibshirani [28] proposed Lasso with l1 penalty on
parameters to realize variable selection and parameter
estimation simultaneously, the Lasso estimator of Eq. (1)
is given by

̂β
L = arg minβ

⎧

⎨

⎩

∥

∥y − Xβ
∥

∥

2
2 + λ

p
∑

j=1
|βj|

⎫

⎬

⎭

. (2)

In a Bayesian framework, the Lasso can be inter-
preted as the Bayesian posterior mode under independent
Laplace priors [28, 29]. As suggested by Park and Casella
in [29], the conditional Laplace prior of β can be repre-
sented as a scale mixture of normals with an exponential
mixing density

π
(

β|σ 2) =
p
∏

j=1
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σ 2
exp
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0
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√

2πσ 2τ 2j
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{

−|βj|2
2σ 2τ 2j

}

ψexp
{

−ψτ 2j

}

dτ 2j

(3)

where σ 2 could be assign a noninformative prior or any
conjugate Inverse-Gamma prior, and ψ is equivalent to
the tuning parameter λ as in Eq. (2) that controls the
degree of sparsity. After integrating out τ 21 , τ

2
2 , · · · , τ 2p , the

conditional prior on β has the desired Laplace form [34].
From this relationship, the Bayesian formulation of Lasso
as given in [29] is given by the following hierarchical prior.

β|σ 2, τ 21 , τ 22 , · · · , τ 2p ∼ Np
(

0, σ 2Dτ

)

,Dτ = diag
(

τ 21 , τ 22 , · · · , τ 2p
)

τ 2j |ψ ∼ Exp(ψ), j = 1, 2, · · · , p.
(4)

where Np(μ,�) denotes p-variate normal distribution
with mean vector μ and covariance matrix �, and Exp(ψ)

denotes exponential distribution with rate parameter ψ .
A series of extensions of Lasso such as SCAD [30],

Elastic net [31], fused Lasso [32], adaptive Lasso [33]
were developed for various applications. The fused
Lasso penalizes both the coefficients and the differences
between adjacent coefficients with l1-norm, the estimator
of fused Lasso for Eq. (1) is given by

̂β
FL = arg minβ

⎧

⎨

⎩

∥

∥y − Xβ
∥

∥

2
2 + λ1

p
∑

j=1
|βj| + λ2

p−1
∑

j=1
|βj+1 − βj|

⎫

⎬

⎭

(5)

Kyung et al. proposed the Bayesian interpretation
of fused Lasso in [34]. The conditional prior can be
expressed as
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⎞

⎠

(6)

where λ1 and λ2 are tuning parameters. They provide the
theoretical asymptotic limiting distribution and a degrees
of freedom estimator. Following the way of Bayesian
Lasso, this prior can be represented as the following hier-
archical form:

β|σ 2, τ 21 , τ
2
2 , · · · , τ 2p ,ω2

1,ω
2
2, · · · ,ω2

p−1 ∼ Np(0, σ 2	β),

τ 2j |ψ1 ∼ Exp(ψ1), j = 1, 2, · · · , p
ω2
k |ψ2 ∼ Exp(ψ2), k = 1, 2, · · · , p − 1.

(7)

where τ 21 , τ
2
2 , · · · , τ 2p ,ω2

1,ω
2
2, · · · ,ω2

p−1 are mutually inde-
pendent, and 	β is a tridiagonal matrix with main

diagonal=
{

1
τ 2j

+ 1
ω2
j−1

+ 1
ω2
j
, j = 1, 2, · · · , p

}

and off diago-

nal
{

− 1
ω2
k
, k = 1, 2, · · · , p − 1

}

, 1
ω2
0
and 1

ω2
p
are defined as

0 for convenience.
As suggested by Park and Casella [29], there are two

common approaches to estimate the tuning parameters:
one is to estimate them through marginal likelihood
implemented with an EM/Gibbs algorithm [36]; another
way is to assign a Gamma hyperprior on each tuning
parameter, and put them into the hierarchical models to
estimate it with a Gibbs sampler.

GRNs modeled with SEMs
As in [10–13], genetic perturbations can be incorporated
into SEMs to infer GRNs and result in better performance.
The perturbations could be various, such as the expression
Quantitative Trait Loci (eQTLs) and the Copy Number
Variants (CNVs). In this paper we consider the variations
observed on the cis-eQTLs. Suppose we have expression
levels of p genes and genotypes of q cis-eQTLs observed
from n individuals. Let Y =[ y1, y2, · · · , yp] be an n × p
gene expression matrix, X =[ x1, x2, · · · , xq] be an n × q
cis-eQTL matrix. Then the GRN can be modeled with the
following SEM:

Y = YB + XF + E, (8)

where the p × p matrix B is the adjacency matrix defin-
ing the structure of a GRN, Bij represents the regulatory
effect of the ith gene on the jth gene; and the q× pmatrix
F is composed of the regulatory effects of cis-eQTLs, in
which Fkm denotes the effect of the kth cis-eQTL on the
mth gene. It is often assumed that every gene has no effect
on itself, which implies Bii = 0 for i = 1,· · · , p. To ensure
the identifiable of GRNs, we assume there is at least one
unique cis-eQTL for each gene.

Let yi =[ y1i, y2i, · · · , yni]T , i = 1, · · · , p be the ith
column of Y, denoting expression levels of the ith gene
observed from n individuals. And let Bi, i = 1, · · · , p be
the ith column of B. As mentioned before, the ith gene
is considered to have no effect on itself, meaning that the
ith entry of Bi is known to be zero, so this entry can
be removed before inference to reduce the computation
complexity. Correspondingly, the ith column of Y needs
also to be removed. Then we can split Eq. (8) into p SEMs,
in which the ith SEM as follows describes howmuch other
genes and corresponding cis-eQTLs affect the ith gene.

yi = Y−ibi + Xfi + ei, i = 1, · · · , p, (9)

where n × 1 vector yi is the ith column of Y and n × (p −
1) matrix Y−i refers to Y excluding the ith column; (p −
1) × 1 vector bi is the ith column of B excluding the ith
row; q × 1 vector fi denotes the ith column of F; n × 1
vector ei represents the residual error vector, in which all
entries are modeled as independent and identical normal
distributions with zero mean and variance σ 2.

GRNs under different conditions
In this paper, we mainly focus on the joint inference of
GRNs under different conditions. We denote the expres-
sion levels of p genes under two different conditions
as Y(k) =

[

y(k)
1 , y(k)

2 , · · · , y(k)
p

]

, k = 1, 2. Similarly, the
genotypes of cis-eQTLs under two conditions are repre-
sented as X(k) =

[

x(k)
1 , x(k)

2 , · · · , x(k)
q

]

, k = 1, 2. Based on
the SEM introduced in the previous subsection, we can
represent two pair-wise GRNs as

Y(k) = Y(k)B(k) + X(k)F(k) + E(k), k = 1, 2, (10)

and further represent the sub-models as

y(k)
i = Y(k)

−i b
(k)
i + X(k)f(k)i + e(k)

i , i = 1, · · · , p, k = 1, 2,(11)

where B(k) depict the structures of two GRNs under dif-
ferent conditions, which contain coefficients for the direct
causal effects of the genes on each other.
As discussed above, f(k)i is sparse and the locations of

nonzero entries have been obtained via pretreatment. We
assume the row index set of nonzero entries of f(k)i as S(k)

i ,
so in the ith model of Eq. (11), X(k) can be reduced to a
matrix X(k)

S(k)
i

that only contains the columns whose indices

are in S(k)
i . Accordingly, f(k)

i,S(k)
i

is a reduced form of f(k)i that

only contains the rows whose indices are in S(k)
i .

The identifiability of SEMs
Our main goal is to infer the adjacency matrices B(1) and
B(2) from SMEs as in Eq. (10), and identify the differ-
ence between them (
B = B(1) − B(2)) in the meanwhile.
Without any knowledge about the GRNs, no restriction
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is imposed on the structures specified by the adjacency
matrices, that is to say, GRNsmodeled with SEMs are con-
sidered as general directed networks that can possibly be
DAGs or DCGs.
As mentioned before, we make some standard assump-

tions that are used by most popular GRN inference algo-
rithms to ensure model identifiability. For example, the
error terms e(k)

i are assumed as independent and identi-
cal normal distributions, and the diagonal entries of B(k)

are all assumed to be zero so that there is no self-loop in
GRNs.
While DAGs are always identified under the above

assumptions, the identifiability of DCGs need further
studies because of the challenge in model equivalence
[11]. Tomakemeaningful inference, it is important to have
as small a set of equivalent models as possible [12]. Logs-
don et al. [12] investigated this issue for DCGs in detail in
their "Recovery" Theorem. According to their discussion,
under the assumption that each gene is directly regulated
by a unique nonempty set of cis-eQTLs, there will exist
multiple equivalent DCGs, and the perturbation topology
can completely change among equivalent DCGs. Further-
more, as in the Lemma of the "Recovery" Theorem, if we
know which gene each cis-eQTL feeds into, then the car-
dinality of the equivalence class is reduced to one, that
is, a unique DCG can be inferred. Therefore, we make
the assumption that the the loci of the q cis-eQTLs have
been determined by an existing eQTLmethod in advance,
but the size of each regulatory effect is still unknown. In
this way, the perturbation topology is determined, and a
unique DCG can be the identified.
Now that the identifiability of SEMs are guaranteed for

both DAGs and DCGs with appropriate assumptions, the
pair-wise GRNs can be inferred by estimating B(1) and
B(2) column by column by solving Eq. (11).

Methods
Joint inference model based on SEMs

By defining W(k)
i =

[

Y(k)
−i ,X

(k)
S(k)
i

]

, β
(k)
i =

[

b(k)
i , f(k)

i,S(k)
i

]T
,

Eq. (11) can be rewritten as a linear type model

y(k)
i = W(k)

i β
(k)
i + e(k)

i , i = 1, · · · , p, k = 1, 2. (12)

Therefore, we can first solve Eq. (12) by adopting appro-
priate regularized linear regression method and then
extract b(k)

i from β
(k)
i .

As is known, a gene is usually regulated by a small num-
ber of genes, meaning that most entries in β(k) are equal
to zero [23–26]. In addition, pair-wise GRNs under dif-
ferent conditions are biologically considered to be similar,
that is to say, most entries in 
β = β(1) − β(2) are also
equal to zero [27]. In order to satisfy the sparsity of both

the separate GRNs and the differential GRN, we penal-
ize both β(k) and 
β with l1-norm, which would yield the
following optimization problem [19]:

(̂β
(1)
i ,̂β(2)

i ) =arg min
β
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i ,β(2)

i
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∥
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∥
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∥

∥y(2)
i − W(2)

i β
(2)
i

∥

∥

∥
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2
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∥
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∥

∥

1
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∥
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∥

∥
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∥
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∥

∥

∥

1

}

, i = 1, · · · , p,

(13)

where the l1-norms λ1
(∥

∥

∥β
(1)
i

∥

∥

∥

1
+

∥

∥

∥β
(2)
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∥

∥

∥

1

)

and

λ2

∥

∥

∥β
(1)
i − β

(2)
i

∥

∥

∥

1
are introduced to fulfill the sparsity of

corresponding parameters, λ1 > 0 and λ2 > 0 are tuning
parameters used to control the sparsity levels.
Inspired by the optimization model in Eq. (13), we re-

parameterize the pair-wise re-parameterized SEMs as in
Eq. (12) to an integrated model as follows,

yi = Wiβ i + ei, i = 1, · · · , p, (14)

where yi = y(1)
i + y(2)

i , Wi =
[

W(1)
i ,W(2)

i

]

, β i =
[

β
(1)
i ,β(2)

i

]T
and ei = e(1)

i + e(2)
i . By denoting the dimen-

sion of S(k)
i as qi, the dimension of β

(k)
i can be easily

expressed as pi = p − 1 + qi. Therefore, yi and ei are
n × 1 vectors, Wi is an n × 2pi design matrix and β i is a
2pi × 1 vector containing all unknown parameters to be
estimated. Then, the optimization problem in Eq. (13) can
be transferred to

̂β i = arg minβ i

⎧

⎨

⎩

∥

∥yi − Wiβ i
∥

∥

2
2 + λ1

2pi
∑

j=1
|β i,j|

+ λ2

pi
∑

k=1
|β i,pi+k − β i,k |

}

, i = 1, · · · , p.
(15)

In the subsequent section, we infer Eq. (15) in a Bayesian
framework by developing a novel appropriate prior to ful-
fill the required sparsity and estimating the parameters
with a Gibbs sampler.

The BFDSEM algorithm
In this section, we develop the BFDSEM algorithm via a
novel hierarchical prior for Eq. (14) to solve the optimiza-
tion problem as in Eq. (15). Referring to the Bayesian fused
Lasso [35], the prior for βi is defined as
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π
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β i|σ 2) =
2pi
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2σ 2τ 2j

}

ψ1,jexp
{
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dτ 2j ×
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∏

k=1

∫ ∞

0

1
√

2πσ 2ω2
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2σ 2ω2

k
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ψ2,kexp
{−ψ2,kω

2
k
}
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(16)

Then the hierarchical prior can be represented as

β i|σ 2, τ 21 , · · · , τ 22pi ,ω2
1, · · · ,ω2

pi ∼ Np(0, σ 2	β),

τ 2j |ψ1,j ∼ Exp(ψ1), j = 1, 2, · · · , 2pi
ω2
k |ψ2,k ∼ Exp(ψ2), k = 1, 2, · · · , pi.

(17)

The hyper parameters, ψ1,j and ψ2,k , are equivalent to the
tuning parameters that adjust the sparsity of β i and 
β i.
We consider the class of Gamma prior on them, namely
Gamma(a,b), where a and b can be pre-specified appro-
priate values so that the hyper priors for ψ1,j and ψ2,k are
essentially noninformative. It should be noted that here
we employ adaptive tuning parameters for each penalized
term in line with the adaptive Lasso [33] to improve the
accuracy and robustness of estimation.
FromEq. (17), we see that β i|σ 2, τ 21 , · · · , τ 22pi ,ω2

1, · · · ,ω2
pi

is in line with multivariate normal distribution, according
to Eq. (16), it is deduced from
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Therefore, β i|σ 2, τ 21 , · · · , τ 22pi ,ω2
1, · · · ,ω2

pi is multivari-
ate normal distributed with mean vector 0 and covariance
matrix σ 2	β i with
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(20)

The hierarchical prior in Eqs. (16) and (17) implement
the optimization problem as described in Eq. (15). We
assign σ 2 an Inverse-Gamma prior with hyper parameters
ν0/2 and η0/2, the hyper parameters can be pre-specified
appropriate values. With the likelihood

yi|Wi,β i, σ 2 ∼ Nn
(

Wiβ i, σ 2In
)

, (21)

the full conditional posteriors of the hierarchical model
can be given by:
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μ1 =
√

√

√

√

2ψ1,jσ 2

β2
i,j

, λ1 = 2ψ1,j,

1
ω2
k
|β i,k ,β i,pi+k , σ 2,ψ2,k ∼ IGauss(μ2, λ2), k = 1, · · · , pi

μ2 =
√

2ψ2,kσ 2
(

βi,pi+k − βi,k
)2 , λ2= 2ψ2,k

ψ1,j|τ 21 , · · · , τ 22pi , a, b ∼ Gamma
(

a + 1, b + τ 2j

)

,

j = 1, · · · , 2pi
ψ2,k |ω2

1, · · · ,ω2
pi , a, b ∼ Gamma

(

a + 1, b + ω2
k
)

,

k = 1, · · · , pi.
(22)

Then a Gibbs sampler is used to draw samples iter-
atively from the above posteriors, and yields posterior
estimates of βi, the uncertainty can also be character-
ized in a natural way through the credible intervals.
The convergence of the Gibbs sampler is monitored by
the potential scale reduction factor ̂R as introduced in
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[37] and the convergence condition is set to ̂R < 1.1.
Once the Gibbs sampler converges, we continue to draw
samples for several iterations and average the converged
samples of β i as the estimations for β i. Vats [38] and
Kyung et al. [34] have proved geometric ergodicity of
the Gibbs samplers for the Bayesian fused lasso. Follow-
ing the conclusion in [38], under the condition of n >

3, no conditions on pi are required to fulfil the geo-
metric ergodicity. Thus, the convergence of the Gibbs
sampler is expected to be quite speed regardless of the
dimension pi.
With the samples for all βi drawn from the Gibbs

sampler, the posterior mean estimate and corresponding
credible interval of (B(1)

i , B(2)
i ) can also be obtained. After

applying the Gibbs Sampler on all the p models for i =
1, · · · , p, the adjacencymatrices of twoGRNsB(1) andB(2)

as well as the difference between them 
B can be easily
figured out.
Different from the frequency framework, a Bayesian

hierarchical model with penalized prior can shrinkage the
regression coefficients but does not produce exactly zero
estimates. Several strategies have been proposed to go
from a posterior distribution to a sparse point estimate
[39–41]. Considering the computing complexity, here we
adopt the simplest strategy suggested in [42–44] to pre-
set a threshold value t. In the adjacency matrices B(1) and
B(2), only the entries whose absolute value are larger than
t are retained, all other entries are set to zero. Then the
differential GRN can be obtained by computing 
B =
B(1) − B(2). Obviously, there is a trade off between power
of detection (PD) and discovery rate (FDR), the smaller
t is, more edges would be detected in the GRNs, which
results in better PD but worse FDR; and reversely, a
larger t yields worse PD but better FDR. As discussed in
[42], the value of the threshold t is chosen subjectively.
Referring to the threshold value in [42] (t=0.1) and [44]
(t=0.05,0.1,0.2), we set t=0.2 for the following computer
simulations.

Results
Computer Simulations
In this section, we run simulations on synthetic data by
applying our proposed BFDSEM algorithm and two state-
of-the-art joint differential analysis algorithms: FSSEM
and ReDNet, and then compare the performance in terms
of PD and FDR for (B(1),B(2)) and 
B. Since the algo-
rithms may have different performance in DAGs and
DCGs, it is commonplace to run simulations on synthetic
DAGs and DCGs, respectively.
Following the setup in [13, 20], both DAGs and DCGs

under two different conditions are simulated. The sim-
ulated data have similar numeric data type and range
with corresponding standardized experimental data, so
the simulation studies could reflect the performance of

the algorithms to some extent. The number of genes p
varies from 10 to 30 or 50, the sample size n varies from
50 to 250. In the following simulations, the number of cis-
eQTLs q is set as q = 2p, meaning that each gene has two
contributing cis-eQTLs. The average number of edges per
node ne which determines the degree of sparsity varies
from 1 to 3 or 4.
In detail, an adjacency matrix of a DAG or a DCG

A(1) is first generated for the GRN under condition 1,
then the corresponding adjacency matrix A(2) is gener-
ated by randomly changing nd entries of A(1), where nd
is approximately equal to 10% of the nonzero entries, and
the number of changes from 1 to 0 and from 0 to 1 are
equal (denoted by nc). The network matrix of GRN under
condition 1 B(1) is generated from A(1) by replacing its
nonzero entries with random values generated from a
uniform distribution over (−1,−0.5)

⋃

(0.5, 1). Next, the
corresponding network matrix under condition 2 B(2) is
generated from A(2) and B(1) by steps as follows: For all
A(2)
ij = 0, we set B(2)

ij = 0; for all A(2)
ij = A(1)

ij , we randomly
select nc entries and keep them unchanged, other entries
are set as B(2)

ij = B(1)
ij ; for all A(2)

ij = 1 but A(1)
ij = 0, we

generate B(2)
ij from a uniformly distribution over interval

(−1,−0.5)
⋃

(0.5, 1). The genotypes of the q cis-eQTLs
are simulated from an F2 cross. Values 1 and 3 were
assigned to two homozygous genotypes, respectively, and
value 2 to the heterozygous genotype. Then each entry
in X(1) and X(2) are generated by sampling from {1, 2, 3}
with corresponding probabilities {0.25, 0.5, 0.25}. The reg-
ulatory effects of corresponding cis-eQTLs are assumed
to be 1, so F(1) and F(2) are simulated by randomly per-
muting the rows of matrix (Ip, Ip)T , where Ip denotes a
p-dimensional identify matrix. In the following simula-
tions, we assume F(1) = F(2). Each error term in E(1) and
E(2) is independently sampled from a normal distribution
with zero mean and variance σ 2. Then, the gene expres-
sion matrices Y(1) and Y(2) can be obtained by computing
Y(k) = (

X(k)F(k) + E(k)) (I − B(k))−1 , k = 1, 2.
For each setup of the following simulated networks, 20

replicates are simulated, then the PD and FDR are cal-
culated by averaging the results of all replicates in same
setups. The variable selection threshold t is defined as 0.2.
We depict the results of DAGs and DCGs with p =

30, ne = 1, σ 2 = 0.01 in Figs. 1 and 2, respectively.
First, let us see the results of DAGs in Fig. 1. The PD
and FDR of (B(1),B(2)) are shown in Fig. 1a and b. The
three algorithms show similar performance in PD, which
nearly reaches 1 for all sample sizes. As for the FDR, BFD-
SEM has similar results with FSSEM, which are better
than ReDNet. The PD and FDR of 
B are depicted in
Fig. 1c and d. BFDSEM yields slightly better PD than ReD-
Net, and more better PD than FSSEM. It offers slightly
worse FDR than FSSEM when sample size is ≤100, and
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Fig. 1 Performance of BFDSEM, FSSEM and ReDNet for DAGs. The number of genes p=30, the average number of edges per node ne = 1, the noise
variance σ 2 = 0.01, and the sample sizes n1 = n2 vary from 50 to 250

Fig. 2 Performance of BFDSEM, FSSEM and ReDNet for DCGs. The number of genes p=30, the average number of edges per node ne = 1, the noise
variance σ 2 = 0.01, and the sample sizes n1 = n2 vary from 50 to 250
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much better FDR than ReDNet across all sample sizes.
Next to see the results of DCGs in Fig. 2. The PD and
FDR of (B(1),B(2)) can be observed in Fig. 2a and b. BFD-
SEM offers similar or very slightly worse PD and FDR than
FSSEM, and provides visual better PD and FDR than ReD-
Net. The PD and FDR of 
B are depicted in Fig. 2c and
d. BFDSEM and FSSEM perform neck and neck PD and
FDR, which are obviously better than ReDNet.
All of the simulation results of DAGs and DCGs under

different setups (ne and σ 2) can be found in Additional
files 2, 3, 4, 5: Figure S1-S4. As a whole, BFDSEM
generally outperforms ReDNet for all simulation setups.
Compared to FSSEM, BFDSEM has similar or slightly bet-
ter performance for synthetic data sets with σ 2 = 0.01.
When σ 2 = 0.1, BFDSEM still exhibits similar or bet-
ter PD for both (B(1),B(2)) and 
B, but offers worse FDR
when sample size is relatively smaller, especially for 
B.
Finally, simulations on DAGs with p = 50, ne =

1, σ 2 = 0.01 are run to show how does the value of
threshold t affect the performance of BFDSEM. The sim-
ulation results for (B(1),B(2)) and 
B with t ranging in
{0.08,0.1,0.15,0.2} and n varies from 80 to 500 are depicted
in Fig. 3. As shown in Fig. 3a and c, for all values of t, the

PD of both (B(1),B(2)) and 
B are similar and all equal to
or slightly lower than 1. From Fig. 3b and d, we see that
the FDR of (B(1),B(2)) and 
B still achieve almost perfect
results for t =0.15 or 0.2. Nevertheless, when t =0.08 or
0.1, the FDR of both (B(1),B(2)) and 
B increase invisibly,
especially for 
B with small sample sizes.

Real data analysis
We perform differential analysis on a real data set from 42
tumors and their adjacent normal tissues of non-smoking
female patients with lung adenocarcinomas. The gene
expression levels and genotypes of single nucleotide poly-
morphisms (SNPs) in this data set were reported in the
gene expression omnibus data base GSE33356 by Lu et al.
[45]. We preprocessed the raw data in GSE33356 follow-
ing [20] with R package affy [62] and MatrixEQTL [63],
resulting in 1,455 genes with at least one cis-eQTLs at an
FDR = 0.01.
To perform more reliable inference, we further selected

a smaller subset of the 1,455 genes with the GIANT
database. The GIANT database which can be accessed
in (http://hb.flatironinstitute.org) contains 144 tissue- and
cell lineage-specific GRNs from an integration of data

Fig. 3 Performance of BFDSEM for DAGs with different Bayesian variable selection threshold t. The number of genes p=50, the average number of
edges per node ne = 1, the noise variance σ 2 = 0.01, the sample sizes n1 = n2 vary from 80 to 500, and the variable selection threshold t ranges in
{0.08, 0.1, 0.15, 0.2}
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sets covering thousands of experiments contained in
more than 14,000 distinct publications. We downloaded
the lung network with Top Edges (lung_top.gz) from
the GINAT database, the posterior probabilities of each
edge can be found in the downloaded network. The
edges whose posterior probabilities are less than 0.8 were
deleted from the GIANT lung network. Then the 1455
genes with corresponding cis-eQTLs were further filtered
with the GIANT lung network, and finally, 15 genes were
identified to have interactions with at least one another
gene with posterior probability ≥0.80 in the GIANT
lung network. The details about these 15 lung genes are
described in Additional file 6: Table S1.
Now we can apply BFDSEM on the filtered lung data set

containing expression levels of 15 genes and genotypes of
corresponding cis-eQTLs under two different conditions
(in 42 normal tissues and 42 tumors) to make differential
analysis.
First, BFDSEM was applied to quantify the uncertainty

of the posterior Gibbs sampler by credible intervals. The
posterior mean estimates and corresponding 95% equal-
tailed credible intervals for B(1), B(2) and 
B were esti-
mated and computed, and each result of the first column
is depicted in Fig. 4(a)(b)(c), respectively, denoting the
regulatory effects of all the 15 genes on the first gene
PPP4R2. For comparison, the point estimates of FSSEM
and ReDNet are also depicted. Moreover, in Additional
files 7, 8, 9: Figure S5-S7 give the results of 100 samples for
each estimated edge.
Then we adopt BFDSEM to reconstruct the differential

GRN. By directly applying BFDSEM to the original data
set with 15 lung genes in 42 tumors and 42 normal tis-
sues, 41 edges were detected. To evaluate the significance
of the identified edges, we re-sampled from the origi-
nal data sets with replacement to obtain 100 bootstraps,
each bootstrap also has 42 tumor samples and 42 normal
samples. Then BFDSEM is applied to the 100 bootstraps

separately, and only the edges that were detected for more
than 80 times were retained in the final GRNs. Finally,
BFDSEM yielded a GRN with 18 edges for normal lung
tissues B(1) and a GRN with 17 edges for lung tumors
B(2). We compared the resulted normal GRN with the
GIANT reference network inferred from a large number
of samples, and found that 13 of the 18 edges were also
in the corresponding GIANT lung network with relatively
high confidence, which showed that the GRN inferred
by the BFDSEM from only a small number of samples
is in accordance with the GIANT lung network in some
degree.
Since too small changes of the regulatory effects are

often of little significance in biological, for a differen-
tial GRN identified by 
B = B(1) − B(2), we only take
the entries that satisfy the following condition: |B(1)

ij −
B(2)
ij | >min

{(

B(1)
ij ,B(2)

ij

)}

/5. This criteria was applied to all
the 100 bootstraps, and the ultimate differential GRN was
obtained by eliminating the edges that were detected for
less than 80 times. The identified differential GRN with
7 genes and 5 edges is depicted in Fig. 5, in which the
mainly related genes are: BTF3, RPS16, HSF1, RPS6, and
MAPKAPK2.

Discussion
An SEM provides a systematic framework to inte-
grate genetic perturbations with gene expression data
to improve inference accuracy, and offers flexibility to
model both DAGs and DCGs [13]. FSSEM and ReD-
Net are two state-of-the-art joint inference algorithms
for differential analysis of two similar GRNs modeled
with SEMs. The performance of these two joint infer-
ence algorithms have been proved much more efficient
than naive approaches. The FSSEM algorithm in [20]
modeled a penalized negative log-likelihood function and
developed a proximal alternative linearize minimization
algorithm to infer coefficients. The ReDNet algorithm

Fig. 4 Interval estimate of BFDSEM and point estimates of FSSEM and ReDNet for the first column of B(1) , B(2) and 
B. Including posterior mean
estimates and corresponding 95% equal-tailed credible intervals of BFDSEM, and point estimates of FSSEM and ReDNet for the subset of human
lung data set
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Fig. 5 The differential GRN of 15 lung genes identified by the BFDSEM algorithm. Including 7 genes and 5 edges, the other genes that were not
involved in the differential GRN were omitted

in [21] re-parameterized the pair-wise SEMs as an inte-
grated model regarding the averaged regulatory effects
and differential regulatory effects as coefficients, and
then penalized them to realize sparse learning. In this
paper, we develop a novel algorithm named BFDSEM
for joint inference of two similar GRNs modeled with
SEMs. Different from FSSEM and ReDNet, BFDSEM is
implemented based on re-parametrization and Bayesian
penalized regression with a novel fused prior. First, the
original pair-wise SEMs under different conditions are
re-parameterized as an integrated linear model that incor-
porates all related data sources at the first stage; Next,
considering the sparsity of the separate GRNs and the
differential GRN, a penalized optimization model for
the re-parameterized linear model is constructed and a
corresponding penalized hierarchical prior is developed;
Finally, the full conditional posteriors are deduced and a
Gibbs sampler is conducted to draw samples iteratively
from the posteriors, then the posterior credible interval
and posterior mean estimation can be obtained from the
samples.
Compared to FSSEM and ReDNet, the Gibbs sampler

in BFDSEM is easy to implement, and not only provides
point estimation via the posterior mean or median, but

also quantifies the uncertainty via the credible interval
automatically. The geometric ergodicity of Gibbs samplers
for the Bayesian fused lasso have been proved in Vats [38]
and Kyung et al. [34], which means fast convergence of
the iterations. In addition, BFDSEM construct the penal-
ized prior directly for the re-parameterized integrated
linear model to achieve sparsity of the separate GRNs
and differential GRN simultaneously. This approach is
much simpler and faster than FSSEM, and can reach
similar performance at the same time. ReDNet also re-
parameterized the pair-wise SEMs as an integratedmodel,
the adaptive Lasso was applied to achieve sparsity for
the averaged GRN and differential GRN, rather than
the separate GRNs, which may result in less accurate
estimates.
Simulation studies have been run to compare the perfor-

mance of BFDSEM with FSSEM and ReDNet, the results
demonstrated that our BFDSEM algorithm has similar
performance with FSSEM, and has better performance
than ReDNet. The differential analysis of a real data set
with 15 genes of 42 lung tumors and 42 normal tissues
has been made to infer the underlying GRNs and differen-
tial GRN. The resulted normal GRN was demonstrated in
good agreement with the GIANT reference network and
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the identified differential GRN contained 5 highly related
genes. The 5 genes have been demonstrated to be related
to lung cancer and some other kinds of cancers by exper-
imental approaches in previous literatures. Specifically,
BTF3 was confirmed aberrantly in various cancer tissues
such as gastric cancer tissues [47, 48], prostate cancer
tissues [49], colorectal cancer tissues[50] and pancreatic
cancer cells [51]; RPS16 was found dysregulated in disc
degeneration, which is one of the main causes of low back
pain [52]; HSF1 influenced the expression of heat shock
proteins as well as other activities like the induction of
tumor suppressor genes, signal transduction pathway, and
glucose metabolism. Its associations with gastric cancer
[53], breast cancer and two of the studied SNPs correlated
significantly with cancer development [54] have been
proved; RPS6 was declared closely relevant to the non-
small cell lung cancer (NSCLC) [55], the renal cell carci-
noma [56] and some other cancers [57, 58]; MAPKAPK2
was demonstrated to contribute to tumor progression
by promoting M2 macrophage polarization and tumor
angiogenesis [59].
There are still some limitations of the BFDSEM algo-

rithm: First, the selection of the Bayesian variable
threshold t is somewhat arbitrary to some extent, an
improper t may lead to less accurate results; Next,
despite the apparent theoretical safeguard of geometric
ergodicity, when p/n is large enough, it may be pos-
sible for the Gibbs samplers to converge at a slower
rate [38, 60], thereby the uncertainty quantification
may also be compromised; Moreover, the proposed re-
parametrization method only supports pair-wise data
sets with the same sample size. A natural direction for
future research would be to investigate solutions for these
limitations.

Conclusion
The differential analysis of pair-wise GRNs under different
conditions is as important as the inference of single GRNs.
In this paper, we develop a novel Bayesian fused differ-
ential analysis algorithm for GRNs modeled with SEMs,
named BFDSEM, which provides valuable tool for joint
inference of GRNs under two different conditions. To our
knowledge, our BFDSEM algorithm is the first Bayesian
inference method for joint analysis of GRNsmodeled with
SEMs.
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