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Abstract

Background: The use of RNA-sequencing (RNA-seq) in molecular biology research
and clinical settings has increased significantly over the past decade. Despite its
widespread adoption, there is a lack of simple and interactive tools to analyze and
explore RNA-seq data. Many established tools require programming or Unix/Bash
knowledge to analyze and visualize results. This requirement presents a significant
barrier for many researchers to efficiently analyze and present RNA-seq data.

Results: Here we present BEAVR, a Browser-based tool for the Exploration And
Visualization of RNA-seq data. BEAVR is an easy-to-use tool that facilitates interactive
analysis and exploration of RNA-seq data. BEAVR is developed in R and uses
DESeq2 as its engine for differential gene expression (DGE) analysis, but assumes
users have no prior knowledge of R or DESeq2. BEAVR allows researchers to easily
obtain a table of differentially-expressed genes with statistical testing and then
visualize the results in a series of graphs, plots and heatmaps. Users are able to
customize many parameters for statistical testing, dealing with variance, clustering
methods and pathway analysis to generate high quality figures.

Conclusion: BEAVR simplifies analysis for novice users but also streamlines the RNA-
seq analysis process for experts by automating several steps. BEAVR and its
documentation can be found on GitHub at https://github.com/developerpiru/BEAVR.
BEAVR is available as a Docker container at https://hub.docker.com/r/pirunthan/
beavr.

Keywords: Data visualization, Data exploration, Principle component analysis,
Hierarchical gene clustering, Pathway analysis

Background
RNA-sequencing (RNA-seq) has revolutionized molecular biology research in the last

decade [1]. RNA-seq is a high-throughput sequencing method that allows for the

quantification of gene expression patterns between experimental groups using differen-

tial gene expression (DGE) methods [2]. Analysis of DGE may guide the early phases

of studies by highlighting transcripts and/or pathways with altered expression in a
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given experimental system or may be used to assess the downstream impacts of a treat-

ment or other experimental condition. RNA-seq experiments may follow almost any

variation of in vitro or in vivo study in which RNA is collected [3]. Most recently,

RNA-seq has been employed clinically, including in numerous cancer-related clinical

trials [4–6].

Once the wet lab components of an RNA-seq experiment are completed, the data

must be analyzed computationally. To date, a multitude of tools are available to re-

searchers depending on the experimental question (e.g. the discovery of novel tran-

scripts or determining gene expression changes) [3, 7]. Regardless of the analysis tool

selected, the vast majority of currently available tools require knowledge of program-

ming (C/C++, Perl, Python, R) or shell scripting (Unix/Bash shell). DESeq2, one of the

most popular analytical software packages for DGE, is written in R and requires an un-

derstanding of this language to manipulate data and visualize results [8]. The require-

ment for users to navigate one or more computational languages in order to analyze

RNA-seq data presents a substantial barrier for many researchers who are adept with

respect to the wet lab components of RNA-seq but unfamiliar with the computational

aspects.

Here, we present BEAVR, a Browser-based tool for the Exploration And Visualization

of RNA-seq data. BEAVR is an operating system (OS)-independent software package

written in R that can run locally on a user’s computer or on a remote server. BEAVR
provides an easy-to-use graphical frontend to allow both novices and experts to per-

form DGE analyses on RNA-seq datasets. Specifically, BEAVR simplifies the process of

visualization and exploration of results and allows users to generate visually-appealing

graphs, tables, plots, heatmaps and pathways maps. At its core, BEAVR uses the

heavily-cited DESeq2 as the engine for its analysis. While there is no single superior

method for RNA-seq analyses, DESeq2 is an ideal choice because it requires only raw,

unnormalized read counts and provides functions to perform DGE and statistical ana-

lyses. Our implementation allows for the visualization of PCA plots, read count plots,

volcano plots, heatmaps and enriched pathways and facilitates the exploration of DGE

results to aid researchers in their study of known gene interactions as well as providing

tools for the discovery of novel gene interactions.

Implementation
Interface & typical workflow

BEAVR’s graphical user interface (GUI) is developed in R using the shiny framework.

The layout is divided into a main panel and a sidebar panel (Fig. 1a). The main panel

presents the user with a tabbed environment that breaks the workflow of DGE analysis

into easy-to-follow logical steps. Depending on which tab is open, the sidebar will dis-

play context-dependent parameters that control the output and display of data in the

work area of the main panel. The user can manipulate these parameters at any time

and the results will be recalculated and updated in real-time, drastically reducing the

amount of time required compared to command-line based approaches.

A typical workflow for RNA-seq analysis using BEAVR is shown in Fig. 1b. Briefly,

data is loaded into BEAVR, DGE analysis is performed using DESeq2 and the results

are visualized in interactive tables, in graphs and other displays. In the Load Data tab,
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the user must provide a DESeq2 compatible read count table file containing

raw, unnormalized read counts (obtained using alignment tools such as STAR or

HTSeq) as well as a sample treatment matrix file (created in a text editor or

spreadsheet program). The read count table file (either TXT or CSV) should

contain the read quantities for all of the samples in the experiment (Fig. 2a). The

first column must contain ENSEMBL identifiers for each gene. The heading for

this column must be gene_id. The next n columns must contain raw read counts

for each of the n samples. The headings for these n columns must be unique sam-

ple identifiers (e.g. wildtype-1, wildtype-2, wildtype-3, mutant-1,
mutant-2, mutant-3). The sample treatment matrix file (either TXT or

CSV) informs BEAVR which columns (samples) in the read count table file be-

long to which treatment groups (Fig. 2b). This allows multiple replicates to be

grouped together across different experimental conditions. The first column must

list in each row the sample identifiers for all n columns in the read count
table file (e.g. wildtype-1, wildtype-2, wildtype-3, mutant-1,
mutant-2, mutant-3). The second column of the sample treatment
matrix file specifies which experimental condition each sample belongs to (e.g.

wildtype and mutant, or untreated and drug-treated). The heading for

this column must be condition. In the third column, the user may specify any

additional characteristics for each sample, such as replicate numbers/letters or

genotype groups (e.g. replicate-A, replicate-B, replicate-C). The

heading for this column must be replicate. Both the read count table file

Fig. 1 Overview of BEAVR’s graphical user interface and typical workflow. a BEAVR’s easy-to-use graphical user
interface (GUI) is divided into two areas; a main work area and a sidebar. The main work area has a tabbed-
interface to select data output and figure displays. Depending on the tab selected in the main working area, the
context-dependent sidebar will show appropriate options and parameters that allow the user to customize
analysis, data output and figures. b BEAVR breaks down the RNA-seq analysis workflow into logical steps. Users
begin by loading their data (raw read counts and sample information) and select experimental settings for analysis
and statistical tests. Then differential gene expression (DGE) analysis is performed automatically using DESeq2,
lastly the data is displayed in interactive tables, graphs and plots that users can explore, manipulate and customize
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and the sample treatment matrix file must contain at least two experimental

conditions with a minimum of 2 samples each. Treatment groups do not need to

contain the same number of samples in each group.

Fig. 2 BEAVR requires two inputs: a read count table file and a sample treatment matrix file. a
BEAVR requires raw, unnormalized read counts as input. This can be obtained using tools such as STAR or HTSeq.
The first column of the read count table file must have the heading gene_id and contain unique ENSEMBL
IDs. Every column after must contain read counts for one sample, each with a unique identifier in the heading (e.g.
Sample-1, Sample-2,…, Sample-n). The read count table file must be either a TXT or CSV format. b
BEAVR requires an additional file, called a sample treatment matrix file, that contains characteristics about
each sample, such as which treatment group the samples belong to. The first column of this file must contain in each
row all the samples found in the read count table file (e.g. Sample-1, Sample-2,…, Sample-n) in the
same order. The second column must have the heading condition. The third column must have the heading
replicate. In the condition column, users must specify which experimental group each sample belongs to
(e.g. Wildtype, Mutant, or Drug-Treated). In the replicate column, users can provide any other additional
grouping information or replicate information (e.g. Replicate-1, Replicate-2,…, Replicate-n). The
sample treatment matrix file must be either a TXT or CSV format
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In the Settings tab, the user must select a control condition and a treatment con-

dition (condition choices are loaded from those available in the sample treatment
matrix file). For DGE analyses, DESeq2 is used to compare the selected treatment

condition against the selected control condition. The user may specify a minimum cut-

off for reads if desired (reads below this cutoff value are dropped before analysis), spe-

cify a false discovery rate (FDR) to determine adjusted p values (padj) and also specify

an effect size shrinkage method using DESeq2 [8] or apeglm (approximate posterior

estimation) [9].

Representation of results & data exploration

Clicking on the Gene Table tab will initiate automated DGE analysis using the pa-

rameters specified by the user. A progress bar will be shown in the bottom right of the

main work area. Upon completion, an interactive table displays the results including

gene IDs as HUGO Gene Nomenclature Committee (HGNC) symbols, log2 fold

changes (LFC), p values and padj values for each gene. Controls in the sidebar may be

used to filter the table as desired and a copy may be saved using the Download Table
button.

Visualization of all plots is implemented using ggplot2. The PCA tab will generate

a principle component analysis (PCA) plot and display all the samples found in the

read count table file. In the Sample Clustering tab, the user can select a dis-

tance measurement method to use (Pearson correlation, Euclidean, Maximum, Manhat-

tan, Canberra, Binary, or Minkowski) which will compute a distance matrix using the

ComplexHeatmap and dist packages and display the sample variation as a heatmap.

The Read Count Plots tab will generate normalized read count plots, either as box-

plots or jitter plots, for desired genes. The user can enter gene names separated by a

comma and change the grid layout as desired (use a 1 × 1 grid for a single plot or in-

crease the grid size as necessary to fit multiple plots). The Heatmap tab will allow the

user to generate a heatmap with gene clustering for the top n significantly variable

genes (where n is a user-defined number), or for any list of genes entered by the user.

Dependence of the variance on the mean is removed using either variance stabilization

(vst) or regularized logarithm (rlog) transformations [8] as specified by the user. The

user can also specify a hierarchical clustering method (Ward.D/D2, Single, Complete,

Average, McQuitty, Median, or Centroid) to be used by the hclust package (for row

and/or column clustering) and a distance measurement method as described above.

The Volcano Plot tab will generate a volcano plot using the EnhancedVolcano
package to illustrate differentially-expressed genes that meet the user-defined LFC and

padj cutoffs for the control and treatment conditions specified on the Settings tab.

Pathway over-representation analysis and gene set enrichment analysis (GSEA) are per-

formed using the ReatomePA and enrichplot packages [10] and figures are shown

in the Pathway Enrichment Plot, Pathway Enrichment Map, GSEA Plot and

GSEA Map tabs with the tabular results being displayed in the Pathway Enrichment
Table and GSEA Table tabs. All customization options are presented in the sidebar

and allow users to control many parameters when plotting figures, including the ability

to customize colors, font sizes and legend positions and directions (horizontal or verti-

cal) for all figures. The size and aspect ratio of all figures can be adjusted by clicking
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and dragging the outside edges of the plot area. The Save Plot button located above

every plot allows figures to be saved in multiple formats (JPEG, PDF, PNG, SVG, TIFF)

while the Download Table button in the sidebar allows data from any table to be

saved (CSV).

Installation

Since BEAVR is developed in R (+ 3.5), it is OS-independent and runs on Linux, Mac

OS and Windows. We provide several methods to install and use BEAVR depending on

user preference: 1) the easiest method for those unfamiliar with R is to install Docker

(https://docker.com) and use our Docker container (https://hub.docker.com/r/pir-

unthan/beavr) which comes pre-installed with all of the required components; or 2)

users can use our OS-specific scripts to install and configure R with all of the required

packages for BEAVR; or 3) users who already have R installed can download BEAVR
from GitHub. Additionally, system administrators may install BEAVR in a multi-user

server environment which is useful for research groups that want to have a centralized

server for BEAVR. This is implemented using ShinyProxy (https://shinyproxy.io) and

Docker which provide a secure, sandboxed environment for every connected user. We

provide automated install scripts on GitHub to easily accomplish this and system ad-

ministrators can customize the installation to their specific network requirements. Each

of these methods simplify and streamline setup for novice and expert users alike and

are well-documented on the GitHub page for BEAVR located at https://github.com/

developerpiru/BEAVR.

Run time consideration

Computation time is dependent on the user’s device specifications since all DGE ana-

lyses, statistical tests and visualization steps are performed locally (or the server specifi-

cations when running BEAVR on a shared server). For a typical mammalian RNA-seq

experiment containing two experimental groups with three replicates each using the

human genome as a reference (88 million reads total), automated calculations will take

approximately 1 min with a dual-core Intel Core i5 CPU and 4 GB RAM or approxi-

mately 30 s with a 6-core Core i7 and 16 GB RAM. Generation of each figure, as well

as subsequent modifications thereto, will take a few additional seconds. These short

processing times will allow users to repeatedly manipulate experimental settings to re-

calculate DGE as desired with different parameters. Users may then explore the results,

generating figures and filtering and downloading the data for downstream applications.

Results & discussion
A typical use case

To demonstrate a typical use case for BEAVR, we utilized a previously published RNA-

seq dataset by Sehrawat et al. [11]. In this study, LNCaP cell cultures were treated with

either DMSO or SP2509 (a small molecule lysine-specific demethylase 1 [LSD1] inhibi-

tor) for 24 h [11]. RNA-seq was performed on RNA harvested from triplicate cell cul-

tures corresponding to each treatment condition. We downloaded raw, unnormalized

read counts from GEO (GSE59009) and merged the read counts from all samples to

make a single read count table file (TXT). We created a sample treatment
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matrix file (CSV) using Microsoft Excel to specify the treatment condition group (ei-

ther DMSO or SP2509) and replicate number for each sample. Once these two files

were prepared, they were loaded into BEAVR from the Load data tab. In the Set-
tings tab, we selected ‘DMSO’ as the control condition and ‘SP2509’ as the treatment

condition. The FDR was set to 10% and the minimum threshold to drop reads was set

to 10.

Figure 3a shows the DGE results from the Gene table tab, which has been sorted

by ascending padj values. This table can be saved as-is or it can be filtered. For example,

it is often desirable to have a list of only those genes that exceed a specific LFC thresh-

old (e.g. ±1.0) and fall below a padj threshold (e.g. < 0.05). These values can be set using

the sidebar (Fig. 3b) and the results table will be updated automatically to display genes

meeting the selected criteria. These parameters also instruct the thresholds used in

generating the volcano plot and pathway analyses.

PCA is an important consideration in RNA-seq analysis for small and large studies.

Depending on the experimental design, PCA plots can be used for quality control or as

a discovery tool [12]. In studies with only two control groups and just two or three bio-

logical replicates, it can inform researchers of replicates that are not congruent and

have high variance which can skew results and reduce statistical power. In larger stud-

ies, it can provide insight into the heterogeneity within experimental conditions. The

PCA Plot tab displays a PCA plot from our example dataset. The plot shows that

there is a very small amount of variance (1%) between replicates within each experi-

mental group (DMSO- or SP2509-treated), while there is very large variance, as ex-

pected, between the two experimental groups (98%) (Fig. 4a). Further quality control

and insight into sample and replicate variation can be interrogated through a distance

Fig. 3 DGE table output from a typical use case for BEAVR. a Once DGE analysis completes in BEAVR, an
interactive table is shown in the Gene Table tab. This table provides users with log2 fold change (LFC)
values for each gene as well as p values and adjusted p values (padj). Users can search for a particular gene
of interest by its gene name or sort the table based on the contents of any column. A copy of the table
can be saved using the download button in the sidebar. The data shown here is the output of DGE analysis
performed on the Sehrawat et al. dataset. ‘DMSO’ was selected as the control condition and ‘SP2509’ was
selected as the treatment condition in the Settings tab. The false discovery rate (FDR) was set to 10%
and genes with less than 10 reads were dropped from analysis. b The DGE results table in the Gene
Table tab can be filtered by any metric using the controls provided in the sidebar. The available filtering
options are min/max LFC, min/max p value, min/max padj, min/max baseMean (normalized mean), min/max
lfcSE (LFC standard error) and min/max stat (test statistic). The filtered table can be downloaded using the
download button in the sidebar. If filtering is enabled, the filtered table will be used to generate the
volcano plot in the Volcano Plot tab
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matrix and subsequent sample clustering. We defined the parameters in the Sample
Clustering tab to compute Pearson correlation distances and the result is shown in

Fig. 4b. Replicates in the same experimental group cluster together and are very similar

to each other, indicating very low variance. Together, these two graphs provide re-

searchers with useful information about experimental groups and consistency of bio-

logical replicates.

Sehrawat et al. found inhibition of LSD1 in LNCaP cells caused downregulation

of previously characterized embryonic stem cell-like genes [11, 13]. Using the Read
Count Plots tab, we explored the normalized read counts of these genes and

generated plots that showed reduced normalized reads in the SP2509-treated cells

compared to DMSO-treated cells (Fig. 5a). In situations where genes or pathways

of interest are already known, read count plots can be used as a tool to investigate

changes in gene expression across samples. However, RNA-seq is also used in ex-

perimental systems to inform researchers of genes and pathways that may be of

interest. For such purposes, a heatmap with gene clustering or a volcano plot are

useful tools. The Heatmap tab generates heatmaps for the top n genes (where n is

a user-defined number) or for specific genes entered by the user. Figure 5b shows

the top 50 most differentially-expressed genes after variance stabilization with hier-

archical clustering performed across rows (Ward.D2 method). This provides infor-

mation on the most strongly upregulated and downregulated genes. Although the

data for a heatmap is transformed and variance is stabilized, it does not provide in-

formation on significance (p values or padj) [8]. The volcano plot from the Vol-
cano Plot tab illustrates genes that meet a specified LFC threshold as well as a

padj threshold (Fig. 5c). We set the LFC threshold to ±1.0 and the padj cutoff to <

0.05. Genes highlighted in red (meeting both the LFC and padj cutoffs) were also

Fig. 4 Illustrating variance across samples using principle component analysis (PCA) and sample clustering.
a PCA is a useful tool to determine the variance within and across different experimental groups and
replicates. The PCA output from the PCA tab is shown for the Sehrawat et al. dataset. High variance (98%),
as expected, is observed between the two experimental groups (DMSO- vs SP2509-treated) whereas low
variance (1%) is observed between replicates within each group. b Hierarchical sample clustering is also a
useful tool to determine variances. The output from the Sample Clustering tab is shown for the
Sehrawat et al. dataset. Pearson correlation was selected as the distance measurement method in the
sidebar. Similar to the PCA plot, the clustered heatmap shows that replicates in each experimental group
(DMSO- or SP2509-treated) cluster strongly together, indicating low variance between biological replicates
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found in the heatmap, demonstrating the usefulness of heatmaps and volcano plots

and how the two can be used together for discovery of novel gene expression

patterns.

Fig. 5 Visualizing normalized read counts and differential gene expression between experimental groups. a
Normalized read count plots are shown for ten embryonic stem cell-like genes of interest from the
Sehrawat et al. dataset to illustrate changes between the DMSO- and SP2509-treated groups. BEAVR allows
users to enter a list of genes to illustrate expression behavior as jitter plots (shown) or boxplots (not
shown). A 5 × 2 (rows x columns) grid was selected to display these 10 genes. b The top 50 most
differentially-expressed genes between DMSO- and SP2509-treated groups are shown in the clustered
heatmap for the Sehrawat et al. dataset. This heatmap was generated in the Heatmap tab using the
Ward.D2 hierarchical clustering method and Euclidean distance measurements. Row (gene) clustering was
enabled. Clustered heatmaps are useful for displaying expression changes across treatment groups. c A
volcano plot highlighting genes that meet both LFC and padj cutoffs are shown for the Sehrawat et al.
dataset. This volcano plot was generated in the Volcano Plot tab with the LFC cutoff set to ±1 and the
padj cutoff set to < 0.05. The volcano plot is another way to visualize the data shown in the heatmap in (b),
however the volcano plot also illustrates the statistical significance of genes (the y-axis)
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Following identification of upregulated and downregulated genes, it is useful to per-

form pathway enrichment or gene set enrichment analysis (GSEA) [14, 15] to identify

important pathways of interest that will inform investigators of downstream experi-

ments. The Pathway Enrichment Plot tab performs over-representation analysis

and produces either a dot plot or bar graph of the top n pathways (where n is a user-

defined number) (Fig. 6a). The Pathway Enrichment Map tab provides a broader

look at all enriched pathways using an interconnected network map (Fig. 6b) that

shows the results of over-representation analysis, however users may also wish to per-

form GSEA on the GSEA Map tab. The GSEA Plot tab displays a plot of the running

enrichment score for a specific enriched pathway as defined by the user (Fig. 6c). The

input data used to generate these figures is the filtered or unfiltered data from the

Gene Table tab (we filtered the data using LFC < 0 and padj < 0.05). The pathways

identified in Fig. 6a-c are consistent with the most downregulated genes shown in the

heatmap (Fig. 5b) and volcano plot (Fig. 5c) (such as H2AX, CDC20, CCNB1, AURKA)

and indicate the most significantly enriched pathways among downregulated genes are

related to cell cycle and DNA replication processes. Together, the read count plots,

heatmap, volcano plot and pathway plots inform researchers of gene expression

changes and provide insight into which genes and pathways may play an important role

in their experimental system.

Future work

DGE analyses computes differences between two groups at a time, such as Wildtype
and Single-knockout, even though users can load data files containing > 2 groups

(e.g. Wildtype, Single-knockout and Double-knockout). Currently, users

must perform one comparison first (e.g. Wildtype vs Single-knockout), down-
load the results and then perform another comparison (e.g. Wildtype vs Double-
knockout) and download the new results. Users must then manually perform com-

parisons outside of BEAVR to identify overlapping or non-overlapping genes. Future

updates to BEAVR will allow users to perform multiple DGE analyses and allow them

to interact with both results at once to perform direct comparisons within BEAVR. Im-

plementation of additional plotting tools, such as Euler or Venn diagrams, will allow

for the visualization of overlapping or non-overlapping dysregulated genes across differ-

ent comparisons such as Wildtype vs Single-knockout and Wildtype vs

Double-knockout. These overlapping or non-overlapping datasets can then be used

to perform pathway analysis or GSEA within BEAVR.
Presently, BEAVR only supports Reactome categories for pathway analysis and GSEA.

Future updates will enable support for Gene Ontology (GO) [16], Disease Ontology

(DO) [17], KEGG [18], WikiPathways [19] and Molecular Signature Database (MSigDb)

[14, 20] to provide users with more options.

Conclusions
RNA-seq analyses has largely relied on command-line-driven tools, such as DESeq2
[8], EdgeR [21] or ALDEx [22], thereby creating a barrier to entry for scientists wishing

to conduct RNA-seq analyses. Here we presented BEAVR, a graphically-driven tool that

greatly simplifies DGE analyses through a logical workflow that makes use of DESeq2
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as the core DGE engine. BEAVR is easy-to-use and allows researchers to not only

quickly and easily change experimental parameters in real-time to visualize results, but

also provides an intuitive interface for researchers to explore their results in-depth and

Fig. 6 Identification of enriched pathways among differentially expressed genes. a Bar graph showing the
results of over-representation analysis using the Pathway Enrichment Plot tab. The maximum
number of pathways/categories to show was set to 10 and the enrichment padj value cutoff was set to <
1 × 10− 30. The gene count (x-axis) indicates the number of genes enriched in each pathway and colors
indicate level of significance (padj). The pathways are plotted on the y-axis in order of increasing
significance. b While the Pathway Enrichment Plot tab shows a bar graph or dot plot for only a
subset of enriched pathways, the Pathway Enrichment Map tab shows all of the enriched pathways in
an interconnected network map. The size of each node indicates the gene count (number of genes
enriched in each category) and the color represents the padj value (the cutoff was set to < 1 × 10− 30). c The
GSEA Plot tab generates a plot of the running enrichment score for a specified pathway/category. The
plot for the category “cell cycle” is illustrated here. Currently only Reactome pathways/categories are
supported for each of these figures. The input data for a-c is the filtered or unfiltered data from the Gene
Table tab (we set the LFC to < 0 and the padj cutoff to < 0.05)
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generate highly customizable figures. Various other tools have been developed to pro-

vide users with graphical interfaces for RNA-seq analyses, most notably GENAVi [23],

START [24], iDEP [25], DEBrowser [26], DEIVA [27] and DEApp [28]. While these

tools have undoubtedly provided a significant evolution in RNA-seq analysis tools, we

found that BEAVR offers meaningful advantages in comparison. Specifically, the ease of

installation and usage, combined with more flexibility in data output features are im-

portant advancements. None of these programs offers each of our key features in one

complete package, such as filtering capabilities of gene lists, all of the different data dis-

plays that BEAVR provides (heat-map, PCA plots, etc.), the ability to customize and ex-

port figures in as many formats, or the ability to integrate pathway analysis. Based on

these differences we expect BEAVR will be widely utilized.

BEAVR was developed to be simple enough for novices, yet fast and powerful enough

for experts to streamline and automate DGE analyses. Even with modest computing

power by today’s standards, BEAVR is capable of completing analyses within minutes,

allowing researchers to quickly automate analyses of large datasets. With uses for

RNA-seq continuing to expand — both experimentally and clinically — BEAVR is well-

positioned to allow analysis of these datasets to be quick and efficient, while providing

the latitude for customization as per the user’s requirements.

Availability and requirements
Project name: BEAVR

Project home page: https://github.com/developerpiru/BEAVR and https://hub.

docker.com/r/pirunthan/beavr

Project documentation: https://github.com/developerpiru/BEAVR/blob/master/

README.md

Operating system: Linux, Mac OS, Windows

Programming language: R

Other requirements: R 3.5 or higher, web browser

License: GNU General Public License v3.0

Any restrictions to use by non-academics: None
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interface; HGNC: HUGO Gene Nomenclature Committee; KEGG: Kyoto Encyclopedia of Genes and Genomes; LFC: Log2
fold change; LSD1: Lysine-specific demethylase 1; MSigDb: Molecular Signature Database; OS: Operating system;
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