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Abstract

Background: Enzymatic and chemical reactions are key for understanding biological
processes in cells. Curated databases of chemical reactions exist but these databases
struggle to keep up with the exponential growth of the biomedical literature.
Conventional text mining pipelines provide tools to automatically extract entities and
relationships from the scientific literature, and partially replace expert curation, but
such machine learning frameworks often require a large amount of labeled training
data and thus lack scalability for both larger document corpora and new relationship
types.

Results: We developed an application of Snorkel, a weakly supervised learning
framework, for extracting chemical reaction relationships from biomedical literature
abstracts. For this work, we defined a chemical reaction relationship as the
transformation of chemical A to chemical B. We built and evaluated our system on
small annotated sets of chemical reaction relationships from two corpora: curated
bacteria-related abstracts from the MetaCyc database (MetaCyc_Corpus) and a more
general set of abstracts annotated with MeSH (Medical Subject Headings) term
Bacteria (Bacteria_Corpus; a superset of MetaCyc_Corpus). For the MetaCyc_Corpus,
we obtained 84% precision and 41% recall (55% F1 score). Extending to the more
general Bacteria_Corpus decreased precision to 62% with only a four-point drop in
recall to 37% (46% F1 score). Overall, the Bacteria_Corpus contained two orders of
magnitude more candidate chemical reaction relationships (nine million candidates
vs 68,0000 candidates) and had a larger class imbalance (2.5% positives vs 5%
positives) as compared to the MetaCyc_Corpus. In total, we extracted 6871 chemical
reaction relationships from nine million candidates in the Bacteria_Corpus.

Conclusions: With this work, we built a database of chemical reaction relationships
from almost 900,000 scientific abstracts without a large training set of labeled
annotations. Further, we showed the generalizability of our initial application built on
MetaCyc documents enriched with chemical reactions to a general set of articles
related to bacteria.

Keywords: Text mining, Chemical reactions, Snorkel, Curation, Database

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless
otherwise stated in a credit line to the data.

Mallory et al. BMC Bioinformatics          (2020) 21:217 
https://doi.org/10.1186/s12859-020-03542-1

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-020-03542-1&domain=pdf
http://orcid.org/0000-0003-3859-2905
mailto:russ.altman@stanford.edu
mailto:russ.altman@stanford.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
Enzymes and the reactions they catalyze are key for understanding how small mole-

cules are processed in the cell. In particular, chemical reactions that occur in the hu-

man gut microbiome can shed light on drug mechanism of action and metabolism

when these reactions transform drugs or other bio-active small molecules. Since unin-

tentional drug transformations in the human gut can affect drug response and side ef-

fects in patients [1], understanding the space of chemical reactions in bacteria is

necessary for predicting and cataloging enzymatic transformations of drugs in the hu-

man gut microbiome.

Databases such as MetaCyc [2] and KEGG (Kyoto Encyclopedia of Genes and

Genomes) [3] contain high quality pathways with metabolic reactions that are

manually annotated by human experts. However, manual human annotation re-

stricts the coverage and growth of the database with respect to the biomedical lit-

erature. This inability to scale to larger and larger corpora is a limiting factor in

large data-driven studies. On the other hand, the biomedical literature is the single

best source of known metabolic reactions across all organisms. While rich in infor-

mation, the computationally inaccessible nature of literature text presents a chal-

lenge for relationship extraction.

Extraction of chemical reactions from text requires the extraction of chemical entities

and the relationship between them as described in a sentence or paragraph. In natural

language processing, the task of entity extraction is referred to as named entity recogni-

tion and the task of connecting two entities in a defined relationship is relationship ex-

traction. For biological datasets, text mining tools exist to extract protein-protein [4]

and other biomedical associations [5]. While PubTator from the National Center for

Biotechnology Information [6] (using the method tmChem [7]) extracts and releases

datasets of chemical entities extracted from abstract sentences, to our knowledge no

method exists for extracting the primary transformations occurring in chemical reac-

tions from text. In order to build a database of chemical reactions from text, a text

mining application framework is needed for rapid development with high accuracy, us-

ability for nontechnical users, and corpus size scalability in order to enable downstream

analyses using the resulting extracted relationship database.

Recent advances in natural language processing and word embeddings have intro-

duced new approaches for relationship extraction. Self-supervised word embedding ap-

proaches such as word2vec [8] and BERT (Bidirectional Encoder Representations from

Transformers) [9] construct vector representations of words based on the context

around a word in a given corpus. BERT is a language representational model that has

been applied to a number of NLP (natural language processing) tasks, such as named

entity recognition and relationship extraction. Building on the original BERT model,

Lee et al. released BioBERT - a BERT model trained on biomedical literature from

PubMed and PubMed Central [10]. BioBERT achieved between 75 and 77% precision

for the task of detecting protein-chemical relationships, a task included in BioCreative

VI [11, 12]. While Bio-BERT demonstrated improved performance for relationship ex-

traction of protein-chemical relationships, amongst other relationships, lack of access-

ible text mining tools and frameworks for domain experts remains a challenge.

Additionally, although community challenges have enabled the BioNLP (biomedical

natural language processing) community to solve some pressing extraction tasks, a lack
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of labeled datasets has limited the applicability of these tools to other tasks in within

subdomains of biology and medicine.

Snorkel is a framework for creating large training datasets and streamlining the typ-

ical natural language processing extraction pipeline for entities and relationships from

text [13, 14]. The main advantage for Snorkel is that it does not require hand-labeled

datasets that may need to be relabeled, extended, or disregarded when a task or schema

changes. Instead, the user only has to focus on designing relevant labeling functions to

automatically assign noisy labels. These labeling functions can then be reused for up-

dating or repurposing the literature corpus. As a result, the Snorkel framework allows

very fast prototyping and good scalability to large datasets.

Users interact with Snorkel using pre-defined functions for parsing text, detecting

candidate entities or relationships (e.g., pair of two entities co-occurring in a sentence),

assigning training labels, extracting text-based features, and training a machine learning

model for the final prediction. Importantly, users focus primarily on developing label-

ing functions and not constructing large hand-labeled training sets as found in typical

machine learning pipelines. These labeling functions encode basic rules for automatic-

ally labeling noisy training examples for a combination of generative and discriminative

machine learning models in Snorkel. The final output of Snorkel is a binary prediction

of a true relationship for each candidate relationship.

The focus of databases such as MetaCyc [2] is high-quality expert curation (in Meta-

Cyc’s case, enzymatic reactions and pathways) at the expense of speed and coverage of

biomedical literature. Preliminary results of applying Snorkel to multiple biomedical

entity and relationship tasks demonstrated Snorkel’s fast prototyping and scalability for

different biomedical tasks. In this work, we built a Snorkel application to extract chem-

ical reaction relationships from the biomedical literature in a higher-throughput and

more scalable approach.

Methods
In this work, we built a knowledge base construction application, using the Snorkel

framework, for extracting chemical reaction relationships from biomedical literature

abstracts. The Snorkel pipeline is depicted in Fig. 1 and described below. In summary,

our application takes a corpus of texts as an input and outputs all co-occurring entity

pairs with a binary prediction of a true relationship. Using the Snorkel framework, we

primarily focused on two tasks: extracting candidate entities and relationships and de-

signing labeling functions. These labeling functions allow us to apply noisy labels to

candidate relationships without labeling large training sets by hand. We next used these

labeling functions to train a combination of generative and discriminative machine

learning models that generalize beyond the initial noisy labels.

Datasets

MetaCyc_Corpus

We built and evaluated the Snorkel application using a corpus of 1799 PubMed ab-

stracts curated for enzymatic chemical reactions in bacteria by MetaCyc [2] in version

20.0 (downloaded August 2016). We parsed the corpus using the Snorkel pipeline and

the SpaCy parser [15] to detect sentences, word tokens, parts-of-speech tags and
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dependency graphs. We included the titles of the abstracts in the database. In addition,

we included PubTator Chemical annotations [6] for all abstracts in the corpus. We

refer to this corpus as the MetaCyc_Corpus.

Bacteria_Corpus

To generalize and expand the MetaCyc_Corpus, we built a second dataset using the fol-

lowing PubMed query:

bacteria [MeSH Terms] AND has abstract [filter] AND English [language]

This query included all abstracts in English, annotated with the MeSH term “bac-

teria”, as of Feb 2018. We filtered these abstracts to the subset containing PubTa-

tor Chemical annotations (retrieved March 2018). From the 880,134 abstracts

returned from the Pubmed query, we included 873,237 abstracts with PubTator

Chemical annotations in the abstract corpus. We refer to this corpus as the Bac-

teria_Corpus.

Fig. 1 Overview of the Snorkel pipeline. First, users input a text corpus. Snorkel extracts relationships of
interest by 1) detecting co-occurring entities (i.e., relationship candidates), 2) applying labeling functions to
automatically label noisy training examples, and 3) training generative and discriminative machine learning
models using the labeling functions and general features to predict which candidates are true relationships.
The output is a binary prediction of a true relationship for each relationship candidate
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To facilitate comparison of the results between the two datasets, we added all the

documents from the MetaCyc_Corpus that were available in the PubTator dump to the

Bacteria_Corpus.

Candidate extraction

The primary task of relationship extraction in Snorkel is to extract pairs of entities that

fit some interaction or relationship definition. This relationship definition defines a

candidate relationship, a pair of entities that may participate in a true relationship.

Importantly, this definition should have high recall for true relationships but may have

low precision. For the task of extracting chemical reaction relationships, we want to de-

fine a relationship definition to capture the majority of chemical reactions present in

literature abstracts with a focus on recall.

The following is an example sentence describing a chemical reaction:

X is converted into Y in the absence of Z.

There is one true chemical reaction in this sentence: X is converted into Y. In this ex-

ample, the task of the Snorkel pipeline is to extract the pair of words (X, Y).

We define a chemical reaction relationship candidate as an ordered pair of distinct

chemicals co-occurring in a sentence. In our example, there are three chemicals in the

sentence: X, Y, and Z. Therefore, there are six candidate chemical reactions: (X, Y), (X,

Z), (Y, X), (Y, Z), (Z, X), and (Z, Y).

We performed candidate extraction on both datasets using Chemical entity tags from

PubTator and a candidate extraction workflow with objects and functions built into

Snorkel. In summary, we scanned sentences in both corpora for co-occurring PubTator

chemical entities to create candidate relationships. As described above, we created two

candidate relationships for every pair of entities to capture the correct order of the po-

tential chemical reaction. This extraction procedure yielded a large number of candi-

dates (for a sentence with n chemicals, we have n(n-1) candidates). Candidate counts

are reported in Table 1.

It is important to note that the Bacteria_Corpus is 485 times larger than the Meta-

Cyc_Corpus in terms of the number of documents, but it is only 132 times larger in

terms of candidates. The documents in the MetaCyc_Corpus have on average 3.69

more candidates and are understandably enriched for sentences that discuss chemical

reactions.

Learning procedure

Candidate extraction produces a set of candidate chemical reaction relationships. Dur-

ing learning, we trained machine learning models to predict which candidates were true

chemical reactions (Fig. 1, steps 2 and 3). We first designed labeling functions to

Table 1 Number of abstracts and candidates in MetaCyc_Corpus and Bacteria_Corpus

Corpus Abstracts Candidates

MetaCyc_Corpus 1799 67,922

Bacteria_Corpus 873,237 8,936,941
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automatically label noisy training examples. Next, we trained a generative model to

learn the inaccuracies of the labeling functions. Finally, we trained a discriminative

model using the scores from the generative model as training labels to predict true

chemical reactions.

Labeling functions

Labeling functions have three important features:

� Labeling functions are context-aware: they may rely on sentence or document-level

patterns, use the entity tags or labels, or even use external information.

� Labeling functions can be very general and correspond to a weak signal, or they can

be very specific and handle special, uncommon cases.

� Labeling functions have 3 possible outputs: TRUE, FALSE, or ABSTAIN.

We designed unipolar labeling functions, that only have two possible outputs. The

positive labeling functions select either TRUE or ABSTAIN, while the negative labeling

functions select either FALSE or ABSTAIN. These unipolar labeling functions deviate

from prior work [14] in order to handle large class imbalances. Importantly, labeling

functions must only provide noisy information about the likelihood of a chemical reac-

tion and need not be individually very predictive. For the MetaCyc_Corpus, we de-

signed five positive labeling functions and 11 negative functions. Example positive and

negative labeling functions are detailed in Table 2. Descriptions of all labeling functions

are listed in Supplemental Data Section 1.7.

Because the Bacteria_Corpus is over 100 times larger than the MetaCyc_Corpus and

had a larger variety of candidates, we designed an extra set of labeling functions to cap-

ture the complexity and diversity of this dataset. Table 3 contains examples of add-

itional labeling functions for the Bacteria_Corpus. We added five additional negative

labeling functions and one positive, to obtain an overall set of 22 labeling functions for

the Bacteria_Corpus. For LF_metacyc, we used <substrate, product> pairs from enzym-

atic reactions from MetaCyc (version 20.0). We limited these reactions to include only

1:1 substrate-product transformations, after filtering proton acceptors and donors,

water molecules, and hydrogen atoms.

Generative model

After applying the labeling functions to the candidate relationships, we trained a gen-

erative model to learn the inaccuracies of the labeling functions and assign a

Table 2 Example labeling functions for the MetaCyc corpus

Example labeling
function

Description

LF_keyword_context If there is a word of a given list, such as reduce, oxidize, transform, or afford between the
two words, we label TRUE

LF_sep_verb If the chemicals are separated by a verb, we label TRUE

LF_argument_order If the candidate product is before the candidate substrate, we label FALSE

LF_followed_ase If one of the chemicals is followed by a word that ends with “ase”, we label FALSE

LF_sep_or If the chemicals are separated by the word or, we label FALSE
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probabilistic score to each candidate. From the labeling function step, the labels (from the

labeling functions) for the extracted candidates form a sparse matrix of 0,1 and − 1 (AB-

STAIN, TRUE, and FALSE, respectively). The purpose of the generative model is to infer

an underlying distribution from which those labels have been sampled, and to use this

model to score all the candidates from 0 to 1 (0 being a negative relationship and 1 a posi-

tive relationship). We refer to these scores as the training marginals. The training mar-

ginals formed the training example labels to the discriminative model (described below).

We used different versions of the generative model implementation for the MetaCyc_Cor-

pus and Bacteria_Corpus. The current released version of Snorkel uses a Gibbs Sampling

method, that has been thoroughly tested and evaluated by the Snorkel developers [13, 14].

We used this version for the MetaCyc_Corpus. However, this implementation is not robust

to unbalanced sets of unipolar labeling functions and heavy class imbalance in the dataset.

Because the Bacteria_Corpus has a very high class imbalance and unbalanced set of

unipolar labeling functions, we used a new class-conditional matrix completion based

approach of the generative model that is much more robust to the imbalance [16]. As

this implementation is not needed on the MetaCyc_Corpus, we preferred keeping the

Gibbs Sampling implementation when possible (see Supplemental Section 1.6 for com-

parison of the two generative model approaches).

Discriminative model

Whereas the generative model provides probabilistic labels for each candidate using the

labeling functions, the discriminative model generalizes beyond the labeling functions

by using the training marginals as training example labels.

We trained a discriminative model using the training marginals from the generative

model as training labels. The discriminative model is a logistic regression model that

uses a set of default NLP features (n-grams, etc...) computed on the training set. We

trained the discriminative model using the sigmoid cross-entropy loss for binary classi-

fication, with an elastic net penalty. Before training the discriminative model, we

resampled the dataset (see Supplemental Section 1.1 for the detailed procedure and

Supplemental Section 1.5 for comments). The hyperparameters for the discriminative

model and the resampling were chosen using a grid search on a development set with a

small number of labeled candidate chemical reaction relationships (described in Section

Evaluation Framework).

Evaluation framework

One of the main advantages of the Snorkel pipeline is that we do not need to manually

annotate training data and instead rely on the labeling functions and a small annotated

Table 3 Examples of additional labeling functions on the Bacteria_Corpus

Example labeling
function

Description

LF_metacyc If the chemical reaction is already in the MetaCyc curated database, we label TRUE

LF_chemical_elements If one of the chemicals is a chemical element, we label FALSE

LF_group If there is a close mention of a functional chemical group, we label FALSE

LF_treatment If there is mention of keywords frequently associated with clinical trials, we label
FALSE
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development set and held-out test set. For performance evaluation, as well as labeling

function and model design, we curated chemical reaction relationship candidates in a

subset of abstracts from the two chemical reaction corpora.

Evaluation datasets for MetaCyc_Corpus

To achieve proper reproducibility and evaluation of the performance, we split the

MetaCyc_Corpus into three distinct splits of the data.

� MetaCyc_Train: constituted the majority of the abstracts. We trained the models

on this split only. However, unlike the training sets in usual machine learning

pipelines, the candidates have not been manually annotated.

� MetaCyc_Dev: a small development subset of the initial corpus used to tune the

model parameters using gridsearch and design the labeling functions

� MetaCyc_Test: a subset of the corpus held out from model training and

development to evaluate the out-of-sample model performance.

We randomly sampled abstracts without replacement from the full corpus to create

MetaCyc_Dev and MetaCyc_Test and curated the associated candidates. Table 4 re-

ports the number of abstracts, candidates, and positive examples for the train, develop-

ment and test sets.

Evaluation datasets for Bacteria_Corpus

We built the Bacteria_Corpus by extending the MetaCyc_Corpus. The extension of the

dataset created a need to have a new test set to evaluate the performance of the models

on the updated task. However, we kept MetaCyc_Test as a test set to have an estimator

of the model performance on the MetaCyc_Corpus (that is a subset of the Bacteria_

Corpus). It is also necessary to keep MetaCyc_Dev, as it has been used to design a ma-

jority of the labeling functions.

As a result, the Bacteria_Corpus experiment relied on a four-split architecture, di-

vided as follows:

� Bacteria_Train: the training set, constituted the majority of the abstracts

� Bacteria_Test: a subset of the corpus held out from model training and

development to evaluate the out-of-sample model performance

� Bacteria_Dev: MetaCyc_Dev, augmented with 200 abstracts randomly sampled

from the new documents in the Bacteria_Corpus to gridseach the models and

design the labeling functions.

� MetaCyc_Test: included with no change.

Table 4 Sizes and gold label statistics of the three splits for the MetaCyc_Corpus

Split Abstracts Candidates Positives Docs w. candidates Docs w. positives

MetaCyc_Train 1753 65,398 – 1544 –

MetaCyc_Dev 23 1292 60 23 16

MetaCyc_Test 23 1232 51 23 15
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We randomly sampled abstracts without replacement from the full corpus to create

Bacteria_Test and Bacteria_Dev and curated all candidates in the sampled abstracts.

Table 5 reports the number of abstracts, candidates, and positive examples for the dif-

ferent splits of the Bacteria_Corpus. The 400 documents added to Bacteria_Test and

Bacteria_Dev were randomly sampled from the documents that were not already in

MetaCyc_Dev or MetaCyc_Test. Therefore, we developed the final models on Bacteria_

Dev and evaluated performance on both Bacteria_Test and MetaCyc_Test.

Due to minor updates in the candidate extraction process, and in the PubTator

chemical tags, there is < 1% discrepancy in the number of candidates extracted between

the MetaCyc and the Bacteria experiments for the 1791 abstracts that are in both

corpus.

Evaluation metrics

We evaluated the performance of three prediction models: majority voting of the label-

ing functions, generative model only, and discriminative model using the training mar-

ginals from the generative model (henceforth referred to as discriminative model for

simplicity). We computed precision, recall, and F1 score using the development and

held-out test sets for MetaCyc_Corpus and Bacteria_Corpus.

Precision : P ¼ TP
TP þ FP

Recall : R ¼ TP
TP þ FN

F1score :
2P�R
P þ R

Where:

� TP (True Positives): Positive examples, correctly classified

� TN (True Negatives): Negative examples, correctly classified

� FP (False Positives): Negative examples, misclassified

� FN (False Negatives): Positive examples, misclassified

We also used the Fβ score to select the models in the gridsearch, as it allows to shift

the precision-recall trade-off towards more precision or more recall if needed.

The Fβ score is defined as ð1þ β2Þ P�R
β2PþR

.

Table 5 Sizes and gold label statistics of the splits for the Bacteria_Corpus

Split Abstracts Candidates Positives Docs w. candidates Docs w. positives

Bacteria_Train 872,591 8,928,937 – 417,404 –

Bacteria_Test 200 2398 43 96 13

Bacteria_Dev 223 2806 69 110 22

MetaCyc_Test 23 1212 49 23 15
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Results
We built and evaluated the Snorkel application for extracting chemical reaction rela-

tionships from two datasets: MetaCyc_Corpus and Bacteria_Corpus.

Comparison of labeling function coverage

An important component of the labeling function design process is to analyze the sta-

tistics of the different labeling functions. Table 6 provides example labeling functions

with proportion coverage, overlaps, and conflicts in the MetaCyc_Corpus and the Bac-

teria_Corpus. For MetaCyc_Corpus, there are both very wide labeling functions and

very precise ones. For example, LF_argument_order has a 0.50 coverage or proportion

of candidates labeled by the labeling function because of its generality. However, LF_

keyword_context only labels rare candidates and therefore has a low coverage. The

coverage of the labeling functions initially designed for the MetaCyc_Corpus dropped

when we applied the labeling functions to the Bacteria_Corpus. For example, the cover-

age of LF_followed_ase dropped from 0.18 to 0.015.

Evaluation on the MetaCyc_Corpus

We evaluated Snorkel for the task of extracting chemical reaction relationships from

text. Table 7 contains the evaluation result using majority voting, generative model,

and discriminative model on the MetaCyc_Corpus. The generative model performed

similarly to majority voting. However, the discriminative model brought a significant lift

of the performance and increased precision from 0.79 to 0.84 for the discriminative

model. In addition, there was a 19 point increase in recall from 0.22 to 0.41.

Evaluation on the Bacteria_Corpus

We evaluated Snorkel for the task of extracting chemical reaction relationships from

text. Table 8 contains the evaluation result using majority voting, generative model,

and discriminative model on the Bacteria_Corpus using MetaCyc_Test. We used a

threshold of 0.50 on the final score given by the discriminative model to issue

predictions.

Table 6 Labeling Function metrics for MetaCyc_Corpus and Bacteria_Corpus. Coverage refers to
the proportion of candidates labeled with the labeling function. Overlaps refers to the proportion
of candidates labeled with another labeling function. Conflicts refers to proportion of candidates
labeled with an opposing labeling function

MetaCyc_Corpus Bacteria_Corpus

Labeling function Coverage Overlaps Conflicts Coverage Overlaps Conflicts

LF_keyword_context 0.005963 0.002110 0.001361 0.001902 0.001750 0.001719

LF_sep_verb 0.000933 0.000291 0.000092 0.001252 0.001146 0.001137

LF_argument_order 0.500000 0.238234 0.005520 0.499939 0.470721 0.016873

LF_followed_ase 0.180954 0.155800 0.001697 0.015969 0.015838 0.000966

LF_sep_or 0.006453 0.003333 0.000000 0.006702 0.006399 0.000526

LF_metacyc – – – 0.031805 0.030915 0.030823

LF_chemical – – – 0.130835 0.130539 0.004871

LF_treatment – – – 0.029490 0.028674 0.000609
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The generative model brings a significant lift on the recall for Bacteria_Corpus, in-

creasing recall 12 points from 0.20 to 0.33 while preserving the precision. The discrim-

inative model changes the precision-recall tradeoff towards a more balanced prediction,

that lifts the F1 score by six points for the discriminative model compared to the gen-

erative model. While precision decreased to 0.50, recall increased to 0.61.

In total, we extracted 6871 chemical reaction relationships from almost nine million

candidates in Bacteria_Corpus. This total includes both chemical reaction relationships

from MetaCyc_Corpus and Bacteria_Corpus.

Discussion
We designed a Snorkel application to construct a chemical reaction database from text

using a small corpus of abstracts enriched with enzymatic chemical reactions and ex-

tended this application to a more general corpus of almost a million abstracts broadly

related to bacteria. The ability to generate relationship data from domain-specific litera-

ture is essential to creating rich datasets for improving large data-driven tasks. We de-

fined a chemical reaction relationship for extraction; however, we note that our

approach is much more easily modified to select different (e.g. more specific) relation

types of interest, as this only requires modifying code, rather than relabeling datasets

by hand as in traditional approaches. In addition, our results can be used to develop

Snorkel extensions to increase accuracy for complex chemical reaction and chemistry

literature.

This framework substantially changes how one approaches text mining applications

and development, and considerably speeds up the extractor creation process. Import-

antly, the focus on designing labeling functions in Snorkel allows for quicker develop-

ment time and scalability to larger and more general datasets. We developed 16

labeling functions for labeling almost 68,000 candidates from MetaCyc_Corpus and

added only six new labeling functions to label almost nine million candidates from Bac-

teria_Corpus. These labeling functions included high precision/low recall functions

such as if two chemicals are separated by a sequence of words that contains oxidized to,

reduced to, conversion to, label candidate TRUE. This labeling function labels candi-

dates that are likely correct (i.e., marginal probability close to 1) but will miss many

candidates that do not have straightforward syntax describing the relationship. Other

Table 7 Evaluation results for MetaCyc_Corpus. We evaluated three models: majority voting,
generative model, and discriminative model

Model Coverage Precision Recall F1 Score

Majority voting 0.73 0.79 0.22 0.34

Generative model 0.73 0.79 0.22 0.34

Discriminative model 1.00 0.84 0.41 0.55

Table 8 Evaluation results on the Bacteria_Corpus, using a 0.5 threshold. We evaluated three
models: majority voting, generative model, and discriminative model

Model Coverage Precision Recall F1 Score

Majority voting 0.92 1.00 0.20 0.34

Generative model 0.94 1.00 0.33 0.49

Discriminative model 1.00 0.50 0.61 0.55
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labeling functions will be less specific but label many candidates either True or False.

For example, a labeling function that returns True if the second chemical follows the

first chemical in the sentence labeled 50% of all candidates in both MetaCyc_Corpus

and Bacteria_Corpus. However, a labeling function that returns True if a verb separates

two chemicals in a sentence labeled a smaller subset of the data (0.09 and 0.1% for

MetaCyc_Corpus and Bacteria_Corpus, respectively). While precision decreased com-

pared to MetaCyc_Corpus, Bacteria_Corpus included a more diverse set of documents

(all documents related to bacteria using MeSH terms) which in turn included a more

diverse chemical set. Thus while Bacteria_Corpus included more false positive chemical

reaction relationships, we increased recall substantially to capture more true chemical

reaction relationships. The boost in recall from generative to discriminative model

allowed for more generalization in the Bacteria_Corpus. The focus on precision vs re-

call is a design decision that depends partially on downstream application use.

From almost nine million candidates in Bacteria_Corpus, we extracted 6871 chemical

reaction relationships. These reactions included simple substrate-product pairs. For ex-

ample, we extracted the reaction gluconic acid to ethanol from the sentence “We report

on engineering Escherichia coli to produce ethanol at high yield from gluconic acid

[17].” We also extracted reactions where multiple substrates and/or products were

mentioned in the sentence. For example, Snorkel extracted the hydrolysis of naproxen

nitrile to S-naproxen from the sentence “Enantioselective hydrolysis of racemic na-

proxen nitrile and naproxen amide to S-naproxen by new bacterial isolates [18].” The

sentence “These results suggest that HMF can be metabolically activated to an allylic

sulfuric acid ester which may play a role as an ultimate electrophilic metabolite in toxi-

fication of the parent compound in vivo.” from [19] presents an interesting example.

Here, we extracted HMF goes to allylic sulfuric acid ester. While we know the starting

compound, we do not know the exact product. However, these are important cases to

capture since chemistry literature can be vague on the chemical structure and name de-

pending on when the article was written.

While we extracted chemical reaction relationships from clear substrate to product

transformations, Snorkel struggled to correctly detect negative reactions when co-

occurring with a positive reaction. For example, the sentence “Only D-cysteine but not

L-cysteine was converted by D-CDes to pyruvate, H2S, and NH3.” [20] includes mul-

tiple potential substrate and product pairs. However, only one of the potential sub-

strates is a true substrate in the described reaction (D-cysteine). Snorkel extracted all

pairs of the potential substrates D-cysteine and L-cysteine with the products pyruvate,

H2S, and NH3. The resulting extracted reactions include the correct reaction pairs (D-

cysteine, pyruvate), (D-cysteine, H2S), and (D-cysteine, NH3) but also incorrect reac-

tion pairs (L-cysteine, pyruvate), (L-cysteine, H2S), and (L-cysteine, NH3). Thus in this

sentence, 50% of extractions were incorrect. It is important to note that none of the

substrates were extracted together in an incorrect or false chemical reaction, and nei-

ther were the potential products. Additional curated candidates in the development

and test sets, along with further development of the labeling functions, would provide

additional signal to detect negative candidates co-occurring with positive candidates

correctly.

Class imbalance within and between the two corpora was a key challenge of this

work. An estimation of the proportion of positive candidates can be done based on the
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number of positive candidates in MetaCyc_Dev (reported in Table 4). This reveals a

high class imbalance (5%). Table 4 also shows that 88% of the documents have at least

a candidate (decreases to 47% in Bacteria_Corpus). However, the labeled subsets sug-

gest that only 67% of the documents that have a candidate have a positive candidate.

The class imbalance is higher in the Bacteria_Corpus. The labeled subsets suggest that

for the Bacteria_Corpus, only 13% of the documents with a candidate have a positive

candidate, which is significantly lower than the MetaCyc_Corpus, especially taking into

account that the MetaCyc_Corpus is included in the Bacteria_Corpus. The MetaCyc_

Corpus is composed of articles curated for enzymatic reactions and is thus enriched for

these types of chemical reactions (see Table 1). The overall proportion of positive can-

didates drops to roughly 1.5% on the Bacteria_Corpus. This makes the class imbalance

challenge even more difficult compared to MetaCyc_Corpus.

To address the class imbalance problem, we applied a resampling procedure to sub-

sample the training data used in the discriminative model (described in Supplemental

Methods). Additional experiments performed showed that the optimal results were ob-

tained by training on approximately 10% of the dataset (see Supplemental Data). We

found that the negative examples were very similar to one another and did not bring

much diversity in the training set.

One of the hurdles for more domain and subdomain-specific extraction tools remains

the challenge-focused aspect of relationship extraction development. There are well-

curated training and evaluation datasets for chemical-disease and protein-protein rela-

tionships, amongst others. These datasets arose from community challenges to develop

state-of-the-art methods for biomedical entity and relationship extraction (e.g., Bio-

Creative VI) [11]. These community-drive challenges are critical for moving the field

forward in terms of method development and solving specific extraction tasks. How-

ever, there remains a need for accessible text mining application and/or tool develop-

ment for domain experts. These users have specific tasks relevant to their research and

subfield of biology and medicine. Snorkel allows these domain experts to develop appli-

cations for their needs. In this work, we developed a Snorkel application for the task of

chemical reaction relationship extraction and demonstrated the labeling function devel-

opment process for future Snorkel applications.

Conclusion
We developed a Snorkel application for extraction chemical reaction relationships from

literature abstracts using an enriched corpus of chemical reactions and extended the

application to a larger and diverse set of abstracts related to bacteria. In total, we ex-

tracted chemical reaction relationships from nearly 900,000 abstracts from PubMed re-

lated to bacteria. In this work, we showed the first biological application of the Snorkel

infrastructure and the scalability of the Snorkel pipeline to very large datasets. This

work enables development of future Snorkel extraction tasks and downstream predic-

tion analyses based on enzymatic reaction data.
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are predicted as chemical reactions from the discriminative model.
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