
Arjunan et al. BMC Bioinformatics (2020) 21:33
https://doi.org/10.1186/s12859-019-3338-8

METHODOLOGY ARTICLE Open Access

pSpatiocyte: a high-performance
simulator for intracellular reaction-diffusion
systems
Satya N.V. Arjunan1* , Atsushi Miyauchi2, Kazunari Iwamoto1 and Koichi Takahashi1

Abstract

Background: Studies using quantitative experimental methods have shown that intracellular spatial distribution of
molecules plays a central role in many cellular systems. Spatially resolved computer simulations can integrate
quantitative data from these experiments to construct physically accurate models of the systems. Although
computationally expensive, microscopic resolution reaction-diffusion simulators, such as Spatiocyte can directly
capture intracellular effects comprising diffusion-limited reactions and volume exclusion from crowded molecules by
explicitly representing individual diffusing molecules in space. To alleviate the steep computational cost typically
associated with the simulation of large or crowded intracellular compartments, we present a parallelized Spatiocyte
method called pSpatiocyte.

Results: The new high-performance method employs unique parallelization schemes on hexagonal close-packed
(HCP) lattice to efficiently exploit the resources of common workstations and large distributed memory parallel
computers. We introduce a coordinate system for fast accesses to HCP lattice voxels, a parallelized event scheduler, a
parallelized Gillespie’s direct-method for unimolecular reactions, and a parallelized event for diffusion and bimolecular
reaction processes. We verified the correctness of pSpatiocyte reaction and diffusion processes by comparison to
theory. To evaluate the performance of pSpatiocyte, we performed a series of parallelized diffusion runs on the RIKEN
K computer. In the case of fine lattice discretization with low voxel occupancy, pSpatiocyte exhibited 74% parallel
efficiency and achieved a speedup of 7686 times with 663552 cores compared to the runtime with 64 cores. In the
weak scaling performance, pSpatiocyte obtained efficiencies of at least 60% with up to 663552 cores. When executing
the Michaelis-Menten benchmark model on an eight-core workstation, pSpatiocyte required 45- and 55-fold shorter
runtimes than Smoldyn and the parallel version of ReaDDy, respectively. As a high-performance application example,
we study the dual phosphorylation-dephosphorylation cycle of the MAPK system, a typical reaction network motif in
cell signaling pathways.

Conclusions: pSpatiocyte demonstrates good accuracies, fast runtimes and a significant performance advantage
over well-known microscopic particle methods in large-scale simulations of intracellular reaction-diffusion systems.
The source code of pSpatiocyte is available at https://spatiocyte.org.

Keywords: Cell simulation, Monte Carlo method, Particle reaction-diffusion, Hexagonal close-packed lattice,
Mitogen-activated protein kinase, Message passing interface, parallelized Gillespie’s direct-method

*Correspondence: satya@riken.jp
1RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
Full list of author information is available at the end of the article

© The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-019-3338-8&domain=pdf
http://orcid.org/0000-0002-2913-3347
https://spatiocyte.org
mailto: satya@riken.jp
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Arjunan et al. BMC Bioinformatics (2020) 21:33 Page 2 of 21

Background
Intracellular space plays an important role in many bio-
chemical systems operating in the timescales of minutes
to hours such as cell signaling [1], division [2], polariza-
tion [3], morphogenesis [4] and chemotaxis [5, 6]. These
systems are regulated by the spatiotemporal dynamics
of molecules. Recent quantitative biology methods can
obtain high-resolution spatiotemporal measurements of
the molecules. These disparate sources of measurements
can be combined and interpreted using spatially resolved
simulators to construct models of the systems that are
realistic and consistent with physical principles. By sim-
ulating the models, detailed analysis of the systems can
be conducted in silico and future experiments can be
designed [7].
The choice of spatial simulators largely depends on

the timescale and spatial resolution of the system of
interest [8–13]. For example, high-performance molecu-
lar dynamics (MD) simulators [14] can accurately capture
the atomistic behavior of up to several macromolecules
in a system but are limited in their timescale, allowing
only simulations for up to a few milliseconds [15, 16]. It is
thus not feasible to use MD for example, to simulate cell
signaling systems such as the mitogen-activated protein
kinase (MAPK) cascade, which takes place at the cellular
scale with timescales spanning minutes to hours [17, 18].
For these longer spatial and temporal scales, numerical
methods that solve partial differential equations (PDEs)
or coarse-grained stochastic particle simulation methods
can be used. PDE-based tools such as the freely available
Virtual Cell [19] and the commercially available COM-
SOL Multiphysics (COMSOL Inc.) are useful when the
system of interest is deterministic. They are especially fast
and convenient when simulating molecules with very high
copy numbers. Conversely, particle methods are prefer-
able when we need to account for the noise and fluctua-
tions arising from low copy number of reacting molecules
in the cell [20].
Lattice-based particle methods based on the reaction-

diffusion master equation (RDME) have the advantage
to simulate a large number of diffusing molecules for
extended spatiotemporal scales [21–25]. However, since
RDME methods represent molecules as dimensionless
point particles in lattice voxels, they do not directly cap-
ture the effects of excluded volume brought by intracellu-
lar macromolecular crowding [26]. About 20–30% of the
total volume inside cells are occupied by macromolecules
[27]. This amount of crowding has been shown to affect
reaction equilibria both in vivo and in vitro, and alter pro-
tein binding and gene expression characteristics [28–31].
Moreover, crowded media can also cause non-intuitive
effects such as molecules performing directed motion
[32], and a change in the statistics of molecular num-
ber fluctuations in simple reactions [33]. To capture the

effects of volume exclusion in systems that are in equilib-
rium, Cianci and colleagues [34] recently reported a mod-
ified version of the RDMEmethod called vRDME. Despite
this enhancement, RDME-based methods are still con-
strained when simulating diffusion-limited reactions and
rebinding events [35–37] because they assume molecules
to be well-mixed in each voxel.
Off-lattice microscopic particle methods such Smol-

dyn [38], eGFRD [36], SpringSaLaD [39] and ReaDDy
[40] can capture the effects of crowding directly because
each molecule is represented individually with sphere-
like physical dimensions. These simulators also support
different sizes of volume excluding molecules. ReaDDy
and SpringSalaD can also account for the coarse shape of
molecules. However, because of these additional details,
microscopic particle methods are more computationally
demanding than RDMEmethods. In a recent performance
benchmark of the microscopic methods [41], Smoldyn
required the shortest runtime when simulating the well-
known Michaelis-Menten reaction-diffusion kinetics.
Spatiocyte [42] is another microscopic method but

molecules diffuse on lattice by hopping from one voxel to
another. The current stable version of Spatiocyte accounts
for volume exclusion by allowing only a single molecule
to occupy a voxel at a time. The maximum size of a
molecule is roughly equals to the size of a voxel [43]. The
method therefore captures steric interactions most real-
istically when the size of volume excluding molecules is
the same and almost equals to that of a voxel. To better
simulate the effects of crowding, there is also a develop-
ment version of Spatiocyte that allows a single molecule to
occupymultiple voxels according to its size (unpublished).
In Spatiocyte, fine and fast-diffusing molecules such as
messengers, metabolites and ions are simulated at the
compartment scale using the Next-Reaction method [42,
44]. The accuracy and consistency of Spatiocyte have been
validated in detail recently in both volume [43] and surface
[45] compartments. Spatiocyte achieves better execution
time scaling behavior compared to other methods [43]
because it resolves molecular collisions by looking only
at the target voxel for occupancy. At the typical intra-
cellular protein concentration range, the performance of
Spatiocyte is comparable to Smoldyn when molecules are
represented as point particles. On the other hand, when
the molecules have physical dimensions, the runtime of
Spatiocyte is at least two times faster than Smoldyn.
These recent performance benchmarks [41, 43] imply that
at present Spatiocyte is one of the fastest methods for
simulating individual molecules in crowded systems.
There have been several efforts in the past to improve

the performance of particle simulation methods using
parallelization approaches. RDME methods have been
accelerated on Graphics Processing Units (GPUs) [46–48]
and CPU clusters [49]. The GPU-based implementations

Arjunan et al. BMC Bioinformatics (2020) 21:33 Page 3 of 21

of RDME can simulate up to two orders of magnitude
faster than the serial version on CPU. Chen and De Schut-
ter [49] used Message Passing Interface (MPI) to run a
neuron model and achieved 500-fold speedup on a clus-
ter with 1000 processes. Microscopic methods such as
ReaDDy [50] and Smoldyn [51, 52] have also been paral-
lelized on GPUs. The performance gain of ReaDDy was up
to 115 times over its serial counterpart on CPU. The GPU
versions of Smoldyn required between 135- to 200-fold
shorter runtimes than the original CPU implementation.
Recently, the ReaDDy method was extended to run using
multiple threads in parallel on CPU [53]. It showed 6-
fold reduction in the simulation time when running with
6 threads compared to the serial implementation.
Here we introduce a parallel implementation of the Spa-

tiocyte method, called pSpatiocyte. The new algorithm
was written bottom-up in C++ and MPI to exploit the
resources of conventional workstations andmassively par-
allel computers for high-performance simulations of large
or crowded cell models. We demonstrate efficient simu-
lations of reaction-diffusion systems at the microscopic
scale with volume occupyingmolecules to recapitulate the
crowded nature of intracellular media. We achieve scal-
ability over 500,000 CPU cores on a distributed memory
architecture.
In the following section we describe the parallelization

schemes and numerical implementation of pSpatiocyte.
We then provide computational results that validate paral-
lel diffusion and reaction processes. We also demonstrate
the performance of pSpatiocyte on the RIKEN K com-
puter with thousands of cores and on a common worksta-
tion with eight cores. We show the applicability of pSpa-
tiocyte in actual biological problems by simulating the
dual phosphorylation-dephosphorylation cycle of MAPK.
Finally, we conclude by providing a summary of the vali-
dation and performance results, and future directions of
this work.

Methods
In a Spatiocyte model, a molecule of a species si diffuses
in space by performing random walk on lattice from one
voxel to a nearest neighbor voxel. The diffusion interval,
τ id between two successive walks is determined by the dif-
fusion coefficient Di. When the molecule collides with a
molecule of a reactant species sj in the target voxel, they
perform a bimolecular reaction with an acceptance prob-
ability, Wij. Wij captures the intrinsic reaction rate kij of
the pair according to the Smoluchowski-Collins-Kimball
(SCK)model [54, 55]. The accuracy and consistency of the
bimolecular reaction on lattice in both activation-limited
and diffusion-limited regimes have been verified [43, 45].
To represent volume occupying molecules, a voxel can be
occupied by only a single molecule at any given time. As
a result, if the diffusing molecule meets a non-reactive

molecule in the target voxel, a collision occurs and it
remains in its original voxel. In the following subsections,
we describe the parallelization schemes of the Spatiocyte
method in detail.

Coordinate system
Spatiocyte adopts the hexagonal close-packed (HCP) lat-
tice arrangement (Fig. 1a) as it supports the highest
density of sphere voxels in a given volume [56]. For com-
parison, the average density of HCP voxels is 74.048%,
whereas the more commonly used cubic lattice has a den-
sity of 52.359%. The highest density of voxels is preferable
because it allows the simulator to represent highly packed
and crowded regions in a compartment to its maximum
theoretical limit. Moreover, it was recently demonstrated
that the voxels in HCP lattice need to be only about 2%
larger than the molecule for the simulations to be consis-
tent with the SCK model [43]. This is in contrast to the
cubic lattice, which requires the voxel size to be at least 8%
larger. The HCP lattice therefore, can more closely repre-
sent hard-sphere molecules in space. For two-dimensional
(2D) planar simulations, Spatiocyte employs the triangu-
lar lattice arrangement, which is a plane of the HCP lattice
[45]. Grima and Schnell [57] have previously shown that
simulations on a triangular lattice are closer to Brownian
dynamics and produce less discretization error than on
square lattice. Simulations on square lattice also overesti-
mate macromolecular crowding effects compared to the
triangular lattice.
Although HCP lattice has a regular grid arrangement

of voxels, some considerations are necessary to define the
coordinate axes to access the voxels. In Fig. 1b, the axes
i and j aligned to the voxels in a plane of HCP lattice
make up a rhomboid instead of a rectangle. The third
axis k is also tilted when aligned to the voxels across
the planes of the lattice. Such unusual axes arrangement
requires substantial computational steps to convert the
integer coordinates of a voxel into real coordinates. A
data structure without a coordinate system can also be
used to identify and access neighbor voxels. For example,
a one-dimensional array of voxels can be used, wherein
each voxel has pointers to its 12 nearest neighbors. The
serial version of Spatiocyte adopts this scheme [42]. From
our performance profiling results, the additional mem-
ory required to store 12 pointers per voxel and indirect
memory accesses to load neighbor voxel data adversely
impacts performance because of increased memory band-
width usage and cache misses. In addition, with an uncon-
ventional grid it can also be cumbersome to split the
computational domain spatially into smaller subdomains
(green, red, orange and blue regions in Fig. 1b) for parallel
execution by processes.
To overcome these issues, we propose a coordinate sys-

tem called twisted Cartesian as depicted in Fig. 1c. It

Arjunan et al. BMC Bioinformatics (2020) 21:33 Page 4 of 21

Fig. 1 HCP lattice arrangement and a coordinate system for accessing voxels. a A schematic view of HCP lattice. Left: odd and even planes, shown in
different colors. Right: the twelve nearest neighbors (green) of a voxel (yellow). b 2D slice of an HCP coordinate system based on a unit cell. A
compartment mapped along the axes i and jmakes a rhomboid instead of a rectangle. A tilted third axis, k (not shown) further contorts the
boundaries of the compartment. c Top row: accessing neighbor voxels in a twisted Cartesian coordinate system for the odd plane in k-axis. Bottom
row: another stencil is used for the even plane

comprises a straight and two zigzag axes. The figure illus-
trates how each of the 12 neighbors is identified with these
axes. Depending on whether the voxel plane, k is even-
or odd- numbered, one of two procedures is used in i-
and j-axes to identify a neighbor voxel. The two proce-
dures are shown by the top and bottom panels of Fig. 1c.
This coordinate system can be readily mapped onto a con-
ventional Cartesian coordinate system without almost any
modification and enables straightforward programmabil-
ity. Despite being unconventional, the twisted Cartesian
coordinate system works well for identifying and access-
ing neighbor voxels pointer-free by only using conditional
statements. In a preliminary implementation of pSpatio-
cyte, we used the system successfully for parallelization
[58]. Recently, a similar approach was adopted for cellular
automata simulations in 2D space [59].

Parallelized Spatiocyte algorithm
The Spatiocyte method advances the simulation time, ts
in discrete steps using an event scheduler [42, 60]. The

scheduler gets the next event, e to be executed from a
priority queue Q, which contains events sorted accord-
ing to scheduled times, te. The types of events that can
be defined in a model include walk (performs diffu-
sion and bimolecular reactions), unimolecular reaction,
species numbers logger and molecule coordinates logger.
Upon execution, an event returns the interval, τe for its
next execution. The next execution time, te = ts + τe
is then passed to the priority queue to reschedule the
event. The scheduler executes all events in a loop until the
simulation end time, tend is reached.
The pSpatiocyte method is a parallelized version of Spa-

tiocyte and is completely written in C++. The method
is parallelized using the domain decomposition approach
illustrated in Fig. 2a. With this approach, the complete
lattice space is divided equally into N subdomains to
be executed concurrently by N processes. To minimize
synchronization overheads between processes, the sched-
uler and events are duplicated across all processes at
initialization, which is described in Algorithm 1. The

Arjunan et al. BMC Bioinformatics (2020) 21:33 Page 5 of 21

Fig. 2 Schemes for large-scale parallel simulation of particles. a Domain decomposition of an HCP lattice plane. A 122 plane with reflective
boundary is equally divided into four subdomains. Each subdomain measuring 62 voxels is allocated to one of four available processes, P0, P1, P2
and P3. Subdomain voxels adjoining other subdomains are defined as out voxels. Ghost voxels are added locally to each subdomain to encapsulate
out voxels. The ghost voxels serve to reflect the state of out voxels residing in adjacent subdomains. b Subdomain division into subvolumes and
three-stage inter-process communication. Each subdomain in (a) is divided into four equal subvolumes (eight subvolumes, if 3D subdomain). To
avoid biased walk events, one of the four subvolumes is randomly chosen before the corresponding local subvolume is executed simultaneously by
the four processes. In the above example, subvolume 3 was selected randomly and it is currently being executed in parallel by the four processes.
Ghost voxels will be updated using the three-stage communication scheme before they are accessed. The scheme updates the voxels
consecutively in x- and y-directions (and z-direction, if 3D subvolume). After performing the walk and reaction events in the subvolume, the out
voxels in adjacent subdomains will be updated to reflect the state of local subvolume ghost voxels. The updates will be performed successively in
(z-,) y- and x-directions. In the example above, the state of an out voxel of P3 subvolume 0 is first transferred to a ghost voxel of P2 subvolume 1 in
x-direction before it is communicated to the ghost voxel in P0 subvolume 3 in y-direction. Conversely, the state of the out voxel is updated in
reverse, first in y-direction, and then in x-direction

scheduler of each process then executes the main loop
of the simulation in parallel according to Algorithm 2.
The simulation proceeds synchronously over all pro-
cesses by ensuring that (1) the scheduled execution
time of each event is identical across processes; and

(2) each process synchronizes with adjacent processes
when molecules from local subdomain walk or react
across adjacent subdomains. We describe how these two
conditions are satisfied by each event in the following
subsections.

Arjunan et al. BMC Bioinformatics (2020) 21:33 Page 6 of 21

Arjunan et al. BMC Bioinformatics (2020) 21:33 Page 7 of 21

Parallelized walk event
Einstein [61] and von Smoluchowski [62] have indepen-
dently shown that small particles in one-dimensional
(1D) system perform Brownian walk with a root-mean-
squared displacement of

√
2Dt, where t is the interval

between walks and D is the diffusion coefficient of the
particles. The 1D relation can be expressed in three-
dimensional (3D) space with the mean-squared displace-
ment (MSD) given as 6Dt. Similarly, in the 3D HCP
lattice space, the displacement of a molecule of species
si within a diffusion interval τ id must be consistent with
its diffusion coefficient Di. Since the molecule displace-
ment over the interval is equivalent to the voxel diam-
eter, we can use the MSD relation in 3D to obtain
the interval, τ id = 2r2v/(3Di), where rv is the voxel
radius. We have previously shown that this approach
is accurate for modeling bimolecular reactions on HCP
lattice when rv ≈ 1.0209R, where R is the molecule
radius [43].
Bimolecular reactions are handled by the walk event

because they take place upon the collision of two reactant

molecules on lattice during diffusion. Since the reaction
acceptance probability, Wij = kij/(6

√
2(Di + Dj)rv) is

inversely proportional to the diffusion coefficients of reac-
tants, highly diffusion-limited reactions can causeWij > 1
[42, 43]. To address this inaccurate condition, we first
determine the maximum Wij of all bimolecular reactions
involving si and assign it as ρi. Then, we obtain the walk
probability,

αi =
{
Pi/ρi, if ρi > Pi
1, otherwise

}
(1)

where Pi is a user-defined upper limit of reaction accep-
tance probabilities and 0 < Pi ≤ 1 (by default, Pi =
1). Next, we rescale the reaction probabilities to Wij =
Wijαi. Finally, we obtain the walk interval as τ ie = τ idαi.
This walk interval is fixed and identical across all pro-
cesses throughout the simulation procedure. With the
above bimolecular reaction scheme, we have previously
shown that the rebinding-time probability distribution
of a reactive molecule pair on HCP lattice agrees well
with continuum theory (see Section III.A of [43]). We

Arjunan et al. BMC Bioinformatics (2020) 21:33 Page 8 of 21

have also verified the accuracy of the reaction rate coeffi-
cient and its time-dependent behavior by comparison to
SCK theory. Consequently, reactions that are not highly
diffusion-limited (Wij � 1, αi = 1) will have a smaller
impact on the simulation performance since they will be
far fewer than diffusion steps in the microscopic lattice
space.
One of the difficult problems in parallelizing stochas-

tic diffusion and reaction events is maintaining consis-
tency at subdomain boundaries during simulation time
steps. Processes should take careful consideration when
accessing or writing to voxels residing in adjacent sub-
domains since they are also simultaneously accessible to
the adjacent processes. Figures 2a and b illustrate our
scheme to achieve consistency during walk and reaction
events. We define the voxels at the edge of a subdo-
main and adjoining other subdomains as out voxels. We
add a virtual set of voxels called ghost voxels locally in
each subdomain to represent the current state of out
voxels residing in adjacent subdomains. With updated
ghost voxels, molecules in a subdomain can walk and
react across subdomains seamlessly in a time step without
requiring many inter-process synchronization requests.
At the end of a walk event, the state of out voxels in
adjacent subdomains will be updated to reflect the state
of local ghost voxels. Since in a walk event a molecule
can at most hop to or react with a molecule in one
of its immediate neighbor voxels, only a single layer
of ghost voxels is necessary to encapsulate local out
voxels (Fig. 2b).
To ensure the updated state of ghost voxels remains

valid until the end of the walk event, we further divide
the subdomain equally into eight subvolumes and exe-
cute each subvolume synchronously with all processes. In
Fig. 2b, four of the subvolumes are shown for each sub-
domain. Only the ghost voxels belonging to the selected
subvolume is updated before executing the molecules in
the subvolume. This scheme ensures out voxels in adja-
cent subdomains are isolated and free from modification
when their corresponding ghost voxels in the local subvol-
ume are accessed.
Algorithm 3 provides the complete pseudocode of the

walk and bimolecular reaction procedure in a subdo-
main. For the walk event, pSpatiocyte uses two ran-
dom number generators. The first generator is initial-
ized with a seed that is unique to each process, whereas
the second generator is initialized with a global seed.
With the globally seeded generator, a random number
that is drawn locally will be the same for all processes.
This scheme reduces communication cost when we need
a common random number for all processes. Unless
stated otherwise, all random numbers are drawn using
the locally seeded generator from a uniform distribu-
tion with the interval [0, 1). Both generators use the

Mersenne Twister algorithm [63] to generate random
numbers.
The walk event executes the random walk of all

molecules of a species when it is called. For each molecule
m of species si, a random target voxel, v1 out of 12
neighbor voxels is first selected. If v1 is a ghost voxel, m
is appended to a list Mg

i , containing molecules targeting
ghost voxel, while v1 is added to Vg , a list of the targeted
ghost voxels. However, if v1 is not a ghost voxel and is
vacant, a random number r is drawn. If r is less than or
equals to the species walk probability αi, the walk is suc-
cessful and m is moved to v1. Otherwise, if v1 contains
a reactant pair of species sj, then a random number r is
drawn. If r is less than or equals to the bimolecular reac-
tion probability Wij, then the reaction is performed. If v1
is instead occupied by a non-reactive molecule, a collision
occurs andm stays in its current voxel.
After completing the above procedure for all molecules

of si, a list containing the execution order of eight sub-
volumes is randomly shuffled using the globally seeded
random number generator. For each subvolume Vh in
the ordered list, we first update its ghost voxels by load-
ing the state of corresponding out voxels from adjacent
subdomains. The update is performed using the MPI
Sendrecv function. Next, for each molecule m in Mg

i
that is in the current subvolume Vh, we get its tar-
get ghost voxel v1 from Vg . If v1 is vacant, a random
number r is drawn. If r is less than or equals to the
species walk probability, αi then the molecule is moved
to the target voxel v1. Otherwise, the walk fails and the
molecule stays in its voxel. If v1 is instead occupied
by a reactive pair of species sj, then a random num-
ber r is drawn. If r is less than or equals to reac-
tion acceptance probability Wij, the reaction is executed.
Otherwise, the reaction fails and the molecule stays in
its voxel. After executing all the molecules in the sub-
volume, we update the out voxels in adjacent subdo-
mains with the state of their corresponding ghost voxels
using MPI Sendrecv function. The process then repeats
the above procedure with the next subvolume in the
ordered list and continues until all subvolumes have been
executed.
Note that the walk event in each subvolume is per-

formed locally at all times by each process. Although
mutual exclusion is naturally realized by this scheme,
inter-process communication is performed once at the
beginning and again at the end of each subvolume
execution. This scheme of mutual exclusion however
does not necessarily require eightfold communication
requests because the number of voxels to be sent or
received is also reduced in proportion to the subvolume
boundary surface area. We have confirmed the effec-
tiveness of this method with at least a few thousand
processes [58].

Arjunan et al. BMC Bioinformatics (2020) 21:33 Page 9 of 21

Arjunan et al. BMC Bioinformatics (2020) 21:33 Page 10 of 21

Another problem common in lattice-based parallel
computations is the communication at the subdomain
vertices. Out voxels located at the vertices are accessed by
many more processes than at other locations. Generally,
latency has the most impact during the short communi-
cations required at these voxels. In addition, contention
between requests tends to occur because of the lim-
ited bandwidth or the number of available communica-
tion channels. From the viewpoint of strong scaling, the
communications will show poor performance especially
when they involve such a large number of processes. To
overcome these constraints, we employed the three-stage
communication scheme, which is well-established and
describedpreviously [64].With this scheme, it is sufficient
for each process to communicate with six directly adjacent
processes in three consecutive stages. In our implemen-
tation, we adapted the scheme to update ghost and out
voxels when executing each of the eight subvolumes. An
example of the communication scheme is illustrated in
Fig. 2b.

Parallelized unimolecular reaction event
The sequential Spatiocyte method employs the Next-
Reaction method for unimolecular reaction events
[42, 44]. However, in the pSpatiocyte method, we have
adopted the Gillespie’s direct-method [65] to execute the
events in parallel because of its simplicity. In the direct-

method, the propensity for a unimolecular reaction, A
kj→

B is aj = kjNA, where NA is the number of A molecules in
the volume. If there arem unimolecular reaction channels,
the total propensity is given by

ag =
m∑
j=1

aj. (2)

The interval, τe for the next reaction event is expressed as

τe = − ln r1
ag

, (3)

where r1 is a random number drawn from a uniform dis-
tribution between 0 and 1. At the end of the interval, the
reaction channel u, out of the total m channels is selected
to be executed such that

u−1∑
j=1

aj < agr2 ≤
u∑
j=1

aj, (4)

where r2 is another random number from the uniform
distribution.
We have parallelized the direct-method using two sim-

ple schemes. First, in each process, we use MPI Allgather
to get the local propensities, al from all subdomains and
sum it locally to get the global propensity, ag . Second,
we use the globally seeded random number generator to
draw r1 and r2 to determine τe and u, respectively. With

these two schemes, τe and u will be identical for all pro-
cesses without additional synchronization requests. The
pseudocode of the parallelized direct-method is given in
Algorithm 4.
At initialization, the scheduler gets the next time to

execute the unimolecular reaction event, te = τe by
calling the get_direct_method_new_interval
function and schedules it in the priority queue, Q. The
new interval is calculated from Eq. (3). In the main loop of
the simulation, if a walk event of a unimolecular reactant
species has been called, the number of reactant molecules
may have changed. Therefore, at the end of the walk
event, the next time of the reaction event is updated by
calling the get_direct_method_next_interval
function. It gets the updated interval from the scaling
expression, τe = a0(te − ts)/ag , where a0 and ag are the
old and new global propensities, respectively, te is the old
scheduled time and ts is the the current simulation time.
Finally, the scheduler executes the reaction event at the
scheduled time by calling the react_direct_method
function and reschedules it using a new interval
from get_direct_method_new_interval. The
react_direct_method function selects the reaction
channel to be executed according to (4).
When the reaction channel is executed, if there are two

product molecules, one of them will replace the reactant
in its current voxel. Another random vacant voxel from
the 12 nearest neighbors of the reactant will be selected
to occupy the second product. When the compartment
or the region near the reactant is highly crowded, no
vacant voxel may be found for the product. In the original
Spatiocyte method, this will result in a failed unimolec-
ular reaction. We have also adopted this approach for
the pSpatiocyte method. In addition, for such a highly
crowded scenario, we have added an option in the model
to randomly vacate one of the neighbor voxels of the reac-
tant and place the second product in it. The voxel can
only be vacated if the molecule occupying it is a mobile
(diffusing) species. The voxel is first vacated by mov-
ing the molecule to a vacant neighbor voxel. If there is
no vacant voxel available for the molecule, the proce-
dure is repeated with another randomly selected neighbor
molecule of the reactant. The reaction fails if none of the
nearest neighbors of the reactant can be vacated for the
second product.

Parallelized logger events
Two types of logger events are available to save the
snapshots of pSpatiocyte simulation. The species num-
bers logger event saves the number of molecules of each
species in a comma-separated values (CSV) file when
called by the scheduler. At initialization, the log inter-
val is fixed and duplicated across all processes, ensur-
ing that the scheduled execution time of the logger

Arjunan et al. BMC Bioinformatics (2020) 21:33 Page 11 of 21

event is always identical across processes. During simu-
lation, each process writes the molecule numbers avail-
able in its subdomain into a local file, thus avoiding
inter-process communication. A Python script is pro-
vided to gather and sum all the numbers from the pro-
cess files into a single conventional CSV file after the
simulation.

The coordinates logger is implemented the same way as
the numbers logger but it saves the unique identity num-
ber (ID) and integer (voxel) coordinates of each molecule
within its subdomain. The ID of a molecule is persistent
across subdomains, hence it is possible to track the tra-
jectory of each molecule throughout the simulation. The
logger can also save the coordinates of out and ghost

Arjunan et al. BMC Bioinformatics (2020) 21:33 Page 12 of 21

voxels for debugging purposes. A Python script gathers
and converts the integer coordinates into real 3D coordi-
nates before saving them into a CSV file.

Results and Discussion
To confirm the consistency of pSpatiocyte in terms
of physical accuracy, we validated diffusion and reac-
tion processes when running on all eight cores of a
workstation with Intel Core i9-9900K CPU (8 cores,
5 GHz maximum processor frequency), 64 GB mem-
ory and Ubuntu 19.10 operating system. Parallel per-
formances of diffusion were examined across thousands
of computational cores of the K computer [66]. pSpati-
ocyte performance was also compared with Spatiocyte,
Smoldyn and ReaDDy when simulating the benchmark
enzymatic reaction model on the workstation. Finally,
the parallelized simulation outcomes of the well known
MAPK model are provided as an application example.
All simulations were performed on lattices with reflective
boundaries.

Validation of diffusion
We initially observed the trajectories of molecules diffus-
ing across subdomains to verify the coordinates logger,
inter-process communications and the overall simula-
tion algorithm. Figure 3a displays the trajectories of five
molecules diffusing with D = 0.06μm2s−1 for 10 s. The
simulation was executed with eight processes, employ-
ing all cores of the workstation. At the beginning of
the simulation, the molecules were placed randomly in
a compartment volume of 10μm3 with lattice dimen-
sions 4763, divided into eight subdomains. All trajectories
in Fig. 3a appear consistent with molecules performing
Brownian motion.
We then validated the consistency of pSpatiocyte in

reproducing the correct diffusion behavior in a dilute vol-
ume that is equally distributed to eight processes. The
MSD of a molecule performing random walk in 3D space
is given as 6Dt. We monitored the diffusion of a sin-
gle molecule placed at the center of a 9603 lattice with
voxels measuring 2.5 nm in radius. No other molecules
were present on the lattice. We then performed ran-
dom walks repeatedly with the same initial conditions
aside from the random number generator seed. 100 ran-
dom walks were performed for 40 ms and the average
MSDs were computed from the ensembles. Figure 3b
shows the log-log plots of the results for three different
diffusion coefficients. The slopes, the vertical distances,
and the absolute values coincide well with the expected
theoretical lines.
When a compartment is crowded with obstacles as in

the cell [67], the effective rate of diffusion is expected to
decrease. To evaluate if pSpatiocyte is able to replicate
the rate reduction when running with eight processes,

we obtained the MSD of a diffusing molecule in a com-
partment occupied by immobile crowder molecules. The
fraction of compartment voxels occupied by the crow-
der molecules is given by φ. We evaluated three dif-
ferent φ conditions, with 1000 independent simulation
runs for each condition. Each run adopted a unique
seed for drawing random numbers. Hence, the random
placement of immobile crowders at initialization was
different in each run. The averaged MSDs and the fit-
ted effective diffusion rates are displayed in Fig. 3c.
As expected, a significant decrease in the diffusion rate
corresponding to an increase in φ is clearly observed.
Further detailed analysis is required to compare the
effective diffusion rates in crowded condition on HCP lat-
tice with the rates in continuous space as reported by
Novak et al. [68].

Validation of reactions
We validated parallelized irreversible and reversible reac-
tions separately because they have distinct underlying
physics.

Irreversible reaction
A unimolecular reaction given by

A k→ B + C, (5)

is irreversible. In pSpatiocyte, the reaction is executed
according to the parallelized Gillespie’s direct-method.
We applied three different reaction rates, k in an
uncrowded volume and compared the results with that of
an ordinary differential equation (ODE) solver. The simu-
lation was executed on eight CPU cores with parameters
D = 10μm2s−1, voxel radius rv = 5 nm and 9603 lattice
size. The initial number of reactant molecules was 64,000.
Figures 4a and b show the simulation results of the reac-
tant and products, respectively. In all cases, the outcomes
of simulation agree very well with the ODE solver.
We investigated the effects of crowding on the disso-

ciation rate of (5), with the two different ways of finding
a vacant voxel for the second product molecule. In the
original approach, the reaction fails if all neighbor vox-
els of the reactant are occupied. In the second approach,
if they are all occupied, the simulator attempts to vacate
one of them. The reaction also fails if no voxels can be
vacated for the product. Figure 4c shows the log-log plots
of the reactant concentration using the two approaches
when φ is between 0.5 and 1.0. At φ = 1.0, all voxels of
the HCP lattice are occupied, giving about 74% volume
occupancy. With the original approach, the dissociation
rates agree well with the ODE result up to φ = 0.7, which
translates to about 52% volume occupancy. In the sec-
ond approach, the rates are comparable up to φ = 0.9.
In vitro results of crowding experiments showed that the

Arjunan et al. BMC Bioinformatics (2020) 21:33 Page 13 of 21

Fig. 3 Parallelized 3D diffusion in dilute and crowded conditions. a Trajectories of five molecules diffusing across lattice subdomains. b
Mean-squared displacements (MSDs) of molecules diffusing in a sparsely populated compartment. cMSDs of molecules diffusing in crowded
conditions. D0 is the diffusion coefficient specified in the model, whereas D is effective rate fitted to the resulting MSD. The fraction of voxels
occupied by immobile crowder molecules are indicated by φ

dissociation rate of molecules are unaffected even when
the volume occupancy reaches 30% [69]. However, it is still
unknown if occupancies above 50%would affect the disso-
ciation rate as we have found with our original approach.
The results show that the original approach is sufficient
for simulating the estimated 30% volume exclusion in the
cytoplasm [70]. In cases where the dissociating molecules
are much smaller that the voxel size, such as messengers,
metabolites and ions, the sequential version of Spatiocyte
simulates them at the compartment scale using the Next-
Reaction method. Since this feature is not yet supported
by pSpatiocyte, we leave it for future work

Reversible reaction
A bimolecular reaction is dependent on the diffusion of
reactant molecules because the reaction takes place as

the molecules meet and collide in space. For simplicity,
we considered a forward bimolecular reaction with a sin-
gle product and a reverse unimolecular reaction, as an
example of reversible reaction,

B + C
kf
�
kr

A, (6)

where kf and kr denote the effective forward and reverse
reaction rates, respectively. The effective forward rate can
be converted to the intrinsic rate that is used by pSpatio-
cyte,

k′
f = kf kD

kD − kf
, (7)

Arjunan et al. BMC Bioinformatics (2020) 21:33 Page 14 of 21

Fig. 4 Parallelized unimolecular and bimolecular reactions. a Time profiles of A in the dissociation reaction A
k→ B + C. b The corresponding time

profiles of B and C. c Effects of volume occupancy on the rate of the dissociation reaction on HCP lattice. φ denotes the fraction of voxels occupied
by crowder molecules. In the original method, the reaction fails if there are no vacant voxels among the 12 nearest neighbors of the reactant
molecule to place the second product molecule. In the vacated voxels approach, a diffusing molecule from a nearest neighbor is selected randomly
and moved to one of its nearest neighbors to allocate a vacant voxel for the product. Simulation model parameters: total volume was 90μm3 with
643 lattice, initial number of A molecules was 50,000, crowder molecules were added to achieve φ as shown, the diffusion coefficient of A, B, C and

crowder molecules was 10μm3s−1, and 100 runs for each φ. d Time profiles of reactants and products in the reversible reaction B + C
kf
�
kr

A

where kD = 8πrv(DB +DC) [43]. DA and DB are the dif-
fusion coefficients of B and C, respectively. The intrinsic
reverse reaction rate is given as

k′
r =

k′
f kr
kf

. (8)

The forward reaction is executed by the walk event
when molecules of the reactant species collide on lat-
tice, whereas the reverse reaction is performed by the
unimolecular reaction event. The parameters of the sim-
ulation include kf = 2μm3s−1, kr = 1.35 s−1, D =
10μm2s−1 and rv = 5 nm. The initial number of A and B
molecules was 64,000 each and the lattice size was 9603.
The simulation volume was distributed to eight processes.

As comparison, an ODE solver was used to generate the
output of the reversible reaction with the effective rates,
kf and kr . The results of the simulation are provided in
Fig. 4d. The closely matching curves of pSpatiocyte and
the ODE solver verify the parallel simulation accuracy of
reversible bimolecular reactions.

Performance of parallelized 3D diffusion
In Spatiocyte simulations, diffusion of molecules typically
takes place at step intervals that are several orders of mag-
nitude smaller than that of reactions if they are not highly
diffusion-limited. The fine intervals are needed for the
very short displacements between voxels. Since diffusion
computations at these fine intervals dominate the total
computation cost of most simulations, we used a diffusion

Arjunan et al. BMC Bioinformatics (2020) 21:33 Page 15 of 21

model to evaluate the parallel simulation performance of
pSpatiocyte. The simulation parameters and conditions
are the same as in the diffusion model in the previous
section, except for the lattice resolution and occupancy.
To estimate the parallel performance of pSpatiocyte, we

measured its strong and weak scaling efficiencies. Strong
scaling measures how fast a program is able to process a
fixed workload by splitting it into smaller sizes and dis-
tributing them to an increasing number of CPUs or cores.
On the other hand, weak scaling measures how large of a
problem a program can handle without the loss of speed.
To measure the efficiency of weak scaling, the amount
of workload given to each CPU or core is fixed and the
total workload processed by the program is increased by
adding CPUs or cores with the corresponding amount of
workload.
For strong scaling, we used three different voxel radii

to measure performance. Given that the physical dimen-
sions of a compartment remain the same, smaller voxels
would result in higher resolution and finer lattice. We
denote voxels having 10, 5, and 2.5 nm radii as coarse,
intermediate, and fine lattices, respectively. The molecule
occupancy, φ was fixed at 0.3, whereas the voxel sizes
determined the spatial resolution of the compartment.
The compartment resolution was 5123 (coarse), 10243
(intermediate) or 20483 (fine). For computations using the
maximum 663552 cores of the K computer, the resolution
was set to 512 × 480 × 540 (coarse), 1024 × 960 × 1080
(intermediate) or 2048× 1920× 2160 (fine) to ensure that
the model conforms to the physical configuration of the
processes.
Note that we examined the relative speedups instead of

the floating point operations per second (FLOPS) because
on lattice, integer or logical instructions dominate the
overall computational cost. The speedups measured from
the elapsed times are shown in Fig. 5a. Here, we used the
results of the coarse lattice with 64 cores as the baseline
reference to calculate the speedups since simulations with
fewer cores were not possible due to memory size limi-
tation. For the intermediate and fine lattices, the results
from 64 cores were extrapolated using the time consumed
per voxel on the coarse lattice. The parallel efficiencies of
strong scaling are summarized in Fig. 5b. For the fine lat-
tice with 663552 cores, we obtained a speedup of 7686.
The corresponding strong scaling efficiency was at 74.1%.
In contrast to the coarse and intermediate lattices, the
results from the fine lattice were the closest to the ideal
curve. By extrapolating the results from Fig. 5a, we can
predict that the speedup and efficiency on the fine lattice
would be about 13000 times and at 40%, respectively if two
million cores were utilized.
To identify the cause of the performance deterioration

on the coarse lattice, we determined the major compo-
nents of elapsed time as shown in Fig. 5c. We found that

the times taken for initialization, computation, pack and
unpack events were decreasing at least with up to 262144
cores, whereas theMPI time saturated and exceeded these
times when it was over 32768 cores. To improve the per-
formance, the constant duplication time due to redundant
communicator objects should be eliminated by sophisti-
cated programming. The saturation of MPI time is likely
the most significant factor that needs to be addressed to
improve the scaling performance further. However, such
saturated timings generally originate from the latency
of inter-process communication, which is dependent on
the hardware and firmware. Therefore, the immediate
approach for improving strong scaling is to reduce the
computation time and ensure that it is as close to the
latency as possible.
Figure 5d displays the weak scaling performance of

pSpatiocyte in elapsed time per voxel per step. Here, the
labels on the horizontal axis, smallest, smaller, medium,
larger and largest, denote the subdomain lattice dimen-
sions, 163, 323, 643, 1283 or 2563 on each process, respec-
tively. In an ideal weak scaling performance setting, these
times would be identical for all lattice sizes since they
would be independent of the number of cores and voxel
sizes. In spite of the variation in the absolute values, all
lattice dimensions provided good scaling properties. We
scrutinized the elapsed times of the smallest and smaller
lattices and it revealed that the times are dominated by the
constant communication latency. This explains the source
of the larger absolute times in the smaller lattices. The effi-
ciencies of parallel computation in terms of weak scaling
are summarized in Fig. 5e. For each lattice size, the elapsed
time with 64 cores was used as a reference to calculate the
parallel efficiency. Although the efficiencies tend to dete-
riorate on higher number of cores, we were still able to
achieve 60% efficiency withmore than half a million cores.

Performance benchmark
We compared the runtime of pSpatiocyte with Spa-
tiocyte (git 5e88f40), Smoldyn (v2.61) and ReaDDy
(v2.0.2-py37_55_g78bd07) when executing the bench-
mark Michaelis-Menten enzymatic reaction model [41]
on a common workstation as it is more accessible to gen-
eral users than a supercomputer. ReaDDy has both serial
and parallel versions. All simulators were evaluated on a
single core. Additionally, the parallel simulators pSpatio-
cyte and ReaDDy were executed on two, four and eight
cores. We used the same model parameters from [41, 71]
but increased the size of the reaction volume tenfold to
909μm3. The larger volume raises the computational cost
to an adequate level when running the model in paral-
lel on all eight cores of the workstation. For Smoldyn and
ReaDDy, we set the simulation interval, �t to 1 ms. In
pSpatiocyte and Spatiocyte models, the event with the
smallest interval is the walk event and it was set to 0.5 ms.

Arjunan et al. BMC Bioinformatics (2020) 21:33 Page 16 of 21

Fig. 5 Parallelized 3D diffusion performance of pSpatiocyte. Diffusion model is the same as in Fig. 3 but with 30% of the total voxels occupied by
diffusing molecules. a Speedup ratios relative to 64 cores. Red, green, and blue lines represent lattices with 5123 (coarse), 10243 (intermediate), and
20483 (fine) voxels, respectively. b Efficiency of strong scaling on increasing number of CPU cores. The resolutions of lattice are the same as in (a). c
Components of simulation elapsed times. The average times taken for initialization and computation are given by init and calc, respectively.
For inter-process communications, the pack and unpack times are the durations required to manage data before sending and after receiving it,
respectively. The time spent on the MPI Sendrecv function is denoted by mpi. The duration to duplicate communicator objects is indicated by
dup. d Average elapsed times per voxel per simulation step. Voxel sizes from smallest to largest denote 323, 643, 1283, 2563, and 5123 voxels
per process, respectively. e Efficiency of weak scaling on increasing number of CPU cores. Colors have the same representation as in (d)

Arjunan et al. BMC Bioinformatics (2020) 21:33 Page 17 of 21

We also evaluated pSpatiocyte with a smaller walk event
interval of 0.2 ms to see how the runtime scales with the
interval. Smaller simulation interval results in an overall
higher computational cost and up to a certain limit, better
accuracy.
Figure 6a displays the results of the performance bench-

mark. The runtimes shown are the averages of three inde-
pendent runs of each simulator to execute the model for
10 s. The resulting concentration profiles from each sim-
ulator are plotted in Fig. 6b. On a single core, pSpatiocyte
with�t = 0.5 ms is about two times faster than with�t =
0.2 ms. It is also about 2.4 times faster than the sequential
version of Spatiocyte. On a single core, the main differ-
ence between pSpatiocyte and its sequential counterpart
is the new pointer-free voxel accessing scheme adopted
by the former. This scheme has likely lowered the mem-
ory bandwidth usage and cache misses, contributing to
the significant reduction in simulation runtime. The exe-
cution time of pSpatiocyte is about 7.7 times shorter than
Smoldyn on a single core. It is also roughly 30- and 38-
fold times faster than the serial and parallel versions of
ReaDDy, respectively.
The runtime of pSpatiocyte (�t = 0.5 ms) also scales

favorably with the number of additional cores used in the
simulation.When the number of cores was increased from
one to two, the runtime was reduced by 1.87 times. Sim-
ilary, the runtime was shorter by about 1.82 times when
the number of cores increased from two to four. On eight
cores, it is about 1.7 times faster than on four cores. Sim-
ilar scaling behavior was also observed with �t = 0.2
ms. On eight cores, pSpatiocyte (�t = 0.5 ms) is roughly
55 times faster than the parallel version of ReaDDy. It

also required about 45- and 14-fold shorter runtimes
than Smoldyn and Spatiocyte, respectively to complete
the simulation on the workstation. Overall, the bench-
mark results show that pSpatiocyte has a significant per-
formance advantage over other well-known microscopic
particle simulators.

Parallelized simulation of MAPKmodel
In the dual phosphorylation-dephosphorylation cycle of
the MAPK cascade, shown in Fig. 7a, molecular rebind-
ing effects at the microscopic scale can alter the macro-
scopic dynamics of the system [36]. MAPK kinase (KK)
phosphorylates MAPK (K) in a two-step process to gen-
erate a doubly phosphorylated MAPK (Kpp), whereas the
phosphatase, P dephosphorylates Kpp twice to recover
K. Upon unbinding from their products, the enzymes
go through an inactive state (denoted by ∗). The time
required to reactivate the enzymes is given by τrel 	 1/ka,
where

P∗ ka→ P, (9)

KK∗ ka→ KK. (10)

If the enzyme-substrate reactions are diffusion-limited
and τrel is short, a newly dissociated enzyme can rebind
to its product to catalyze it again, before escaping into
the bulk. Takahashi et al. [36] have previously shown with
eGFRD particle simulations that these rebinding events
can change the response sensitivity of the phosphoryla-
tion state, which could result in the loss of bistability. We
have also recently replicated the results with Spatiocyte
[43]. These spatiotemporal correlations between enzyme

Fig. 6 Performance benchmark of the Michaelis-Menten reaction on a workstation. Model parameters [41, 71]: total volume 909μm3, diffusion
coefficient 10 μm2s−1, k1 = 0.01 μm3s−1, k2 = k3 = 1 s−1. The initial numbers of E and S molecules are 9090 and 90910, respectively. Duration of
simulation 10 s. Simulation or walk event interval (�t) and runtime (T) are as indicated. a Comparison of simulator runtimes on different number of
CPU cores. b Concentration profile outcomes from the simulators

Arjunan et al. BMC Bioinformatics (2020) 21:33 Page 18 of 21

Fig. 7 Parallelized simulation results of MAPK model. a Dual phosphorylation-dephosphorylation cycle of the MAPK cascade. b Concentration
profiles when KK0/P0 = 1 and D = 4μm2s−1. Simulation was executed with all eight-cores of the workstation. c Scalability of pSpatiocyte at low
molecule number. Shown are the runtimes of pSpatiocyte when simulating the MAPK model (KK0/P0 = 1) for 10 s with varying number of cores
and diffusion coefficients. The model consists of 1800 total molecules. d Response curves for different diffusion coefficients. All simulations were
executed with all eight cores of the workstation

and substratemolecules, and fluctuations at themolecular
scale are difficult to be captured by RDME and PDE-based
methods.
As an example of pSpatiocyte biological application

and to further verify the method, we have simulated
the MAPK model with the same parameters from [36]
but increased the volume tenfold (10μm3) to raise the
computational cost. The initial molecule numbers of K,
KK and P were 1200, 300 and 300, respectively. There
were no initial molecules for the remaining species. The
model was simulated for 300 s with τrel = 1μs. For all
species, D = 4μm2s−1. The lattice size was 4763 with
rv = 2.5 nm. Figure 7b shows the concentration profiles
in the first 100 s of the simulation. The total runtime
of the simulation was 5466 s using all eight cores of the
workstation. In contrast, it took 76650 s to complete the

simulation with Spatiocyte. Thus, pSpatiocyte is about 14
times faster than its sequential counterpart. As compar-
ison, in Fig. 7b we have also plotted the predictions of
the corresponding mean-field (ODE) MAPK model [36].
The model describes the diffusion of molecules implicitly
by renormalizing the reaction rates. pSpatiocyte concen-
tration profiles coincide well with the ODE outcomes,
although in the former, there were fluctuations from the
small number of reacting molecules.
The total number of molecules in the MAPK model

is 1800, which is a small number for high-performance
simulations. To evaluate how well pSpatiocyte scales with
such low number ofmolecules, we compared the runtimes
with varying number of cores and diffusion coefficients.
Figure 7c shows the runtimes when the model was exe-
cuted for 10 s. With D = 0.06μm2s−1, pSpatiocyte

Arjunan et al. BMC Bioinformatics (2020) 21:33 Page 19 of 21

is about twofold faster on four cores than on a single
core. Increasing the number of cores from four to eight
did not noticeably improve the runtime further. How-
ever, with D = 4μm2s−1, the speedup achieved with
four cores is 2.6 times. With the addition of another four
cores, the speedup increased to 3.4 times. This is notable
because pSpatiocyte is still able to achieve a favorable
speedup although each core only executed on average
225 molecules. Compared to the slower diffusion model,
the shorter diffusion interval (τ id) when D = 4μm2s−1

increases the computational cost more than the commu-
nication overhead, resulting in the improved speedups.
We also simulated the MAPK model with different

initial ratios of KK0/P0 and diffusion coefficients, and
obtained the steady-state Kpp/K0 curves as shown in
Fig. 7d. The outcomes of the corresponding mean-field
models of a distributive (with D = 4μm2s−1) and a
processive (with D = 0.06μm2s−1) system are also
shown. In the distributive scheme, the enzyme needs to
detach from the substrate before it can catalyze it the sec-
ond time. The double encounters between enzyme and
substrate molecules can lead to ultrasensitive switchlike
response. Conversely, in the processive scheme, a single
encounter between them is sufficient to generate the dual
modifications of the substrate. At fast diffusion (D =
4μm2s−1), pSpatiocyte response curve agrees well with
that of the distributive mean-field model. However, at
much smaller diffusion coefficient (D = 0.06μm2s−1),
it instead reproduces the graded response curve of the
processive model.
How slower diffusion in the pSpatiocyte model weakens

the switchlike response curve can be explained as follows.
At D = 4μm2s−1, the resulting diffusion interval, τ id and
walk event interval, τ ie for the enzymes are the same (1μs)
because the walk probability, αi = 1. Since τ id and τrel have
the same intervals, after catalyzing the substrates the first
time, the enzymes KK∗ and P∗ can escape into the bulk
before they can reactivate and rebind with the substrates.
In constrast, at D = 0.06μm2s−1, it gives τ id = 72μs and
τ ie = 2μs for the enzymes because αi = 0.028. Since τ id

τrel, the enzymes have enough time to rebind with their
substrates upon reactivation, before they can escape. This
processivelike mechanism leads to the graded response
curve as shown in Fig. 7d. Overall, we note that pSpa-
tiocyte correctly reproduces the expected ultrasensitivity
dynamics of MAPK [36].

Conclusion
We have developed a high spatiotemporal resolution par-
allel stochastic method to simulate intracellular reaction-
diffusion systems on HCP lattice. To realize large-
scale parallel computations, we have introduced several
advanced simulation schemes, including a twisted Carte-
sian coordinate system with pointer-free voxel access,

a parallelized event scheduler with priority queue, syn-
chronized random subvolume executions and parallelized
Gillespie’s direct-method using globally seeded random
number generators, and three-stage inter-process data
transfers.
We have also validated the physical correctness of

the simulator. The simulated diffusion rates in dilute
conditions showed very good agreement with theory.
In crowded conditions, the diffusion rates decreased,
as expected. Further work is required to compare the
crowded diffusion behavior on lattice with the rela-
tion between diffusion and excluded volume fraction
obtained in continuous space [68]. Both irreversible and
reversible reaction curves coincided very well with pre-
dicted ODE results. Parallel performance of diffusion
on the K computer was sufficiently high for large-scale
computations. From the viewpoint of strong scaling,
pSpatiocyte achieved a 7686-fold speedup with 663552
cores compared to the runtime with 64 cores on a
20483 lattice. The efficiency was equivalent to 74.1%. In
terms of weak scaling, efficiencies of at least 60% were
obtained.
In the Michaelis-Menten enzymatic reaction bench-

mark, pSpatiocyte performed significantly better than
other well-known microscopic particle simulators. On a
workstation with eight CPU cores, pSpatiocyte is about
55 times faster than the parallel version of ReaDDy and
45 times faster than Smoldyn. In addition, the parallelized
simulation of the MAPK model revealed that the pro-
gram can correctly capture the weakening of ultrasensitive
response by enzyme-substrate rebindings at very short
timescales. The accurate simulation of the model also
demonstrated that pSpatiocyte is applicable in real bio-
logical problems. On the same workstation with eight
cores, pSpatiocyte required 14-fold faster execution times
than the sequential version of Spatiocyte to simulate the
MAPK model. Notably, pSpatiocyte is able to achieve 3.4
times speedup with all cores on the workstation although
the average number of molecules executed per core is
only 225.
In recent papers by Smith and Grima [72] and Law-

son et al. [73], RDME reactions with non-mass-action
propensities such as Hill-type andMichaelis-Mentenwere
shown not converging to the chemical master equation.
At present, both sequential and parallel versions of Spa-
tiocyte only support elementary reactions, namely uni-
molecular and bimolecular reactions. Since all complex
reactions, including Hill-type and Michaelis-Menten, can
be broken down to elementary (mass-action) reactions,
the currently supported reactions should be sufficient for
most modeling purposes. Nonetheless, to conveniently
model complex reactions, it would be beneficial to sup-
port them in the future. Further work would also be
needed to solve the convergence problem.

Arjunan et al. BMC Bioinformatics (2020) 21:33 Page 20 of 21

Recently, several GPU-based high-performance simula-
tors of reaction-diffusion systems have been reported [46,
48, 50–52, 74]. The ability to run fast simulations on com-
mon workstations equipped with GPUs supports wider
application of the simulators. Implementing the Spatio-
cyte method to run on GPUs should be straightforward
since most of the parallelization schemes presented in this
work can also be applied on a GPU.

Abbreviations
1D: one-dimensional; 2D: two-dimensional; 3D: three-dimensional; CPU:
Central processing unit; FLOPS: Floating point operations per second; GPU:
Graphics processing unit; HCP: Hexagonal close-packed; MAPK: Mitogen-
activated protein kinase; MD: Molecular dynamics; MPI: Message passing
interface; MSD: mean-squared displacement; PDE: Partial differential equations;
RDME: Reaction-diffusion master equation; SCK: Smoluchowski-Collins-Kimball

Acknowledgements
We thank Steven Andrews and Frank Noé for their help with the benchmark
models of Smoldyn and ReaDDy, respectively. We are grateful to the four
anonymous reviewers for their constructive comments. We thank Wei-Xiang
Chew for helpful discussions. We also thank Peter Karagiannis and Kylius
Wilkins for reading the initial version of the manuscript and providing valuable
suggestions. AM wishes to thank Yukihiro Eguchi for continuous
encouragement and Hisashi Nakamura of RIST for giving him the opportunity
to start this study.

Authors’ contributions
AM, KT and SNVA conceived the project. AM and SNVA conceived the
parallelization schemes and simulation algorithm. AM and KI wrote the initial
version of the simulator. SNVA wrote, tested and optimized the simulation
algorithm and software, and created the build system. AM and SNVA generated
data and wrote the paper. All authors read and approved the final manuscript.

Funding
This research is part of the HPCI Strategic Program for Innovative Research in
Supercomputational Life Science (SPIRE Field 1), which is funded by the
Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.
Part of the results were obtained by using the K computer at RIKEN Advanced
Institute for Computational Science (Proposal number hp120309). The funding
bodies played no role in the design of the study and collection, analysis, and
interpretation of data and in writing the manuscript.

Availability of data andmaterials
The pSpatiocyte software and the complete scripts to generate the data in this
study are available at https://github.com/satya-arjunan/pspatiocyte.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan.
2Research Organization for Information Science and Technology, Chuo, Kobe,
Japan.

Received: 27 April 2019 Accepted: 30 December 2019

References
1. Li X, Holmes WR. Biophysical attributes that affect CaMKII activation

deduced with a novel spatial stochastic simulation approach. PLoS
Comput Biol. 2018;14(2):e1005946.

2. Denk J, Kretschmer S, Halatek J, Hartl C, Schwille P, Frey E. MinE
conformational switching confers robustness on self-organized Min
protein patterns. Proc Natl Acad Sci. 2018;115(18):201719801.

3. Trogdon M, Drawert B, Gomez C, Banavar SP, Yi T-M, Campàs O,
Petzold LR. The effect of cell geometry on polarization in budding yeast.
PLoS Comput Biol. 2018;14(6):e1006241.

4. Du H, Wang Y, Haensel D, Lee B, Dai X, Nie Q. Multiscale modeling of
layer formation in epidermis. PLoS Comput Biol. 2018;14(2):1–25.

5. Miao Y, Bhattacharya S, Edwards M, Cai H, Inoue T, Iglesias PA,
Devreotes PN. Altering the threshold of an excitable signal transduction
network changes cell migratory modes. Nat Cell Biol. 2017;19(4):329–40.

6. Tan RZ, Chiam KH. A computational model for how cells choose temporal
or spatial sensing during chemotaxis. PLoS Comput Biol. 2018;14(3):1–21.

7. Berro J. Essentially, all models are wrong, but some are useful - a
cross-disciplinary agenda for building useful models in cell biology and
biophysics. Biophys Rev. 2018;10(6):1637–47. https://doi.org/10.1007/
s12551-018-0478-4.

8. Takahashi K, Arjunan SNV, Tomita M. Space in systems biology of
signaling pathways–towards intracellular molecular crowding in silico.
FEBS Lett. 2005;579(8):1783–8.

9. Burrage K, Burrage PM, Marquez-lago TM, Nicolau DV. Stochastic
Simulation for Spatial Modelling of Dynamic Processes in a Living Cell. In:
Koeppl H, Setti G, di Bernardo M, Densmore D, editors. Design and
Analysis of Biomolecular Circuits: Engineering Approaches to Systems
and Synthetic Biology chapter 2. New York: Springer; 2011. p. 43–62.

10. Klann M, Koeppl H. Spatial simulations in systems biology: from
molecules to cells. Int J Mol Sci. 2012;13(6):7798–827.

11. Schöneberg J, Ullrich A, Noé F. Simulation tools for particle-based
reaction-diffusiondynamics in continuous space. BMC Biophys. 2014;7(1):11.

12. Earnest T, Cole JA, Luthey-Schulten ZL. Simulating biological processes:
Stochastic physics from whole cells to colonies. Rep Prog Phys.
2018;81(5):052601.

13. Smith S, Grima R. Spatial Stochastic Intracellular Kinetics: A Review of
Modelling Approaches. Bull Math Biol. 2019;81(8):2960–3009.

14. Bottaro S, Lindorff-Larsen K. Biophysical experiments and biomolecular
simulations: A perfect match?. Science. 2018;361(6400):355–60.

15. Shaw DE, Dror OR, Salmon JK, Grossman JP, Mackenzie KM, Bank JA,
Young C, Deneroff MM, Batson B, Bowers KJ, Chow E, Eastwood MP,
Ierardi DP, Klepeis JL, Kuskin JS, Larson RH, L-Larsen K, Maragakis P,
Moraes MA, Piana S, Shan Y, Towles B. Millisecond-scale molecular
dynamics simulations on Anton. In: International Conference for High
Performance Computing, Networking, Storage and Analysis. Portland:
ACM/IEEE; 2009.

16. Kohlhoff KJ, Shukla D, Lawrenz M, Bowman GR, Konerding DE, Belov D,
Altman RB, Pande VS. Cloud-based simulations on Google Exacycle
reveal ligand modulation of GPCR activation pathways. Nat Chem.
2014;6(1):15–21.

17. Simon J, Arthur C, Ley SC. Mitogen-activated protein kinases in innate
immunity. Nat Rev Immunol. 2013;13(9):679–92.

18. Burotto M, Chiou VL, Lee JM, Kohn EC. The MAPK pathway across
different malignancies: A new perspective. Cancer. 2014;120(22):3446–56.

19. Blinov ML, Schaff JC, Vasilescu D, Moraru II, Bloom JE, Loew LM.
Compartmental and Spatial Rule-Based Modeling with Virtual Cell.
Biophys J. 2017;113(7):1365–72.

20. Mahmutovic A, Fange D, Berg OG, Elf J. Lost in presumption: stochastic
reactions in spatial models. Nat Methods. 2012;9(12):1163–6.

21. Baras F, Mansour MM. Reaction-diffusion master equation: A comparison
with microscopic simulations. Phys Rev E. 1996;54(6):6139.

22. Hattne J, Fange D, Elf J. Stochastic reaction-diffusion simulation with
MesoRD. Bioinformatics. 2005;21(12):2923–24.

23. Isaacson SA. The Reaction-Diffusion Master Equation as an Asymptotic
Approximation of Diffusion to a Small Target. SIAM J Appl Math.
2009;70(1):77–111.

24. Drawert B, Engblom S, Hellander A. URDME: a modular framework for
stochastic simulation of reaction-transport processes in complex
geometries. BMC Syst Biol. 2012;6(1):76.

25. Hepburn I, Chen W, Wils S, De Schutter E. STEPS: efficient simulation of
stochastic reaction–diffusion models in realistic morphologies. BMC Syst
Biol. 2012;6(1):36.

https://github.com/satya-arjunan/pspatiocyte
https://doi.org/10.1007/s12551-018-0478-4
https://doi.org/10.1007/s12551-018-0478-4

Arjunan et al. BMC Bioinformatics (2020) 21:33 Page 21 of 21

26. Mourão MA, Hakim JB, Schnell S. Connecting the dots: The effects of
macromolecular crowding on cell physiology. Biophys J. 2014;107(12):
2761–6.

27. Ellis RJ. Macromolecular crowding: obvious but underappreciated. Trends
Biochem Sci. 2001;26(10):597–604.

28. Zimmerman SB, Minton AP. Macromolecular Crowding: Biochemical,
Biophysical, and Physiological Consequences. Annu Rev Biophys Biomol
Struct. 1993;22(1):27–65.

29. Zhou H-X, Rivas G, Minton AP. Macromolecular Crowding and
Confinement: Biochemical, Biophysical, and Potential Physiological
Consequences. Annu Rev Biophys. 2008;37(1):375–97.

30. Rivas G, Minton AP. Macromolecular Crowding In Vitro, In Vivo, and In
Between. Trends Biochem Sci. 2016;41(11):970–81.

31. Tan C, Saurabh S, Bruchez MP, Schwartz R, LeDuc P. Molecular
crowding shapes gene expression in synthetic cellular nanosystems. Nat
Nanotechnol. 2013;8(8):602–8.

32. Smith S, Cianci C, Grima R. Macromolecular crowding directs the motion
of small molecules inside cells. J R Soc Interface. 2017;14(131):20170047.

33. Grima R. Intrinsic biochemical noise in crowded intracellular conditions. J
Chem Phys. 2010;132(18):185102.

34. Cianci C, Smith S, Grima R. Molecular finite-size effects in stochastic
models of equilibrium chemical systems. J Chem Phys. 2016;144(8):
084101.

35. Lagerholm BC, Thompson NL. Theory for ligand rebinding at cell
membrane surfaces. Biophys J. 1998;74(3):1215–28.

36. Takahashi K, T-Nicola S, ten Wolde PR. Spatio-temporal correlations can
drastically change the response of a MAPK pathway. Proc Natl Acad Sci
USA. 2010;106(6):2473–8.

37. Mugler A, Bailey AG, Takahashi K, ten Wolde PR. Membrane clustering
and the role of rebinding in biochemical signaling. Biophys J. 2012;102(5):
1069–78.

38. Andrews SS. Smoldyn: Particle-based simulation with rule-based
modeling, improved molecular interaction and a library interface.
Bioinformatics. 2017;33(5):710–17.

39. Michalski PJ, Loew LM. SpringSaLaD: A spatial, particle-based biochemical
simulation platformwith excluded volume. Biophys J. 2016;110(3):523–29.

40. Schöneberg J, Noé F. ReaDDy-a software for particle-based
reaction-diffusion dynamics in crowded cellular environments. PLoS One.
2013;8(9):e74261.

41. Andrews SS. Particle-Based Stochastic Simulators. In: Jaeger D, Jung R,
editors. Encyclopedia of Computational Neuroscience. New York:
Springer; 2018. p. 1–5.

42. Arjunan SNV, Tomita M. A new multicompartmental reaction-diffusion
modeling method links transient membrane attachment of E. coli MinE to
E-ring formation. Syst Synth Biol. 2010;4(1):35–53.

43. Chew W-X, Kaizu K, Watabe M, Muniandy SV, Takahashi K, Arjunan SNV.
Reaction-diffusion kinetics on lattice at the microscopic scale. Phys Rev E.
2018;98:032418.

44. Gibson MA, Bruck J. Efficient exact stochastic simulation of chemical
systems with many species and many channels. J Phys Chem A.
2000;104(9):1876–89.

45. Chew W-X, Kaizu K, Watabe M, Muniandy SV, Takahashi K, Arjunan SNV.
Surface reaction-diffusion kinetics on lattice at the microscopic scale.
Phys Rev E. 2019;99:042411.

46. Vigelius M, Lane A, Meyer B. Accelerating reaction-diffusion simulations
with general-purpose graphics processing units. Bioinformatics.
2011;27(2):288–90.

47. Roberts E, Stone JE, Luthey-Schulten Z. Lattice microbes:
High-performance stochastic simulation method for the
reaction-diffusion master equation. J Comput Chem. 2013;34(3):245–55.

48. Hallock MJ, Stone JE, Roberts E, Fry C, Luthey-Schulten Z. Simulation of
reaction diffusion processes over biologically relevant size and time
scales using multi-GPU workstations. Parallel Comput. 2014;40(5-6):86–99.

49. Chen W, De Schutter E. Parallel STEPS: Large Scale Stochastic Spatial
Reaction-Diffusion Simulation with High Performance Computers. Front
Neuroinformatics. 2017;11(February):1–15.

50. Biedermann J, Ullrich A, Schöneberg J, Noe F. ReaDDyMM: Fast
interacting particle reaction-diffusion simulations using graphical
processing units. Biophys J. 2015;108(3):457–61.

51. Gladkov DV, Alberts S, D’Souza RM, Andrews S. Accelerating the Smoldyn
Spatial Stochastic Biochemical Reaction Network Simulator Using GPUs.
In: Proceedings of the 19th High Performance Computing Symposia. San
Diego: Society for Computer Simulation International; 2011. p. 151–8.

52. Dematte L. Smoldyn on graphics processing units: Massively parallel
brownian dynamics simulations. IEEE/ACM Trans Comput Biol
Bioinformatics. 2012;9(3):655–67.

53. Hoffmann M, Fröhner C, Noé F. Readdy 2: Fast and flexible software
framework for interacting-particle reaction dynamics. PLOS Comput Biol.
2019;15(2):1–26.

54. Smoluchowski MV. Mathematical theory of the kinetics of the coagulation
of colloidal solutions. Z Phys Chem. 1917;92:129–168.

55. Collins FC, Kimball GE. Diffusion-controlled reaction rates. J Colloid Sci.
1949;4(4):425–437.

56. Szpiro GG. Kepler’s Conjecture: How Some of the Greatest Minds in
History Helped Solve One of the Oldest Math Problems in the World. New
York: Wiley; 2003.

57. Grima R, Schnell S. A systematic investigation of the rate laws valid in
intracellular environments. Biophys Chem. 2006;124(1):1–10.

58. Arjunan SNV, Miyauchi A, Takahashi K. A high-performance microscopic
lattice reaction-diffusion method for biochemical network simulation. In:
The Second Bio-supercomputing Symposium. Tokyo: RIKEN; 2010.

59. Szkoda S, Koza Z, Tykierko M. Accelerating cellular automata simulations
using AVX and CUDA. arXiv:1208.2428. 2012.

60. Takahashi K, Kaizu K, Hu B, Tomita M. A multi-algorithm, multi-timescale
method for cell simulation. Bioinformatics. 2004;20(4):538–46.

61. Einstein A. Über die von der molekularkinetischen Theorie der Wärme
geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten
Teilchen. Ann Phys. 1905;322(8):549–60.

62. von Smoluchowski M. Zur kinetischen Theorie der Brownschen
Molekularbewegung und der Suspensionen. Ann Phys. 1906;326(14):
756–80.

63. Matsumoto M, Nishimura T. Mersenne twister: A 632-dimensionally
equidistributed uniform pseudorandom number generator. ACM Trans
Model Comp Sim. 1998;8:3–30.

64. Golub GH, Ortega JM. Scientific Computing: An Introduction with Parallel
Computing. 1993.

65. Gillespie DT. A general method for numerically simulating the stochastic
time evolution of coupled chemical reactions. J Comput Phys. 1977;22:
403–34.

66. Yonezawa A, Watanabe T, Yokokawa M, Sato M, Hirao K. Advanced
institute for computational science (AICS): Japanese national
high-performance computing research institute and its 10-petaflops
supercomputer K. Seattle: ACM/IEEE; 2011.

67. Minton A. The influence of macromolecular crowding and
macromolecular confinement on biochemical reactions in physiological
media. J Biol Chem. 2001;276(14):10577–80.

68. Novak IL, Kraikivski P, Slepchenko BM. Diffusion in Cytoplasm: Effects of
Excluded Volume Due to Internal Membranes and Cytoskeletal
Structures. Biophys J. 2009;97(3):758–67.

69. Phillip Y, Sherman E, Haran G, Schreiber G. Common Crowding Agents
Have Only a Small Effect on Protein-Protein Interactions. Biophys J.
2009;97(3):875–85.

70. Zimmerman SB, Trach SO. Estimation of macromolecule concentrations
and excluded volume effects for the cytoplasm of Escherichia coli. J Mol
Biol. 1991;222(3):599–620.

71. Andrews SS, Addy NJ, Brent R, Arkin AP. Detailed Simulations of Cell
Biology with Smoldyn 2.1. PLoS Comput Biol. 2010;6(3):e1000705.

72. Smith S, Grima R. Breakdown of the reaction-diffusion master equation
with nonelementary rates. Phys Rev E. 2016;93(5):052135.

73. Lawson MJ, Petzold L, Hellander A. Accuracy of the Michaelis–Menten
approximation when analysing effects of molecular noise. J R Soc
Interface. 2015;12(106):20150054.

74. Holmen JK, Foster DL. Accelerating single iteration performance of
CUDA-based 3D reaction-diffusion simulations. Int J Parallel Prog.
2014;42(2):343–63.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Coordinate system
	Parallelized Spatiocyte algorithm
	Parallelized walk event
	Parallelized unimolecular reaction event
	Parallelized logger events

	Results and Discussion
	Validation of diffusion
	Validation of reactions
	Irreversible reaction
	Reversible reaction

	Performance of parallelized 3D diffusion
	Performance benchmark
	Parallelized simulation of MAPK model

	Conclusion
	Abbreviations
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher's Note

