Koltai et al. BMC Bioinformatics (2020) 21:241

https://doi.org/10.1186/512859-020-03548-9 B M C BIOI nfo rm atlcs

METHODOLOGY ARTICLE Open Access

Exact solving and sensitivity analysis of @
stochastic continuous time Boolean models

updates
Mihaly Koltai'?3" ®, Vincent Noel'#3, Andrei Zinovyev'?3, Laurence Calzone'?? and Emmanuel Barillo

t1 2.3

*Corrt ndence:

nﬂciﬁasf;)lt;gbcifiefr Abstract

U:ﬂssietrusﬁéug‘;;%éRpfrfffgnce Background: Solutions to stochastic Boolean models are usually estimated by Monte
2INSERM, U900, F-75005 Paris, Carlo simulations, but as the state space of these models can be enormous, there is an
France inherent uncertainty about the accuracy of Monte Carlo estimates and whether

Full list of author information is

available at the end of the article simulations have reached all attractors. Moreover, these models have timescale

parameters (transition rates) that the probability values of stationary solutions depend
on in complex ways, raising the necessity of parameter sensitivity analysis. We address
these two issues by an exact calculation method for this class of models.

Results: We show that the stationary probability values of the attractors of stochastic
(asynchronous) continuous time Boolean models can be exactly calculated. The
calculation does not require Monte Carlo simulations, instead it uses graph theoretical
and matrix calculation methods previously applied in the context of chemical kinetics.
In this version of the asynchronous updating framework the states of a logical model
define a continuous time Markov chain and for a given initial condition the stationary
solution is fully defined by the right and left nullspace of the master equation’s kinetic
matrix. We use topological sorting of the state transition graph and the dependencies
between the nullspaces and the kinetic matrix to derive the stationary solution without
simulations. We apply this calculation to several published Boolean models to analyze
the under-explored question of the effect of transition rates on the stationary solutions
and show they can be sensitive to parameter changes. The analysis distinguishes
processes robust or, alternatively, sensitive to parameter values, providing both
methodological and biological insights.

Conclusion: Up to an intermediate size (the biggest model analyzed is 23 nodes)
stochastic Boolean models can be efficiently solved by an exact matrix method,
without using Monte Carlo simulations. Sensitivity analysis with respect to the model’s
timescale parameters often reveals a small subset of all parameters that primarily
determine the stationary probability of attractor states.

Keywords: Boolean modeling, Exact method, Stochastic model, Asynchronous
updating, Steady state solution, Continuous time Markov chain

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,

which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-020-03548-9&domain=pdf
http://orcid.org/0000-0002-7341-5114
mailto: mihaly.koltai@curie.fr
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Koltai et al. BMC Bioinformatics (2020) 21:241 Page 2 of 22

Background

One of the principle aims of systems biology is to understand with the help of
models the complex molecular networks that regulate the functioning of a cell [1]. To
do so, numerous mathematical and computational formalisms have been used in the
past decades [2]. These range from quantitative and mechanistic models that require the
knowledge of numerous biophysical constants [3] to higher level, more qualitative models
such as fuzzy logic [4] and Boolean [5, 6] models that describe functional dependencies,
but not the details of biophysical mechanisms. Boolean models, originally introduced in
the systems biology field by Kauffman [7-9], have the advantage that interactions between
a model’s variables (that can be genes, proteins or other cellular components and their
states) only need to be qualitatively defined and identifying attractors is a fast calcula-
tion [10]. Traditionally, Boolean modeling has been used as a more qualitative approach
to quickly identify the stationary states (attractors) of a model and test their robustness
to initial conditions and/or perturbations. In most Boolean modeling platforms [10-12],
time is described in discrete steps and model outputs are binary.

In recent years, efforts were made to bridge the gap between qualitative and quantitative
modeling by a continuous time stochastic version of Boolean modeling [13, 14].

With this hybrid approach, we obtain continuous values for both transient and station-
ary probabilities of the states of a Boolean model, while having fewer parameters than
fully detailed models of chemical kinetics. For introducing continuous probability val-
ues and physical time, it is necessary to define timescale parameters (¢ransition rates,
defined in Methods below) for the activation or deactivation of the network nodes. With
these timescale parameters a kinetic Monte Carlo (Gillespie) algorithm [15-17] is used
in the MaBoSS modeling environment to simulate large logical models (examples include
models of over a 100 nodes [18]).

The Gillespie algorithm is based on generating sample trajectories. With increasing
model size and hence slower convergence to attractors the duration of simulations need
to be increased, and as a compensation the number of sample trajectories is typically
decreased in the interest of computation speed. Besides compromising the accuracy of
probability estimates, this raises the issue of attractor reachability. As the number of states
of a Boolean model of # nodes is 2", stochastic simulations with a limited number of sam-
ples might not reach all attractors, leaving an uncertainty if the model’s behavior is fully
explored.

Another question that needs to be addressed is parameter dependence. The probability
value of an attractor state depends on the timescale parameters in a complex way. In
the studies using the continuous time stochastic Boolean formalism, transition rates are
usually assigned a default value (typically 1) for simplicity. However, transition rates are
not neutral parameters: as shown in [18], specifying transition rates from expression data
can improve a model’s predictive performance. This suggests that systematic parameter
sensitivity analysis, similarly to ordinary differential equation (ODE) models [19, 20], can
provide valuable insights on the key parameters of a model. For instance, in the case of a
model with the outputs of proliferation versus cell death we can ask the question if there
are a few transition rates that dominate this decision point.

We provide here an exact method to calculate the stationary solutions of stochastic
continuous time Boolean models, adopting mathematical techniques previously applied
in deterministic chemical kinetics [21, 22]. The sparsity of the transition/kinetic matrix

Koltai et al. BMC Bioinformatics (2020) 21:241 Page 3 of 22

of Boolean models is exploited, so that the calculation is as fast or faster than stochastic
simulations up to an intermediate size, while being exact.

The method finds all states of the stationary solutions and their stationary probabil-
ity values. We perform parameter sensitivity analysis and visualizations on a number
of published Boolean models to explore how sensitive these models are to variations in
transition rates.

In some cases, (local) parameter sensitivity analysis reveals that a model’s behavior is
controlled by only a few transition rates, enabling model reduction and/or reducing the
parameter space for more extensive (global) sensitivity analysis and parameter fitting.
Based on these results, we propose that parameter sensitivity analysis should be a part of
the construction of a stochastic Boolean model if a detailed mechanistic understanding is
important. We provide the MATLAB toolbox ExaStoLog as a tool to analyze user-defined
logical models. The toolbox contains the core calculation method along with visualization
and sensitivity analysis tools and is available on GitHub with a detailed tutorial [23].

In the “Methods” section we first provide the basic concepts for Boolean networks in
general (‘Definitions’), and for the asynchronous update policy (‘Asynchronous updating’)
and the continuous time treatment (‘Continuous-time treatment of Boolean dynamics’)
of Boolean models in particular. Following that we derive the exact solution of Boolean
models in this stochastic continuous time framework (‘Derivation’).

Methods

Definitions and notations: Boolean networks

We define Boolean networks (BN) as consisting of a set of binary-valued variables called
nodes, V, and a vector of Boolean functions (logical rules) F [24, 25]:

V ={v1,v2, s Vi), F = {fl,fz, ,f,,} (1)

V will refer to the nodes themselves, whereas the state of the system (the values of the
nodes) will be referred to as S. S is a binary number of length #, with each node either 0
or 1. The possible values of S range from [00..0]7 to [11..1]7, comprising the BN’s state
space X. These binary states are ordered in the standard way and a particular state will be
referred to by its decimal index i as S;. Throughout the “Methods” section we will use the
3-node BN in Fig. 1 to illustrate the concepts of the formalism. For this BN the state space
¥ contains 23=8 states ranging from S;=[000] to Sg=[111], shown on Fig. 1a, where we
also show the signed and directed influence graph of the interactions between the nodes
as customary for network models [26].

When referring to the value of node v; of a particular state S; this will be referred to by
Si For instance the values of nodes within state S;=110 are S%:l, S%:l, $3=0.
It is often more convenient to refer to nodes by names instead of numerical indices.
The nodes of the BN in Fig. 1 are named alphabetically as V= {A4, B, C}, and its Boolean
functions are F= {~B, (~A)&C, B|C}, where '~/ &,/ |" are the NOT, AND, OR Boolean
operators, respectively.

Asynchronous updating

To generate a dynamical system, the Boolean functions F are applied to the states S
of the system in updating steps. There are two basic types of updating policies, syn-
chronous and asynchronous. In the synchronous updating formalism, all elements of S(&)

Koltai et al. BMC Bioinformatics (2020) 21:241 Page 4 of 22

A) p B) asynchronous updates on X C) ?) logical
A opologica
A 51/3% % U, 55‘3-3 « -y | State transition sorting
_‘lf'/ 17070710 0l0 /0 > "|seraph(sTG) >
1000740 0/00
2{0:0 1 u,——s[[T]0 1]k, =
_O 270G L Ug—>a 0 [Kji=ﬁ:
V={A,B,C} | > o 513 oloja *
={A=~ 3{0 0 0/1 0
g_{i&g’ 370 0. dg=110[0]0 K ,=d,
=~ » | 30 03U =>4 0 [T[T]K, =u
C=B|C} 410 1] o[1][T ™
470 1] o011
s | 4oJii ERENEE
S 5{170.0 f1joo
1 5[11030 f1joo0
S, 501050 100
s 6§{1:0 4" 1o
& 61011 f1lo1
61071} 101
5A 7 00, =301 0«
s 7 0. dg——sFT[0]0 k.
S, 7 03U =8 1 | 1|
S 8t 1qd ——>af0 |2 [1T]
Y 8 11d——6[T[0]1 K
S 811 171 A E
B R L
‘ 11 14 15 1
Y L21 22 24 L25 1
L31 32 !
\/ - -
Al L, =(du)/(d, +d)k) LZl—(dAuCKZ)/((dA+dB)(dA+uC)Kl) L,=d/(d, +d)
v 1 Ll“_uA/(UA+ UB) Lzzzuc/(da + uc) L31:d5/(d5+ uc)
v 1 Lls_dB/(dA + dB) |_24:uB/(uA + uB) L32:dB/(dB +u C)

Fig. 1 Graphicalillustration of the exact calculation method for a 3-node Boolean network (BN). a Influence
graph, list of n = 3 nodes (V), Boolean functions (F) and state space (X) of the BN. States (S) within X have a
decimal index, S1..Sg b Generating the elements of the kinetic matrix by asynchronous updating. In
asynchronous updating only one node of the BN changes its value at a given timepoint. This means from any
state S there are n possible transitions, therefore each state S; is repeated n = 3 times. The table on the left
shows the source states (S;) of all possible n 2" = 24 transitions. For each state (decimal indices on the left)
the Boolean functions F are applied individually to the three nodes, updated node highlighted by the dashed
black line. If there is a change in the node’s value, the dashed square is highlighted by the color of the
transition’s rate, shown next to the arrow to the right representing the BN's transitions. If there is no change
in the node’s value, there is no transition (no arrow). The table on the right shows the target states (5') of the
transitions with their decimal indices. In the case of no transition the target state is the same as the source
and the decimal index not shown. The updated node of the target state is again highlighted in color. To the
right of the table there is the corresponding element of the kinetic matrix K. For the transition S;—S; the
corresponding element is Kj,. € State transition graph (STG) and kinetic matrix K of the BN's master equation.
STG: numbers in the vertices refer to the decimal indices of the binary states of the BN's state space %, as
shown by the red-white table in panel A. Transition rates on arcs (arrows) are explained in Eq. 2. K is inserted
into the master equation of the dynamics of probabilities, x(t), of the BN's states as described in Eq. 3:
dx(t)/dt=Kx(t). The colors of nonzero entries of K correspond to the transition rates on the STG's arcs. Each
transition rate has a separate color used both for the corresponding arc(s) of the STG and entries of the
kinetic matrix K. As an example, the transitions from state 1 to 5 and 2 to 6 both have the transition rate ux (as
it is node A updated from 0 to 1) and these two arcs have a dark green color, same as the corresponding
entries Kj 5 and Ky 6. The diagonal elements of K are equal to the sum of the off-diagonals in the given
column, taken with negative sign (see Eq. 5), e.g. the entry K3, contains —(ua+ug). Terminal vertices that are
attractor states and their corresponding columns of K are in gray. d Topological sorting of the STG in ¢. The
vertices of the STG are re-indexed by topological sorting with indices ascending from upstream to
downstream vertices (color coding of arcs by the transition rates does not change from panel C). This entails
reordering of the kinetic matrix K—K’ and the columns of terminal vertices (attractor states of the BN, gray
columns) being moved to the right of K’, creating a block structure (Eq. 15) used for obtaining the stationary
solution (Eq. 7). e Construction of the right (R) and left (L) kernels from K’. R is a basis for the column null
space of K" and has 3 columns as there are 3 terminal vertices (6,7,8 of the topologically sorted STG). Block Y
of R corresponds to non-terminal vertices, therefore it has 5 rows and contains only 0s. Block V corresponds
to the terminal vertices, therefore it has 3 rows with 1 in the rows of terminal vertices 6,7,8. The block U of L is
constructed by transposing V of R and replacing nonzero elements by 1, so that U-V=/. Block X of L is
calculated from the blocks B and N of K’ as X=—U-B-N~". The nonzero terms of X of L, Ly, are rational
functions in the transition rates, encoding the conservations between non-terminal and terminal (attractor)
states. The terms k1, ky are k1=da+dg+uc, ko=(dp+2dg+uc)

Koltai et al. BMC Bioinformatics (2020) 21:241 Page 5 of 22

are synchronously (simultaneously) updated by the Boolean functions F as S(z + 1) =
F(S(2)). Synchronous updating is deterministic and creates a directed graph of transitions
between the states of the state space ¥ where all states have either zero or one outgoing
transition. It is also less biologically realistic as it assumes all nodes of a biological network
change their state in unison, ie. they have identical timescales.

In this article we use instead the more biologically realistic asynchronous updating pol-
icy [27, 28], complemented by transition rates for the BN’s nodes [13], to account for
differences in the timescale of activation and deactivation of the nodes. We will refer to
the class of Boolean models we use as asynchronous stochastic continuous-time logical
models (ASCTLM).

Asynchronous updating means that only one node of the BN is updated at a given time
t, which entails that from a particular state S the BN can transition into multiple other
states §', depending on which node is updated. The directed graph of these transitions
between all possible states X is the state transition graph (STG) of the BN, shown for our
illustrative model in Fig. 1c. Which node v; is updated at a given updating step can either
be defined by transition probabilities in a discrete time framework, or by transition rates
in a continuous time framework [13]. We will use the continuous-time framework here,
as in this hybrid approach differences in the timescales of activation and deactivation of
a network’s nodes can be incorporated. This provides an approximation of real physi-
cal time and the possibility to explore the dependence of attractor probabilities on these
timescales.

Another stochastic Boolean framework is the probabilistic Boolean network (PBN)
[25, 29] approach. The PBN approach is an ensemble modeling framework that is proba-
bilistic due to stochastic switching between multiple possible Boolean functions per node,
whereas in our ASCTLM framework stochasticity comes from stochastic asynchronous
updating of the BN’s nodes (but with only one Boolean function per node). We discuss
the differences of PBN in scope and formalism with our approach in SI Section 5.

Continuous-time treatment of Boolean dynamics
Within the asynchronous updating policy time can be treated as discrete or continuous.
If time is discrete then one node of S is updated at uniformly placed time steps accord-
ing to update probabilities assigned to the nodes. Here we use the alternative continuous
time generalization of the asynchronous updating policy. A formal derivation of the asyn-
chronous updating policy with continuous time is provided in [13]. The main concepts
are briefly outlined below.

In asynchronous updating there can be a transition between two states S and S’ if they
differ by the value of only one node. In only this case can the transition rate ps_, s between
these two states be non-zero. If it is node j that differs from S to S’ then the transition rate

is

PS—g = Uj ifs=0 (2)
ps—g =d;i if I =1

The transition rate u; defines the timescale of activation and d; the deactivation for node

v;. In Fig. 1c these transition rates are the labels of the STG’s arcs. As an example, following

Eq. 2, the transition [110] —[100] (by decimal indices S7—>55) has the transition rate djp,

Koltai et al. BMC Bioinformatics (2020) 21:241 Page 6 of 22

as it is the 1—0 transition of the second node B. The transition [110] —[010] (S;—S3)
has the rate d4 and the transition [110] —[111] (S;—Sg) the rate uc.

Finally, we insert these transition rates into a master equation [17, 30] of the instanta-
neous probabilities of the BN’s states, treating their time evolution as a continuous-time
Markov process. The master equation of this continuous-time Markov chain is the system
of linear ordinary differential equations:

dx(t)

= Kx(t) (3)

where x(t) is a column vector of 2”7 elements, with the ith element x;(¢) being the proba-
bility that the BN occupies the ith binary state S; of its state space X, at time ¢. Since these
are probabilities, the following constraints apply for x(z):

2}1
x(®) €[0,1], dox =1 @)

K is the Laplacian matrix [22] of the directed graph of the BN’s STG, and has a dimen-
sion of 2" x 2", From here K will be referred to as the kinetic matrix, as we will use tools
from chemical kinetics to obtain the stationary solution of Eq. 3 and it is mathematically
equivalent to the kinetic matrix of first-order chemical reactions. The dimension of K
will be referred to as v(=2") to avoid confusion with the number of nodes n. K and its
relationship with the STG is shown for our 3-node example model in Fig. 1b.

K is constructed from the Boolean functions F and the set of transition rates
{uk,dy}, k=1...n in the following steps, illustrated in Fig. 1b. The list of all transitions is
generated by applying the n Boolean functions in F node-wise to the 2” binary states of
¥ of the model. This defines #x2” possible transitions, as from any state S; one out of
n nodes can be updated. The number of actual transitions depends on the logical rules
and will be smaller than (at most equal to) nx2". These are shown in Fig. 1b by the color-
coded arrows labeled by the transition rates between the list of source states S (table on
the left) and target states S’ (table on the right).

When applying the Boolean function f; to S]‘f leads to a change in the node’s value this
results in the state transition Sj— Sy, inserted into the entry K ; of the kinetic matrix. The
transition will have the rate u; or d; as defined by Eq. 2. Identically to chemical kinetics
[17, 31], the off-diagonal elements of row i of K correspond to the rates of incoming
transitions to state i, whereas the off-diagonal elements of column j contain the rates of
outgoing transitions from state j. The diagonal element Kj; of column j is then equal to

on
Kj=— > Ki (5)
i=1,i#j
as illustrated by the color coding of the edges of the STG and the kinetic matrix in Fig. 1c.
These steps are implemented in our ExaStoLog toolbox. The user inputs a biochemical
model in Boolean format (list of nodes V and Boolean functions F) and the STG and
its kinetic matrix K are automatically generated. The default option is to assign either
identical or random values to the transition rates u;, d;, i = 1...n, but specific values can
also be assigned when information about differing timescales is available.
With these concepts, a BN of # nodes is described as a continuous time ODE-system of
the probabilities of its 2” binary states. On SI Fig. 1 we show the continuous dynamics of
the probabilities of the 8 states of the BN of Fig. 1a. In practice we rarely want to either

Koltai et al. BMC Bioinformatics (2020) 21:241 Page 7 of 22

analytically solve or numerically simulate the master equation because of its dimension.
Instead we are interested in the asymptotic behavior of BNs, in other words we want to
obtain the stationary solution of Eq. 3. We turn to deriving the stationary solution in the

next section.

Derivation of the stationary solution

In the discrete-time framework the stationary solution of such a system can be calculated
by taking the initial values and exponentiating the system’s transition matrix, but since
the dimension of the matrix grows exponentially, this is possible only for small systems
[32-34], typically BNs with # < 10. In the context of PBNs LU decomposition was used
[24] on the perturbed transition matrix to push an exact method above 20 nodes. How-
ever this was under the assumption of a reversible (ergodic) Markov chain and therefore
a history-independent stationary solution. Since we want to model irreversible cell fate
transitions such as cell division or death this assumption is not made here.

There is another path to an exact solution in the continuous-time framework. The
master equation of an ASCTLM in Eq. 3 is a first-order, homogeneous system of lin-
ear ODEs. The sparsity of its kinetic matrix can be exploited to push the limits of an
exact calculation in terms of model size, without making the model artificially reversible
and consequently history-independent. In deterministic chemical kinetics a mass-action
system of first order chemical reactions has identical mathematical form to the master
equation of a BN shown in Eq. 3 [21, 22].

For such a linear system, as proved in [22], for any directed graph of the variables
and any initial condition x(0), the system converges to a stable steady state (stationary
solution) and this solution can be exactly calculated from the kinetic matrix K and the ini-
tial condition x(0). The master equation of a continuous-time Markov process, of which
stochastic Boolean models are special examples, is mathematically identical to the rate
equations of first-order chemical kinetics, having no non-linearities and hence also guar-
anteed to have a stable solution. While the dimension of the kinetic matrix K grows
exponentially with the number of the model’s variables n as v = 27, K is very sparse, as
shown in Fig. 2a, therefore it does not need to be stored in full matrix form.

Below we reproduce the derivation of the stationary solution from [22], specifically
applied to Boolean networks, graphically illustrated for the 3-node example in Fig. 1c-e.

From standard theory of linear dynamical systems [35] the solution to Eq. 3 is given by

x(t) = exp(Kt)x(0) = (I + K-B(2)) x(0) (6)

where B(t) is a matrix function of time ¢.

The central finding from [22] that we use is that the stationary solution x*=x(¢) for
t— 00 is given from the left and right nullspaces (alternatively called kernels), R and L, of
the kinetic matrix K as

x*=R-L-x(0) (7)
with the following definitions of R and L, and a normalization constraint between them:
K-R=0, L- K=0, L-R=1, (8)

As stated in the previous section the dimension of K is v=2", so if the dimension of the
null space of K is ¢, then the right kernel matrix R has a dimension of v xq and its columns

Koltai et al. BMC Bioinformatics (2020) 21:241 Page 8 of 22

0 K (kiknetic matrix) states o0 variables

N 1001100000101 Rb b1

1000 \\:\\\\\ g Rb b2
azooo \ \ 1000011001011 EoF
- \ N 1000011000011 CycE
g 4000 CycA
5000 1000010000011 CycB

@ 6000 p27 b1
. 1000001001011 p27 b2
8000 0110010110100 Cde20

0 2000 4000 6000 8000 Cdh1
states (X) UbcH10

Skp2

0 0.4

01 0.2 0.3 0 05
stationary probability stationary probability

Fig. 2 Kinetic matrix K and stationary solution of the mammalian cell cycle model [38]. a Kinetic matrix K
from Eq. 3. The axes correspond to the 2'3 binary states of the model. Nonzero elements are in blue. K has
270227 . 107 entries with only &5 - 10% of them nonzero. b Stationary probability values of the model’s
attractor states with >3% probability. The two states at the bottom are fixed points, the other states are part
of the cyclic attractor. ¢ Initial and stationary probabilities per model nodes

are the basis of the column null space of K. Correspondingly, L is the left kernel that has
a dimension of gx v, and its rows are the basis of the row null space of K. I, is an identity
matrix of dimension gxgq.

It needs to be shown that if L and R are chosen so that Eq. 8 holds, then the stationary
solution is indeed given by Eq. 7.

If the constraints of Eq. 8 hold then using L - K=0 and multiplying both sides of Eq. 6
by L yields:

L-x@®)=(L-I+L-K-B() x0)=(L+0-B() x0) =L-x(0))
establishing the conservation of variables by the rows of the left kernel:

L-x(t) = L-x(0) (10)
that also holds for the stationary solution x*, so that

L-x*=L-x(0) (11)

When the system reaches its stationary solution x*, this means by definition that there is

no further transient dynamics so that the time derivatives of all variables are zero:

dx*
a (12)

and x* is in the column null space.
Therefore x* is a linear combination of the columns of R and for some vector 4 it will

hold that
x*=R-d (13)

Combining Eq. 13 with the third constraint L - R = I from Eq. 8 and the conservation
from Eq. 11 we get:

L-x(0)=L-x*=L-R-dy=I1-d=d (14)

proving L - x(0) = d.
Then we substitute L - x(0) into d in x*=R - d proving the starting assertion of Eq. 7 that
x*=R - L - x(0).

Koltai et al. BMC Bioinformatics (2020) 21:241 Page 9 of 22

This proves that the stationary solution can be calculated from the left and right
nullspaces of K, if they are chosen so that the three conditions of Eq. 8 hold. The task is
therefore to build L and R accordingly, which is done by using the BN’s STG.

Construction of the nullspaces from the state transition graph

To obtain the stationary solution we do not calculate the kernels by standard methods for
two reasons. One is the dimension of the kinetic matrix, making these calculations too
time consuming. Second, the zero-eigenvalue eigenvectors calculated by standard meth-
ods from K would satisfy the criteria Kr* = 0and ‘'K = 0 (rk is the kth column of R,
same for /X and L), but not the normalization condition of L - R = I; and therefore yield
numerically incorrect values for x*.

L and R can be instead built from the directed graph of the STG by decomposing its
kinetic matrix so that Eq. 8 holds and the nullspaces give us the correct stationary prob-
abilities of the attractors. This procedure is described in [22] for chemical kinetics, we
adopt it here to the STG of a BN. All following steps are implemented as built-in functions
in our ExaStoLog toolbox, so that the user inputs a Boolean model and an initial condi-
tion (specifying which nodes are 0 or 1 at t = 0) and ExaStoLog outputs the stationary
probability values of the attractors. All subsequent figures are generated as results of the
calculations by the toolbox.

First the vertices of the STG need to be topologically sorted [36] and the kinetic matrix
K reordered accordingly. Topological sorting entails re-indexing the vertices of the STG
(Fig. 1d) such that the index of a vertex i is always smaller than that of j if there is a
directed path from i to j and no path from j to i. Multiple vertices can form strongly
connected components (SCC). Within a SCC there is a directed path between any two
vertices, in other words the vertices form a cycle. In terms of the BN this means a set
of states that the model cycles through. Since topological sorting is only possible on an
acyclic graph, it is carried out on the metagraph of the STG [37]. Therefore, the multi-
vertex SCCs are treated as single vertices for this step while retaining the index of their
constituent vertices. After topological sorting of the metagraph, the constituent vertices
of the multi-vertex SCCs are again unmerged, with their indices having values between
those of the directly upstream and downstream vertices. The indices of states internal to
SCCs can retain their original binary ordering or alternatively we can apply topological
sorting within multi-vertex SCCs, by breaking them into a linear chain and eventually
reconnecting them, to increase the lower triangularity of the reordered kinetic matrix K’
and the matrix inversion of Eq. 18 faster. Topological sorting is shown in Fig. 1c-d, with
the original STG and its kinetic matrix K in (c) and the relabeled STG and reordered
K’ in (d). All subsequent calculations are done on the reordered kinetic matrix K’. Evi-
dently, the original mapping between indices and the corresponding logical states needs
to be retained to eventually have the correct assignment of the probability values to the
logical states form the attractors. In the example in Fig. 1c-d, the attractor states with
index 4,5,6 are relabeled by topological sorting as states 6,7,8 for the matrix calcula-
tions, but the stationary probabilities are eventually assigned to the original logical states
Sy =[011], S5 =[100], S =[101].

The STG of logical models typically have many irreversible transitions, therefore most
SCCs are single vertices. In the case of our 3-node BN in Fig. 1c-d all SCCs are single
vertices, the STG has no (either non-terminal or terminal) cycles.

Koltai et al. BMC Bioinformatics (2020) 21:241 Page 10 of 22

Once this reordering is done (performed in ExaStoLog by the built-in MATLAB graph
algorithm toposort), the reordered kinetic matrix K’ will have a block structure that is
used to build the nullspaces. The terminal vertices that correspond to the attractor states
of the BN are on the right of K’. It is useful here to recall the correspondence between the
vertices/SCCs of the STG and the attractors of the BN. A terminal SCC of the STG corre-
sponds to an attractor of the BN that can be either a stable state (also called fixed point) or
a cyclic attractor. A stable state is made up a single state S, corresponding to a single ter-
minal vertex (or sink vertex) of the STG. Cyclic attractors are made up of multiple states
and correspond to terminal SCCs of multiple vertices of the STG. If the total number of
non-terminal vertices is u, then we have v—u vertices in the g terminal SCCs, correspond-
ing to the last v—u columns of K’. In the case of stable state attractors only, the number
of terminal SCCs (number of attractors) and the number of terminal vertices (number of
states in the attractors) are equal, so that ¢ = v—u. If there are cyclic attractors, there are
more terminal vertices than terminal SCCs and g < v—u. In either case the dimension
(number of rows of row nullspace L, and number of columns of column nullspace R) of
the nullspaces is g, equal to the number of terminal SCCs (number of attractors).

The block structure of K is the following, shown in Fig. 1d:

,_(N]o
K = (#) (15)

Here and in Eq. 16 horizontal and vertical lines show the borders between blocks and the
parentheses the limits of the matrix.

N corresponds to the transitions within the # non-terminal vertices of the topologically
sorted STG.

B corresponds to the incoming transitions of the terminal vertices.

The 0 section corresponds to outgoing transitions from terminal to non-terminal states,
but since these are nonexistent it contains only zeros.

Finally, T corresponds to transitions between the terminal vertices. In the case of fixed
point attractors there are no connections between the terminal states so this section con-
tains zeros only, as in Fig. 1d. In the case of a cyclic attractor of multiple vertices, T
contains nonzero elements that comprise the kinetic matrix of the transitions within the
terminal cycle.

From these blocks of K’, the right (R) and left (L) kernels can be constructed step-
by-step by using the structure of the STG and applying the constraints of Eq. 12. When
completed, R and L will have the following block structure:

R:(i), L=(x|u) (16)

We review how the kernels are built by defining these blocks. What is required is that
finally the conditions of Eq. 8 hold. The steps are illustrated in Fig. le. First, the right
kernel is constructed from the STG so that each column corresponds to an attractor of
the BN. This entails that each column of R corresponds to that stationary solution where
%:Kx* =0 and the total probability of 1 (see Eq. 4) is placed onto the vertex (vertices) of
that particular attractor. Due to topological sorting the attractors have the highest index

and multi-vertex terminal SCCs are identified by fast graph algorithms. This enforces the

Koltai et al. BMC Bioinformatics (2020) 21:241 Page 11 of 22

constraint K’ - R = 0 and it will also be easy to impose L - R = I. We now explicitly define
the sections Y and V of R accordingly.

The section Y of the right kernel will correspond to non-terminal vertices and therefore
has u rows and contains only zeros since non-terminal vertices (transient states that are
not in attractors) carry O probability in steady state.

The section V will contain the states of the attractors and comprise the last v — u
rows of R. If vertex i is a stable state attractor the corresponding column of R con-
tains a single nonzero element in its ith row. This is shown for K" and its right kernel
in Figs. 1d and e for the stable states (terminal vertices) 6,7,8: these correspond to
the three columns of R (panel E), which have a 1 in their 6th, 7th and 8th row,
respectively.

In case of a cyclic attractor the total probability of 1 is distributed among the constituent
vertices according to the transition rates, so the sum of nonzero elements in the corre-
sponding column of R is 1. These nonzero elements are calculated by taking the minors
of the kinetic matrix of the cycle’s vertices, as described in [22]. A model with a large (270
constituent states) cyclic attractor is solved in Figs. 2 and 3. Like topological sorting, find-
ing the terminal SCCs to construct the right kernel is implemented in ExaStoLog with
built-in MATLAB graph theory algorithms.

A)

034 (#1) Fo |
012 (#1) | o | [o [o [o | | o |
0 0 0 0 0 4]

o
(=]
N
-
N

CO0000000000O0C
[clelelelolelelelalalelole!
RORDPERORPORGT
T
N

Skp2

Cdc20
cdh1
uscriro fl-co -l

CycD

B)

0.661 (#4) B 0O 08 G

YN TinooE pon oooon

0.138 (#4) [0]o[o]o JEio]o[oo]o lo[o]o NI

LL | < — N

2000c55202:2838RECESE
Cc gl oOESE E 2 8
°SE F8s B 8% S8<<LTEd
Ss ID2 S ﬁ_cll— oo éE
2 g° 2 T
o =z

Fig. 3 Attractors and their stationary probabilities for two models, calculation and visualization by ExaStoLog
functions. Each row is an attractor state of the BN, with the columns corresponding to the BN's nodes, listed
at the bottom of the panels. The value to the left of each row is the stationary probability of the attractor
state. In parenthesis is the index of the STG's subgraph the state is located in (if there are disconnected
subgraphs because of non-dynamic nodes). a Attractors of the mammalian cell cycle model from [38]. The
two states at the top are separate stable states (fixed points) in subgraph 1. The lower 13 states are the >1%
probability states of the cyclic attractor of 270 states. b Attractors of the EMT (epithelial-mesenchymal
transition) model from [40]. All attractors are separate stable states

Koltai et al. BMC Bioinformatics (2020) 21:241 Page 12 of 22

To build the left kernel L, the constraint L - R = I, is first used, which by block

multiplication requires that

To build the block U, V is transposed and its nonzero elements replaced by 1 (for fixed
point attractors these are already 1). Because each column of V' sums to 1 this satisfies
U -V =1 andalso L - R=I, because the section Y of R contains only zeros.

The other constraint L-K’=0 has to hold too. Doing the matrix multiplication blockwise
first for the section of K’ (see Eq. 15) corresponding to terminal vertices this means that
X -0=0and U - T=0.

X - 0 = 0 has to be true since the term on the right is a matrix of zeros. For stable state
attractors T is also only zeros, so U - T = 0 is again true.

For cyclic attractors, recall that the columns of the kinetic matrix sum to 0 (Eq. 5) and
this is true for the columns of the section (%) of K’ too. A column of U contains 1s for
the rows of all the vertices of a terminal cycle and a column of T contains the outgoing
transitions of one of the cycle’s vertices and a diagonal element (Eq. 5) that sum to 0. U
sums these entries of T therefore U/ - T=0 is true for the case of a cyclic attractor too, so
U - T=0 holds for any attractor type.

The only constraint that still needs to be respected is to have the remaining block of
the left kernel X so that L - K'=0 is satisfied. This requires by block multiplication that
X - N + U - B=0 and since section N of K is always invertible due to topological sorting,
the missing part X of the left kernel L can be obtained as:

X=—U-B-N1 (18)

Because of topological sorting N is a lower triangular matrix if the STG contains no cycles,
and contains few elements in its upper triangular section if there are small non-terminal
cycles. Therefore, its inversion is a fast calculation. If the STG contains large (more than
a thousand vertices) non-terminal cycles, the inversion is more time-consuming. For the
models in Table 1 we have not confronted this problem. The calculation of X is shown
graphically in Fig. le, with the nonzero terms of X in symbolic form. X contains ratio-
nal functions in the model’s transition rates, which encode the conservations between the
model’s non-terminal states and attractors. Mathematically they are ratios of polynomials
with (only) positive coefficients, originating from the forks and cycles of the STG that dis-
tribute the initial probabilities on the vertices into the attractor states. As shown by Fig. 1e
even for a 3-node model the denominators contain quadratic terms and for larger models
contain polynomials of high order, showing that the dependence of stationary solutions
on transition rates is a complex mathematical expression. In summary, up to the limit that
we can store the transitions of a logical model as a sparse matrix its stationary solution
can be obtained by topological sorting of its state transition graph and matrix calcula-
tions on its reordered kinetic matrix. Using our ExaStoLog toolbox, for biological models
of 13-23 variables the calculation of the stationary solution is of the order of seconds, and

the memory requirement for storing the kinetic matrix exceeds 1GB at 23 nodes.

Koltai et al. BMC Bioinformatics (2020) 21:241 Page 13 of 22

Table 1 Properties of Boolean models analyzed in manuscript

Model [ref] nodes (dynamic) Matrix (Mbytes, density) calculation time
#1[38] 13(12) 0.9Mb, 7e-4 0.35-0.6 sec

#2 [39] 20 (16) 143Mb, 7e-6 0.4-3 sec

#3 [40] 20(18) 173Mb, 8e-6 2.5-25sec

#4 [41] 20(19) 173Mb, 9e-6 2-19 sec

#4.1 [39] 23(19) 1.38Gb, 1e-6 2-30 sec

#4.2 [39] 23 (21) 1.44Gb, 1e-6 13-43 sec

Calculation time is for solving a model with one set of initial conditions and transition rates on a computer with 8 cores (Intel(R)
Xeon(R) CPU X5472 3.00GHz), without parallelization. In parenthesis in the column ‘nodes’ are the numbers of dynamic nodes,
excluding input nodes.

Results

ExaStoLog toolbox: calculation of solutions, visualization and parameter sensitivity analysis
The above steps of calculating the stationary solution of a logical model are implemented
in the MATLAB toolbox ExaStoLog, available on GitHub with a detailed tutorial [23]. The
user can input a logical model in Boo/Net [12] format using standard logical notation. The
generation and topological sorting of the STG and the identification of its cycles are steps
independent of the values of the transition rates, therefore these are performed only once
for a given model. The STG is stored as a ‘cell’ with the indices, but not the numerical
values of the transition rates. The kinetic matrix containing the numerical values of the
transition rates is stored in the sparse matrix format of MATLAB. The time of calculation
and the memory requirement for storing K are shown in Table 1 for four different models
that we analyzed.

The STG of the [39] model (both in its 20 and 23 node version) contains no cycles,
therefore its solution is fast to calculate as its K’ is completely lower triangular. The other
models contain cycles of up to a few hundred (in one case more than a thousand) vertices,
reflected in the calculation time. To test the upper bound of the current implementation
of the toolbox, we have also run ExaStoLog on two 23-node versions of this same model,
shown in the last two rows of Table 1. All references to the model in [39] are to the 20-node
version.

Biological models often have input nodes that are not dynamic, representing environ-
mental conditions such as the presence of a drug or extracellular ligand. Such models
have STGs made up of disconnected subgraphs. In this case, the time of calculation also
depends on how many subgraphs contain states with nonzero initial probability.

Besides the calculation of the stationary solution, ExaStoLog contains 16 functions to
visualize the results and to perform parameter sensitivity analysis and parameter fitting.

All figures in the main text (except Fig. 1) and all SI Figs. (except 1, 3-4, 6-7) were
generated by the functions of ExaStoLog.

To ensure reproducibility of the results, we compared them for multiple models, both
with separate stable states and cyclic attractors, to Monte Carlo simulations and verified
that the results are identical, as shown on SI Figs. 1 and 2.

We also compared runtime requirements for stochastic simulations (performed by
MaBoSS [13]) and exact calculations, shown in Table 2.

The results of these comparisons will vary with the structure of the Boolean model. The
two models ([39] and a 15-node model developed by us, available at [23]) selected for the
comparison have STGs without large non-terminal cycles. This choice was made as large

Koltai et al. BMC Bioinformatics (2020) 21:241 Page 14 of 22

Table 2 Runtime comparisons of stochastic simulations (MaBoSS) and ExaStolLog

Model nodes # param. sets (n°) MaBoSS runtime ExaStoLog
kras15 [23] 15 729 (3%) 4mins20s 195 (2s)
[39] 20 729 (39) 33mins 8mins (1min)

Calculations on the same computer as Table 1 (single core). The kras15 model is by the authors, available at [23] in the model_files
folder, together with input files for the parameter scans for both models. The kras75 model was run with 10.000 trajectories for a
duration of 3 time units, time steps of 0.1. The [39] model was run with 20.000 trajectories, for 40 time units, time steps of 0.1.In
both cases an accuracy of 1% was imposed as a requirement. In parenthesis in the column ExaStoLog is the amount of time spent
on the stationary solution calculations themselves.

non-terminal cycles in the STG are difficult to interpret biologically, and they can also
distort the results of stochastic simulations as well as slow down the matrix inversion for
the exact solution. To make the results comparable, we have set the number of trajectories
and duration of stochastic simulations so that the deviation of the stationary probabili-
ties from the exact result does not exceed 1%. The parameter sampling with MaBoSS is
by an efficient C++ code available at [42]. With these settings we performed multidimen-
sional parameter scans with p transition rates and # sampling values, i.e. for n” parameter
sets. For the [39] model the six transition rates with the highest Sobol sensitivity index
were selected for the parameter scan. The values were logarithmically distributed (0.1, 1,
10). The results are shown in Table 2. For the model with 15 nodes the exact method is
approximately an order of magnitude faster than stochastic simulations. For the 20-node
[39] model for 1% accuracy the duration of the simulation and the number of samples had
to be significantly increased (see Table 2). This is because for more than half of parameter
sets non-terminal states linger on and have nonzero probabilities at the end of the simula-
tions. Note that when relying on Monte Carlo simulations it is not known in advance what
trajectory number and simulation time is required for convergence. Adaptive methods for
convergence can address this problem, but the parameter scan for the [39] model shows
that at certain transition rate values non-terminal states can survive for a long time and
distort estimates. The exact method does not require experimentation with the number
of sample trajectories and the duration of simulations to ensure all attractors are found
and their probability well-estimated. Approximately 90% of total calculation time for the
exact method is spent in regenerating the kinetic matrix with the changed parameter val-
ues and only around 10% on calculating the stationary solutions (see Table 2). In summary,
when the aim is to mechanistically understand relatively small models by parameter sen-
sitivity analysis, the exact calculation is an efficient way to do it, more so than stochastic
simulations.

Besides the advantage in speed and precision, in ExaStoLog there is an environment of
a dozen functions for visualization and analysis of the results of sensitivity analysis. The
parametric analysis of the probability of attractor states with regard to transition rates
and the visualization of such analysis is currently not available in other Boolean modeling
platforms, such as GinSim [11], BoolNet [12] or MaBoSS [13].

Below we discuss the results obtained by ExaStoLog’s functions for parameter sensitiv-
ity analysis for the four published Boolean models listed in Table 1.

Application to published biological models
The exact method in its current implementation is best-suited to study the station-
ary solutions and identify the key parameters (transition rates) of logical models of

Koltai et al. BMC Bioinformatics (2020) 21:241 Page 15 of 22

int