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Abstract

Background: Inferring diseases related to the patient’s electronic medical records (EMRs) is
of great significance for assisting doctor diagnosis. Several recent prediction methods have
shown that deep learning-based methods can learn the deep and complex information
contained in EMRs. However, they do not consider the discriminative contributions of
different phrases and words. Moreover, local information and context information of EMRs
should be deeply integrated.

Results: A new method based on the fusion of a convolutional neural network (CNN) and
bidirectional long short-term memory (BiLSTM) with attention mechanisms is proposed for
predicting a disease related to a given EMR, and it is referred to as FCNBLA. FCNBLA deeply
integrates local information, context information of the word sequence and more
informative phrases and words. A novel framework based on deep learning is developed to
learn the local representation, the context representation and the combination
representation. The left side of the framework is constructed based on CNN to
learn the local representation of adjacent words. The right side of the framework
based on BiLSTM focuses on learning the context representation of the word
sequence. Not all phrases and words contribute equally to the representation of
an EMR meaning. Therefore, we establish the attention mechanisms at the
phrase level and word level, and the middle module of the framework learns
the combination representation of the enhanced phrases and words. The macro
average f-score and accuracy of FCNBLA achieved 91.29 and 92.78%, respectively.

Conclusion: The experimental results indicate that FCNBLA yields superior
performance compared with several state-of-the-art methods. The attention
mechanisms and combination representations are also confirmed to be helpful
for improving FCNBLA’s prediction performance. Our method is helpful for
assisting doctors in diagnosing diseases in patients.

Keywords: EMR-related disease prediction, Convolutional neural network, Bidirectional
long short-term memory, Attention at phrase level, Attention at word level
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Background
Electronic medical records (EMRs), which record patient phenotypes and treatments,

are an underutilized data source. Extracting useful information and predicting diseases

using EMRs to assist doctors in disease determination and timely treatment of patients

is one of the goals of intelligent medical construction [1–3], which can not only help us

better understand the clinical manifestations of various diseases [4–6] but also reduce

medical errors to improve the health of patients and improve the work efficiency of

doctors [7–9].

The previous methods for predicting diseases related to information in EMRs can be

roughly grouped into three categories. The methods in the first category are rule-based,

which can also be called expert systems. Expert systems are designed to address prob-

lems by utilizing the knowledge and experience of human experts [10]. They perform

rule matching on each input EMR to select the disease that best fits these rules to im-

plement the corresponding diagnosis for patients. These methods have achieved great

success in the field of medical aided diagnosis [11–13]. However, as time goes on, there

have been increasingly more cases, and the data are no longer relatively structured and

constrained but tend to be multistructured and unstructured. Therefore, rulemaking

has become infeasible.

Methods in the second category construct shallow models based on machine learn-

ing. Such methods have achieved considerable success in the fields of text classification

[14–16], legal prediction [17–19] and intelligent medical systems [20–22]. For example,

some common techniques are utilized on public medical datasets for predicting dis-

eases, such as support vector machines [23–25], random forests [26, 27], and logistic

regression [28], and they achieve good predictive results. However, these methods have

certain limitations in feature extraction. They usually need to artificially design certain

features as input for machine learning and cannot capture the deep and complex in-

ternal information of data.

The methods in the third category are based on deep learning. In recent years, deep

learning has achieved the most advanced effects on various natural language processing

tasks, such as machine translation [29, 30], sentiment analysis [31, 32], speech recogni-

tion [33, 34] and language modeling [35–37]. Moreover, in the medical field, experi-

ments have proven that deep learning methods outperform state-of-the-art traditional

predictive models in all cases with electronic health record (EHR) data. For example,

Cheng et al. [38] proposed a prediction method based on convolutional neural network

(CNN) for the risk prediction of EHR. Nguyen et al. [39] introduced a CNN model for

predicting the probability of readmission. Choi et al. [40] introduced a shallow recur-

rent neural network (RNN) model to predict diagnoses and medications. Li et al. [41]

provided a transformer-based model to predict diseases in the future. Due to the ad-

vantages of deep learning in cases of using EHR data, some deep learning-based models

were applied to the diagnosis of Chinese electronic medical records. CNN have strong

capabilities in feature extraction and expression [42, 43]. For example, methods based

on CNN were proposed by Yang et al. and Chen et al. to predict diseases [10, 44]. They

focused on extracting local information from adjacent words. However, these methods

failed to consider the context information of the word sequence. Usama et al. and Hao

et al. proposed prediction methods based on a recurrent convolutional neural network

(RCNN) [45, 46], which learns the local information of the word context. However,
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they did not fully exploit the whole context and local information. In addition, the pre-

vious methods do not discriminate the different contributions of different phrases and

words. In our study, a novel method based on CNN and bidirectional long short-term

memory (BiLSTM) with attention mechanisms is proposed for obtaining the latent rep-

resentations of EMRs, which we refer to as FCNBLA (Fig. 1). FCNBLA fully integrates

local information formed by several adjacent words, context information of the whole

sentence, and enhanced phrase and word information. Figure 1a is dedicated to feature

extraction from adjacent words of an EMR to obtain their local representation. In

Fig. 1b, the context representation is learned from the whole EMR based on BiLSTM.

Fig. 1 Schematic diagram for predicting diseases related to EMRS. a Extracted local information from
several adjacent words. b Extracted context information for words in EMRs. c Establish attention
mechanisms at the word level and phrase level and deeply integrate local and context information to
obtain combination information. d Fully learn local information, context information and
combination information
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In Fig. 1c, each phrase and word are assigned different weights by applying attention

mechanisms, which may discriminate their different contributions for predicting dis-

eases related to EMRs. The experimental results indicate that FCNBLA outperforms

several state-of-the-art methods for predicting diseases.

Methods
Datasets for disease prediction related to EMRs

The EMR dataset we use comes from previous work on disease prediction [10]. The

original 18,625 EMRs were originally collected from Huangshi Central Hospital in

China. The dataset contains the 10 most common diseases: diabetes, hypertension,

chronic obstructive pulmonary disease (COPD), arrhythmia, asthma, gastritis, gastric

polyps, gout, gastric ulcers and urinary tract infection (UTI). Each EMR contains 18

items: initial diagnosis on admission, chief complaint, history of surgery, vital signs,

specialist condition, general condition, allergic history, nutritional status, suicidal ten-

dency, specialist examination, history of surgical trauma, complications, current med-

ical history, fertility history, auxiliary examination, personal history, past medical

history, and family history. Among them, initial diagnosis on admission is a disease re-

lated to an EMR, and the remaining 17 items record the patient’s condition. However,

24 EMRs only included the initial diagnosis on admission but did not include any of

the remaining 17 items, so we removed them. We used the remaining 18,601 EMRs as

our experimental data.

We selected 70% of the 18,601 EMRs as the training set to train the model, selected

10% as the validation set to adjust the model parameters, and selected 20% to test per-

formance of the model. The distributions of the training, validation and testing sets are

consistent with the original data distributions of 10 diseases. For the 10 diseases, their

training, validation, and testing data distributions are shown in Table 1.

Disease prediction model

In this section, we describe our prediction model for learning the latent representations

of EMRs and predicting diseases related to EMRs. Figure 2 shows the overall architec-

ture of the model, which involves three major network modules. The left side is the

convolutional module, which learns the local representation of a given EMR. The

Table 1 Number of EMRs related to each disease in the training, validation and test sets

Diseases Training set Validation set Test set

diabetes 3952 564 1129

hypertension 2763 395 789

COPD 2310 330 660

arrhythmia 1016 145 290

asthma 753 108 215

gastritis 748 107 214

gastric polyps 511 73 146

gout 460 66 131

gastric ulcers 305 44 87

UTI 203 29 58
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BiLSTM module on the right side learns the context representation of the EMR. The

middle part is the fusion of local information and context information of the EMR, and

its fusion representation is obtained. For disease prediction, we design a combination

strategy to estimate the final association score between a disease and the EMR.

Word embedding layer

We use word embeddings as a representation of each EMR in the input layer. The

word embedding layer can be simply understood as a look-up operation; that is, it reads

a one-hot vector, et ∈ R∣V∣, for a word and maps it to a dense vector of d dimensions,

xt = (x1, x2,…, xd) as an input of the disease prediction model. The weight matrix of the

word embeddings is H ∈ Rd × ∣V∣, which is randomly initialized. We fine-tune the ini-

tial word embeddings, modifying them during gradient updates of the neural network

model by backpropagating gradients. We have the following formula:

xt ¼ Het ; ð1Þ

where V denotes a series of words and |V| is the size of the vocabulary.

Convolutional module on the left

The CNN proposed by Lecun et al. [47] can automatically learn feature representations.

The CNN architecture is composed of three different layers: the convolutional layer,

the pooling layer and the fully connected layer, as shown on the left side of Fig. 2.

An EMR consisting of T words to be classified is fed into the word embedding layer,

T words are converted into vectors, and then an embedding matrix I ∈ RT × d is formed

as the input of the CNN. The convolutional layer and pooling layer are the core of the

CNN. The CNN used in our framework consists of a convolutional layer followed by a

max pooling layer. For the convolutional layer, we use 3 filters with different heights to

Fig. 2 The overall framework of the model for learning the potential representation of EMRs. The left of the
framework is the CNN module, the right is the BiLSTM module, and the middle is the attention module
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slide across I and there are 50 filters for each height. Assume the height of a filter is k,

which means the filter operates on the adjacent k words and the width of each filter is

the same as the dimension of each input word embedding matrix and the outputs of

the convolutional layer are feature maps.

The pooling layer may reduce the parameters of the neural network while maintain-

ing the attributes of the word sequence so that the model can be effectively prevented

from overfitting [10]. The pooling operation focuses on computing the max or average

of the local regions. In this paper, we use the max pooling operation for each feature Z.

After the pooling operation calculation is completed, all the extracted features are

concatenated to form a local representation zC of an EMR.

BiLSTM module on the right

LSTM was proposed by Hochreiter et al. [48] to solve the gradient vanishing/exploding

problem of RNN. However, LSTM can only obtain information from past words. For

the task of determining the disease that an EMR is related to, it is very useful to obtain

the past and future context information because each word of an EMR is semantically

related to other words. The BiLSTM proposed by Dyer et al. [49] extended the unidir-

ectional LSTM by introducing a second hidden layer, and the connections between hid-

den layers flow in reverse chronological order. Therefore, BiLSTM can be used to

capture context information of an EMR. As shown in Fig. 2, on the right side of the

framework, the BiLSTM contains two subnetworks: the forward LSTM is used for

obtaining the forward sequence context h
!

t , and the backward LSTM obtains the back-

ward sequence context h
 

t . The final hidden state ht of each word is the concatenation

of h
!

t and h
 
t .

Attention module on the middle

In our model, the attention module is used to learn which words or phrases are more

important for the representation of an EMR. Therefore, the module consists of the at-

tention mechanism at the phrase level and the one at the word level.

Attention at the phrase level Z obtained by the left convolutional module is com-

posed of N (1 ≤N ≤ T − k + 1) rows. We call each row of Z a phrase vector, which con-

tains the convolution results from the j filters performing convolution operations on a

sequence of k word embeddings. Zi is the i-th row of Z. Different phrases usually have

different contributions to the representation of the EMR. Thus, we establish the atten-

tion mechanism for each phrase vector Zi to generate the final attention representation.

Zi is assigned an attention weight βi, and βi is defined as follows:

vi ¼ tanh WrZi þ brð Þ; ð2Þ

βi ¼
exp v⊤i up

� �
XN

l¼1
exp v⊤l up

� � ; ð3Þ

where Wr is a weight matrix, br is a bias vector, and up is a phrase-level context vector.

vi is the feature representation of Zi, which is obtained by feeding Zi into a one-layer
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multilayer perceptron (MLP). βi is a standardized importance weight of Zi and N is the

number of rows of the feature map Z obtained by the convolutional layer. The phrase

context vector up is randomly initialized and updated during the training process. We

aggregate the representations of those informative phrases to form the enhanced local

phrase information of an EMR, which is represented as follows:

lr ¼
XN
i¼1

βi Zi: ð4Þ

Attention at the word level Different words also contribute differently to the repre-

sentation of an EMR. Therefore, we establish a word level on the hidden state ht (1 ≤

t ≤ T) to generate the final attention representation. The attention weight at the word

level is given as follows:

ut ¼ tanh Wcht þ bcð Þ; ð5Þ

αt ¼
exp u⊤

t uw
� �

XT
j¼1

exp u⊤
juw

� � ; ð6Þ

where Wc is a weight matrix, bc indicates a bias vector and uw is a word-level context

vector. ut is a hidden representation of ht and αt is a normalized attention weight of ht.

The important context information of the whole sentence is represented as lw,

lw ¼
XT
t¼1

αtht: ð7Þ

MLP-based module CNN is based on phrase-level attention, which learns the en-

hanced local phrase information of the EMR, and BiLSTM based on word-level atten-

tion learns enhanced context information of the entire EMR. It is necessary to better

integrate the two pieces of information, so an MLP-based integration module is estab-

lished. The MLP module consists of the left and right branches. The left branch is the

enhanced local phrase representation lr, the right branch is the enhanced context repre-

sentation lw, and lF is the concatenation of lr and lw and is defined as follows:

lF ¼ lr ; lw½ �; ð8Þ

where [.,.] indicates the concatenation operation. lF goes through a one-layer MLP to

obtain a combination representation, pF. The fully connected layer is applied to further

fuse the features within pF to obtain the representation of the middle side, sF.

Combination strategy

As shown in Fig. 2, the left and right sides of the framework obtain more detailed fea-

tures, which we call low-level features. The middle part is based on attention, which

learns high-level features. We designed a combination strategy to obtain corresponding

scores from different emphases. For the concatenation of low-level local features zC of

the left side and high-level combination features pF of the middle part, the emphasis is

placed on learning the local information of an EMR,
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pC ¼ zC ; pF½ �: ð9Þ

sC is obtained after pC goes through the fully connected layer, and sC contains local in-

formation and context information enhanced by the phrase-level and word-level atten-

tion mechanisms. Lower-level context features zB of the right side and high-level

features pF of the middle are concatenated, and the emphasis is placed on learning the

context information of an EMR,

pB ¼ zB; pF½ �: ð10Þ

pB also goes through a fully connected layer and outputs sB which contains the context

information of an EMR and enhanced local information, and its dimension is the same

as the number of disease labels. f is the final representation of an EMR, and it is a

weighted sum of sC, sB, and sF. It is defined as follows:

f ¼ αsC þ βsB þ γsF ; ð11Þ

where α, β and γ are used to control the contributions of sC, sB and sF, the values of β

and γ are calculated based on one half of 1 − α , and α is a hyperparameter. f is inputted

into a softmax layer to obtain p,

p ¼ softmax fð Þ: ð12Þ

where p is a prediction probability distribution of C disease classes (C = 10). pi repre-

sents the probability that an EMR is related to the i-th disease.

In our model, the cross-entropy loss between the ground truth distribution of disease

labels and the estimated probability distribution p is calculated as follows:

loss ¼ −
X
d∈T

XC
c¼1

gc dð Þ log pc dð Þð Þ; ð13Þ

where g ∈ RC is a vector that contains the true classification labels. T represents the

training sample set, and C is the number of diseases.

Results
Evaluation metrics of the model

In general, we use accuracy when evaluating the performance of the classifier. Accuracy

is defined as the rate of the number of samples correctly classified by the classifier

among the total number of samples for a given test dataset.

Accuracy ¼ TP þ TN
TP þ FP þ TN þ FN

ð14Þ

where true positive (TP): in the test set, the classifier correctly classifies the positive

samples into positive classes, true negative (TN): in the test set, the classifier correctly

classifies negative samples into negative classes, false positive (FP): in the test set, the

classifier incorrectly classifies negative samples into positive classes, false negative (FN):

in the test set, the classifier incorrectly classifies positive samples into negative classes.

In terms of a specific disease, such as diabetes, an EMR with a label, diabetes, is a posi-

tive example. An EMR with any other disease labels is regarded as a negative example.

Accuracy alone is not sufficient to measure the performance of a classifier. As shown

in Fig. 3, in the dataset, urinary tract infections is associated with 1.6% of the EMRs,
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and diabetes is associated with 30.3% of the EMRs. There is an imbalance among the

EMRs associated with one disease and those associated with another disease. Figure 3a

shows the number of EMRs related to each disease, and Fig. 3b is the proportion of

EMRs related to a specific disease among all the EMRs. For such an imbalance prob-

lem, the macro-average is also used to evaluate the performance of the model.

The macro-average calculates three values, Precisionmacro, i, Recallmacro, i and fmacro,i

for each disease, and averages fmacro,i values of all the diseases. Precisionmacro, i is the

rate of the correctly identified positive samples (EMRs) of the i-th disease (called di)

among the samples that are retrieved. It is calculated as follows:

Precisionmacro;i ¼ TPmacro

TPmacro þ FPmacro
; ð15Þ

where TPmacro is the number of successfully identified positive samples about di, and

FPmacro is the number of samples that are misidentified as di. Recallmacro, i is the pro-

portion of the di-related positive samples among all samples. It is defined as follows:

Recallmacro;i ¼ TPmacro

TPmacro þ FNmacro
; ð16Þ

where FNmacro is the number of misidentified di − related samples. fmacro, i is the F ‐

score value of di, and it is the harmonic average of Precisionmacro, i and Recallmacro, i; we

obtain

f macro;i ¼
2� Precisionmacro;i � Recallmacro;i

Precisionmacro;i þ Recallmacro;i
: ð17Þ

Finally, we calculate the average of all fmacro, i (1 ≤ i ≤ C) and obtain

F‐scoremacro ¼

XC
i¼1

f macro;i

C
; ð18Þ

where C represents the number of diseases.

Baselines

To evaluate the performance of the proposed method, FCNBLA, we compare it with

several state-of-the-art methods of disease prediction. We describe them in detail as

follows.

Fig. 3 The number and proportion of each disease in the EMR set. a Shows the number of EMRs related to
each disease. b Shows proportion of EMRs related to a specific disease among all the EMRs
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SVM-TFIDF

TF-IDF is a commonly used weighting technique for information retrieval and data

mining. This baseline model based on TF-IDF extracted key information and formed

the representations of EMRs. SVM is used to classify and predict the disease related to

a specific EMR [23].

CNN

In the word embedding layer, this method maps each word of an EMR into a word em-

bedding, and all word embeddings form an embedding matrix. In the convolutional

layer, the matrix is scanned with different filters to obtain different local representa-

tions. After max pooling is completed, the extracted multiple representations are

concatenated end to end. Finally, the fully connected layer and softmax layer are used

to obtain the probability that the EMR is associated with a disease [10].

RCNN

This method differs from the traditional CNN, and it first applies a bi-directional recur-

rent structure to capture the contextual information to the greatest extent possible

when learning word representations. Second, the max pooling layer is used to form a

more effective semantic representation. The representation is utilized to predict the dis-

ease related to an EMR [45].

BiLSTM

To use the context information between words in the sentence, we also established a

baseline method based on BiLSTM. Each word in an EMR is mapped into a word em-

bedding through the word embedding layer, the word sequence is inputted into

BiLSTM to obtain the hidden representation of any word, and the association probabil-

ity is obtained. We compared our method, FCNBLA, with the baseline.

Parameter setting

Word embeddings that are inputted into the convolutional layer are the same as those

that are fed into the BiLSTM layer. Our word embedding is initialized with uniform

samples from ½− ffiffiffiffiffiffiffiffi
3=d

p
; þ ffiffiffiffiffiffiffiffi

3=d
p �, where we set d = 300. In the convolutional module,

we use three different filter heights k ∈ [2, 3, 4]. The hidden layer dimension of the

LSTM is 200, and the BiLSTM eventually outputs a 400-dimensional sentence repre-

sentation. The Adam optimization algorithm is used to update the parameters, and the

learning rate is set to 0.001. We apply a dropout strategy to the embedding layers of

CNN and BiLSTM; the dropout rate is 0.2, and the batch size is 16. The value of α is

0.3, early stopping is adopted, and its value is set to 20 and in training, we used 100

epochs. For the support vector machine (SVM) method, the term frequency-inverse

document frequency (TF-IDF) is used to extract features from EMRs. The document

frequency is set to 5, which means that terms that appear in fewer than 5 documents

are ignored. The value of n-gram ranges between 1 and 3. For the CNN, each word is

also mapped to a 300-dimensional dense vector, which is randomly initialized. The

heights of the filters are 4, 5, and 6, and each height has 128 filters. To ensure the fair-

ness of the experiment, we also use randomly initialized word embeddings for RCNN,
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and the hidden layer size is 100. For the competing model BiLSTM, the hidden layer

dimension of LSTM is set to 150. The learning rate of all competing models is 0.001,

and their epochs are 100. Our implementation uses PyTorch and Python 3.6 to train

and optimize the neural networks, and we use GPU cards (Nvidia GeForce GTX 1080)

to speed up the model training process.

Result comparisons with other methods

As shown in Table 2, we can see that our method achieves the best effect on each

evaluation method. On the test set, our method achieves 92.78% accuracy. FCNBLA

performs best in terms of macro-average results. It achieves the highest precisionmacro

(92.31%), Recallmacro (90.46) and F ‐ scoremacro (91.29%), and its F ‐ scoremacro is 3.27,

2.37, 0.75 and 1.19% higher than SVM-TFIDF, CNN, RCNN and BiLSTM, respectively.

The performance of SVM-TFIDF is worse than that of the other methods. A main rea-

son is that SVM-TFIDF is a shallow model, which fails to deeply learn the complex fea-

ture representations of EMRs. CNN only focuses on local information contained by

several words, which makes its F ‐ scoremacro lower than BiLSTM. RCNN is the second-

best performing method. This means that both context information and local informa-

tion are very important for the association between EMRs and diseases. BiLSTM is

slightly lower than RCNN because it only learns the context information formed by

word sequences.

As shown in Table 3, 10 diseases are listed on the left side in descending order of

data volume (the specific quantity of data for each disease is shown in Table 1). We list

the macro-average F-score value corresponding to each disease. FCNBLA achieved the

highest F-score value in 8 of the 10 diseases. In terms of the diseases with large quan-

tities of data, FCNBLA shows a slight improvement in performance compared to other

baseline models, such as diabetes, COPD, and arrhythmia, which improve slightly, by

approximately 0.1 to 0.5%. However, there are significant improvements in the diseases

with fewer data, such as UTI, gastritis, and gastric polyps, which improve by 2.17, 2.19,

and 1.08%, respectively, compared to the best baseline model.

RCNN performs the best for the disease hypertension, and its’ F ‐ scoremacro is only

0.13% higher than our model, it indicates RCNN is just slightly better than our model

for the disease. For the disease asthma, the F ‐ scoremacro of RCNN is 0.97% higher than

our model. We calculated the proportion of the number of EMRs in the corresponding

word number range for each disease among the total number of EMRs for that disease

and listed it in the supplementary table ST1. We found that EMRs with more than 500

words accounts for 72.77% of the total EMRs for asthma, while among other diseases,

the highest proportion of EMRs with more than 500 words is 31.03%. It shows that

Table 2 Prediction result of FCNBLA and its baselines on the test set

Methods Precisionmacro(%) Recallmacro(%) F ‐ scoremacro(%) Accuracy (%)

FCNBLA 92.31 90.46 91.29 92.78

SVM-TFIDF 88.37 87.73 88.02 90.76

CNN 89.94 89.40 89.64 91.97

RCNN 91.21 89.97 90.54 92.51

BiLSTM 90.91 89.45 90.10 92.13
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RCNN performs better than our method and the other compared methods for the

EMRs with more than 500 words. The primary reason is that RCNN uses the context

information of left and right sides of a word to enhance the representation of the word,

and the less information is lost during the process of learning extremely long text.

Discussion
Effect of attention at the phrase level and the word level

To validate the effect of phrase-level attention and that of word-level attention, we also

implemented an instance of FCNBLA, which only has an attention mechanism at the

phrase level (FCNA). Similarly, an instance that has only attention at the word level

(FBLA) and another instance that has no attention (FNOA) are constructed. As shown

in Table 4, F ‐ scoremacro values of FCNA (89.49%) and FBLA (89.72%) are 0.59 and

0.82% higher than FNOA, respectively. Compared with FNOA, their accuracy is in-

creased by 0.19 and 0.67%, respectively. This result indicates that establishing both the

attention phase level and the word level is helpful for improving the performance of

disease prediction.

Phase-level attention is exploited to enhance the local information, and word-level at-

tention is used to capture the context information. For the results of F ‐ scoremacro and

accuracy, FBLA is slightly higher than FCNA. This indicates that the context informa-

tion is more effective than the local information in enhancing EMR representations. A

possible reason is that the phrase information learned can reflect local features of

EMRs, but a comprehensive understanding of the context relationships of all the words

Table 3 Prediction result for each disease of FCNBLA and its baselines on the test set

F-score (%) FCNBLA SVM_
TFIDF

CNN RCNN BiLSTM

Diseases

diabetes 96.29 95.27 96.08 96.22 95.93

hypertension 89.24 87.46 88.72 89.37 89.30

COPD 96.72 96.57 96.64 96.66 96.49

arrhythmia 87.68 84.88 87.35 87.23 86.35

asthma 93.59 92.06 92.81 94.56 93.43

gastritis 83.25 74.82 81.36 79.90 79.12

gastric polyps 89.90 84.77 88.74 88.37 88.82

gout 91.89 90.35 90.24 91.76 90.15

gastric ulcers 90.48 84.75 89.39 89.94 89.66

UTI 93.91 89.29 91.08 91.38 91.74

Table 4 Prediction results of FCNBLA and its three instances FNOA, FCNA and FBLA

Methods Precisionmacro(%) Recallmacro(%) F ‐ scoremacro(%) Accuracy (%)

FCNBLA 92.31 90.46 91.29 92.78

FNOA 89.78 88.20 88.90 91.49

FCNA 88.80 90.37 89.49 91.68

FBLA 90.98 88.66 89.72 92.16
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can extract more information from a given EMR. Compared with FCNA and FBLA, the

F ‐ scoremacro of FCNBLA is increased by 1.80 and 1.57%, and its accuracy is increased

by 1.10 and 0.62%, respectively. This confirms that it is necessary to introduce these

two attentions.

Effect of the combination features of the middle module

To verify the effect of using the combination features learned by the CNN module and

BiLSTM module, we remove the entire middle module based on MLP. The new in-

stance is referred to as CNBL. CNBL consists of the left side and the right side. The

local representation is learned by the left side, and the context representation is learned

by the right side. Similar to the integration strategy of the three sides, the final predic-

tion is obtained by integrating these two sides. As shown in Table 5, FCNBLA is 1.77

and 0.92% higher than CNBL on the F ‐ scoremacro and accuracy, which confirms the

importance of the middle module for deeply combining local information and context

information in terms of performance improvement.

Effect of our pairwise combination strategy

To verify the effect of our pairwise combination strategy, we implement an instance of

FCNBLA, which is called TCNBLA. TCNBLA consists of the left side, the right side

and the middle. It concatenates all local information zC obtained by the left side, the

context information zB obtained by the right side, and the enhanced combination infor-

mation pF obtained by the middle module. Finally, the concatenation of the three

pieces of information is fed into the fully connected and softmax layers to obtain a pre-

diction result. As shown in Table 6, FCNBLA is 1.18 and 0.38% higher than TCNBLA

on the F ‐ scoremacro and accuracy, which proves that the semantic representation of an

EMR learned from different emphases has an important role in improving

performance.

Conclusions
A new method based on CNN and BiLSTM, FCNBLA, is developed for predicting the

disease related to a given EMR. We establish attention mechanisms at the phrase and

word levels to discriminate the different contributions of each phrase and word. This

new framework is composed of three parts and is constructed for learning the local

Table 5 Prediction results of FCNBLA and its instance CNBL

Methods Precisionmacro(%) Recallmacro(%) F ‐ scoremacro(%) Accuracy (%)

FCNBLA 92.31 90.46 91.29 92.78

CNBL 89.76 89.72 89.52 91.86

Table 6 Prediction results of FCNBLA and its instance TCNBLA

Methods Precisionmacro(%) Recallmacro(%) F ‐ scoremacro(%) Accuracy (%)

FCNBLA 92.31 90.46 91.29 92.78

TCNBLA 90.70 89.64 90.11 92.40
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representation, context representation and combination representation enhanced by

the attention mechanisms. In our experiments, the results show that FCNBLA is super-

ior to other methods not only for macro-average but also for accuracy. Experimental

results also confirm that phrase-level and word-level attention mechanisms and com-

bination representation can enhance the inference of the disease related to a given

EMR. FCNBLA may give scores for the diseases related to an EMR, and these scores

are used to rank candidate diseases. FCNBLA can serve as a prediction tool to assist

doctors in diagnosing diseases in patients.
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