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Abstract

Background: With the rapid development of high-throughput technique, multiple
heterogeneous omics data have been accumulated vastly (e.g., genomics,
proteomics and metabolomics data). Integrating information from multiple sources
or views is challenging to obtain a profound insight into the complicated relations
among micro-organisms, nutrients and host environment. In this paper we propose
a multi-view Hessian regularization based symmetric nonnegative matrix factorization
algorithm (MHSNMF) for clustering heterogeneous microbiome data. Compared with
many existing approaches, the advantages of MHSNMF lie in: (1) MHSNMF combines
multiple Hessian regularization to leverage the high-order information from the same
cohort of instances with multiple representations; (2) MHSNMF utilities the
advantages of SNMF and naturally handles the complex relationship among
microbiome samples; (3) uses the consensus matrix obtained by MHSNMF, we also
design a novel approach to predict the classification of new microbiome samples.

Results: We conduct extensive experiments on two real-word datasets (Three-source
dataset and Human Microbiome Plan dataset), the experimental results show that
the proposed MHSNMF algorithm outperforms other baseline and state-of-the-art
methods. Compared with other methods, MHSNMF achieves the best performance
(accuracy: 95.28%, normalized mutual information: 91.79%) on microbiome data. It
suggests the potential application of MHSNMF in microbiome data analysis.

Conclusions: Results show that the proposed MHSNMF algorithm can effectively
combine the phylogenetic, transporter, and metabolic profiles into a unified
paradigm to analyze the relationships among different microbiome samples.
Furthermore, the proposed prediction method based on MHSNMF has been shown
to be effective in judging the types of new microbiome samples.

Keywords: Symmetric nonnegative matrix factorization, Hessian regularization, Multi-
view clustering, Human microbiome
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Background
With the rapid development of bio-technique, such as high-through sequencing tech-

nique, plenty of multiple omics data (e.g. metagenomics, metabolomics and so on) have

generated in microbiome study. These resources pave the way for researchers to ex-

plore and understand the structure and functions of microbiome community. In

addition, it helps to reveal the relationships between microbiota and host environment,

microbes and diseases. In order to further dissect the structure and functions of micro-

biome, many microbiome projects including Human Microbiome Plan (HMP) [1], Inte-

grative Human Microbiome Plan (iHMP) [2], and Metagenomics of the Human

Intestinal Gut (MetaHIT) [3] have been launched and accumulated large amounts of

microbiome data. By some analysis tools, these data can be computationally repre-

sented as the phylogenetic profile or functional composition profile of microbiome [4].

Although some approaches have been designed to analyze the difference and connec-

tions among different microbiome samples, they only considered one kind of biological

profile data. Thus, the conclusions obtained from these approaches may be one-sided

and incorrect. In order to draw a reasonable conclusion, integrating multiple omics

data from different biological scenarios to jointly analyze latent patterns becomes a

feasible way.

However, to the best of our knowledge, there have been few approaches to simultan-

eously combine multiple biological profiles into a paradigm to study the underlying

microbiome structure shared by different representations. Hence, it is urgent and ne-

cessary to design novel data integration methods or tools to explore the complicated

relationship among microorganisms.

As a kind of clustering method, nonnegative matrix factorization (NMF) has drawn

great public attention, recently. In text mining, image processing, bioinformatics fields

and so on, many new data integration methods based on NMF have emerged. Greene

et.al proposed a joint nonnegative matrix factorization algorithm by concatenating the

features of all the views to form a new representation, and then it was factorized into

two low rank matrices, one of which was used to cluster indicator [5]. Liu et.al pro-

posed the Multi-NMF algorithm by searching a common consensus solution across dif-

ferent views [6]. Zhang et.al developed a novel NMF framework (CSMF) to reveal the

common and specific patterns obtained from multiple interrelated biological scenarios

[7]. All these methods could obtain good performance when data distribution satisfies

certain conditions, e.g. linear relationship. However, the real-world data often owns

complicated structure and nonlinear relation. For example, the interactions among mi-

crobes are easily influenced by the food intake, host environment or other species, par-

ticularly for the intestinal flora, and thus the relationship among microbes may be

delicate and complicated. Traditional approaches based on NMF are not sufficient for

revealing the latent relations hidden in multiple biological data profiles.

In order to improve the clustering performance, Laplacian graph which makes use of

the geometric information of the original data was introduced into the NMF frame-

work. Cai et.al proposed a graph regularization based nonnegative matrix factorization

approach (GNMF) for data clustering and obtained good performance [8]. Jiang et.al

proposed a new joint nonnegative matrix factorization algorithm with robust Laplacian

graph (LJ-NMF) to cluster microbiome data [4] and achieved better clustering perform-

ance. Chen et.al proposed a novel co-module mining framework based on Tri-factor
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nonnegative matrix factorization (NetNMF) to identify heterogeneous biological mod-

ules [9] and easily extended to Laplacian case with prior knowledge. Even though

Laplacian can boost the performance, Kim et.al pointed that Laplacian regularization

possibly leaded poor extrapolating power because Laplacian regularization always

biased the solution towards a constant function [10]. Compared to Laplacian

regularization, Hessian can not only effectively exploit the local geometry information

of original data, but also extrapolate beyond data points [11].

To solve the above problems, in this paper we propose a novel multi-view Hessian

regularization based symmetric nonnegative matrix factorization algorithm (MHSNMF)

to integrate multiple biological profiles into an unified framework to analyze the poten-

tial clustering patterns across all view. MHSNMF utilizes the local geometrical informa-

tion of different views and automatically assigns corresponding weights for each view

in each iteration process. We conduct large amounts of experiments on two real data-

sets and the experimental results show that the proposed MHSNMF algorithm outper-

forms other integrating approaches, suggesting its underlying application in

microbiome data analysis.

The contributions of this study lie in: (1) an effective integration method to explore

the difference among distinct microbiome samples with multiple views has been pro-

posed. The experimental results show that it outperforms the state-of-art algorithms in

terms of AC and NMI; (2) high-order information of the original data is exploited to

reveal the underlying clustering patterns across different views; (3) a novel approach

based on the consensus matrix obtained from MHSNMF is proposed to predict the

classification of new microbiome samples. The extended experiments demonstrate the

effectiveness of the proposed method. Figure 1 demonstrates the flowchart of

MHSNMF algorithm.

The rest of this paper is organized as below: in next section, a brief view of SNMF

and multi-view clustering is provided, and then multi-view Hessian regularization based

SNMF algorithm is also proposed. Next extensive experiments results and the compari-

sons with other methods are presented. At last, the conclusion and next research plans

are given.

Methods
Symmetric nonnegative matrix factorization

Nonnegative matrix factorization (NMF), which has been widely used in many fields in-

cluding text clustering, image recognition, bioinformatics, has drawn great attention. In

NMF, the data matrix V is factorized the production of two low rank matrices W and

H. Each column V.i in original matrix V can be approximated as the linear combination

of basis vectors W.j, the coefficients are the corresponding elements of H.i. Hence, when

data owns linear structure, NMF can achieve better performance. However, the real

world data distribution is usually complex and hard to dissect the relations among dif-

ferent objects, and especially for the microbial data. Symmetric nonnegative matrix

factorization (SNMF) views the data samples as vertices in graph and minimizes certain

objective function of graph cuts [12]. SNMF can adopt multiple metrics to character

the similarities between two nodes, including inner kernel, Gaussian kernel, correlation

coefficient methods and so on.

Ma et al. BMC Bioinformatics 2020, 21(Suppl 6):234 Page 3 of 18



The objective function of SNMF is defined as:

O ¼ Min
H ≥0

A−HHT
�� ��2

F : ð1Þ

where ‖∗‖F is the Frobenius norm of matrix, A∈Rn�n
þ is the similarity matrix, and H∈

Rn�k
þ is the factorized low-rank matrix, k is the degree of factorization. Aij denotes the

similarity between i ‐ th and j ‐ th node.

Eq. 1 iteratively updates H using the following rule [11, 13]:

Hij←Hij

AHð Þij
HHTH
� �

ij

: ð2Þ

Once the similarity matrix A was established, the low rank solution H would be easily

obtained. For text data, the cosine function is used to compute the similarity between

two documents. For microbiome data, the Gaussian kernel function can be used to

measure the similarity between different microbiome samples:

Wij ¼ exp −
V i−V j

�� ��2
F

σ iσ j

 !
i≠ jð Þ: ð3Þ

where Vi denotes the i ‐ th data point in original matrix. σi is the Euclidean distance

between Vi and its k ‐ th neighbor. We set k to be 7 as suggested in [14]. Note that the

self-similarity of the nodes is eliminated in all cases.

Fig. 1 Illustrative of MHSNMF framework on human microbiome data. a Example representation of the
phylogenetic profile and metabolic profile for the same cohort of samples. b Sample-sample similarity
matrices obtained from each view. c Using MHSNMF, each similarity matrix is factorized into a low rank
matrix and its transposition. Matrix fusion process iteratively updates each clustering with information from
the other view. d The iterative fusion leads to convergence to the final consensus matrix H∗. e Given a new
sample xnew from the i ‐ th view, we can obtain its subspace representation h by H∗ and the proposed
mapping approach. Here, Vi

tr indicates the training samples from i ‐ th view, S denotes the similarity
between xnew and Vi

tr . α is the regularization parameter. f Once obtaining h, some applications such as
classification, prediction and so on would be executed naturally
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Next, we construct the sparse graph for microbiome sample-sample similarity net-

work; the edge weight can be redefined as

Wij ¼ Wij if i∈N jð Þ or j∈N ið Þ
0 otherwise

�
ð4Þ

where N(i) is the neighborhood of node i. In our study, we set the number of the neigh-

bors to be 12 empirically.

Furthermore, the obtained weight matrix Wij is normalized to

A ¼ D−1
�
2WD−1

�
2 : ð5Þ

where D is the diagonal matrix and Dii ¼
Pn

j¼1Wij.

Multi-view symmetric nonnegative matrix factorization

Given multi-view dataset fV 1;V 2;⋯;Vnvg ,the corresponding similarity matrices are

represented as fA1;A2;⋯;Anvg, where nv denotes the number of views. Inspired by the

study [6], Multi-view symmetric nonnegative matrix factorization (Multi-view SNMF)

can be formulated as

O ¼ Min
Xnv
v¼1

Av−Hv Hvð ÞT�� ��2
F þ

Xnv
v¼1

γv HvQv−H�k k2F
 !

s:t:Hv;H�≥0:

ð6Þ

where H∗ denotes the consensus matrix toward that the solutions of all views. Qv

¼ Diagð1=Pm
i¼1

Hv
i;1; 1=

Pm
i¼1

Hv
i;2;⋯; 1=

Pm
i¼1

Hv
i;kÞ is an auxiliary matrix which guarantees

that the clustering solution of each view is comparable. γv is the weight of the v ‐ th

view and simultaneously keeps a balance between the SNMF reconstruction error and

regularization term (the second term of Eq. 6). In the study, we set γv s to be equal for

all views considering the convenience of computation.

Multi-view SNMF follows the basic hypothesis that there exists an underlying con-

sensus structure in all views. This is reasonable because each view describes partial

truth of the unknown; however, these limited cognitions are essential components to-

ward objective truth.

Hessian regularization

Given a smooth manifold M ⊂ Rn, at each point p the tangent space is defined as

Tp(M) ⊂ Rn ⋅Np denotes the neighborhood of p. For each point p' ∈Np, there is a unique

closest point v' ∈ Tp(M) such that the implied mapping p'→ v' is smooth. In order to

obtain the Hessian of function f :M↦ R, an orthogonal coordinate system of Tp(M) is

needed to define. This can be achieved by the d largest eigenvectors of Np correspond-

ing to the orthogonal basis of Tp(M). Hence, in the tangent space f(p) can be repre-

sented as g(x) : Tp(M)↦ R. In this way, the Hessian of f at point p can be defined as

H tan
f pð Þ

� �
i; j

¼ ∂
∂xi

∂
∂x j

g xð Þjx¼0: ð7Þ
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The previous studies point that the Frobenius form of Hessian matrix is invariant to

coordinate changes [10]. Hence, the total Hessian is obtained to measure the average

curviness of f along the manifold M as follows

H fð Þ ¼
Z

p∈M
H tan

f pð Þ
��� ���2

F
dp: ð8Þ

Hessian regularization (HR) steers the solution varying smoothly along the manifold.

Compared with Laplacian regularization, Hessian fits the data perfectly and owns stron-

ger extrapolating capability to unseen data [15]. Next, we summarize the computation

process of Hessian as follows.

(1) For each sample vi, finding its k nearest neighbors Ni and then construct the

neighborhood matrix Vi with rows consisting of the centralized samples vj = vj − vi
for each vj∈Ni.

(2) Conducting SVD on Vi so that Vi =UDST. The first d columns of U gives the

tangent coordinates of points in Ni.

(3) Constructing the matrix Mi = [1,U.1,U.2, ,U.d,U11,U11, ,Udd], where 1 denotes

one vector, followed by the first d columns of U and d × (d + 1)/2 columns

consisting of various cross products and squares of these d columns. Then,

performing the Gram-Schmidt process on Mi and yielding cMi. The last d × (d + 1)/

2 columns of cMi are extracted to form Bi ⋅ Bi is the hessian matrix of the tangent

space formed by the k nearest neighbors of the i-th sample.

(4) Thus, a symmetric Hessian matrix can be obtained by summing up all point’s

Hessian energy:

Bij ¼
X
l

X
r

Bl
� �

ri B
l

� �
rj

� �
: ð9Þ

where l is the data point on the manifold, i denotes the i ‐ th data point in Nl.

In contrast to Laplacian regularization (LR), HR can make full use of the intrin-

sic geometric information of the data manifold. It can not only well fit the training

data, but also predict the unseen data points [16]. In this paper, we use multiple

Hessian matrices obtained from different data presentations to well maintain the

structural consistence in process of dimension reduction, just like with Laplacian.

Multi-view hessian regularization based symmetric nonnegative matrix factorization

According to the analyses above, we propose a novel data integrating method, called

Multi-view Hessian based symmetric nonnegative matrix factorization (MHSNMF).

MHSNMF combines the advantages of SNMF and Hessian regularization, and can take

full advantage of the local geometric structure information of the original data. Hence,

MHSNMF theoretically owns more preferable performance.

The objective function of MHSNMF can be formulated as
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O ¼ Min
Xnv
v¼1

Av−Hv Hvð ÞT�� ��2
F þ

Xnv
v¼1

γv HvQv−H�k k2F þ β tr H�ð ÞT
Xnv
v¼1

αvBv

 !
H�

 !( )
s:t:Hv;H�≥0; αv≥0;

X
v

αv ¼ 1:

ð10Þ

where Bv denotes the Hessian matrix derived from the v ‐ th view, tr(·) denotes the trace

of matrix. αv is the coefficient of Bv, β is the regularization parameter and is used to

tune the smooth of solution.

The optimal problem of MHSNMF contains three steps: (1) updating Hv given fixed

consensus matrix H∗ and graph coefficient αv; (2) updating H∗ given fixed Hv and graph

coefficient αv; (3) finding the optimal graph coefficients αv s given fixed Hv and H∗. The

optimizations of these three sub-problems are presented below.

(1) Fixing H∗ and αv, computing Hv

Given fixed H∗ and αv, only considering terms that are relevant to Hv at this step, the

Eq. 10 can be reduced to

O ¼ Min Av−Hv Hvð ÞT�� ��2
F
þ γv HvQv−H�k k2F

n o
s:t:Hv;H�≥0:

ð11Þ

To minimize Eq. 11, we can solve the optimal problem with Lagrange method [6, 17].

Introducing the Lagrange multiplier ψ, Lagrange function can be written as

L ¼ A−HHT
�� ��2

F
þ γ HQ−H�k k2F þ tr ψHT

� �
∝tr −2AHHT þHHTHHT
� �þ γtr HQQTHT−2HQH�T� �þ tr ψHT

� �
:

ð12Þ

For simplicity A, H, Q is substituted for Av, Hv, Qv, respectively.

Taking the partial derivative of L with respect to H gives

∂L
∂H

¼ −4AH þ 4HH
0
H þ 2γHQQ

0
−2γH�Q

0 þ ψ: ð13Þ

Using KKT condition, we can obtain the following updating rule

Hi;k←Hi;k

2 AHð Þi;k þ γ H�QT
� �

i;k

2 HHTH
� �

i;k þ γ HQQT
� �

i;k

: ð14Þ

(2) Fixing Hv and αv, updating H∗

This sub-problem is similar to (1), the objective function can be rewritten as

O ¼
Xnv
v¼1

γv HvQv−H�k k2F þ βtr H�ð ÞTBH�
� �

þ tr ψ H�ð ÞT
� �

∝
Xnv
v¼1

γvtr −2HvQv H�ð ÞT þ H�ð ÞTH�
� �

þ βtr H�ð ÞTBH�
� �

þ tr ψ H�ð ÞT
� �

:

ð15Þ

where B ¼ Pnv
v¼1

αvBv, αv > 0;
X
v

αv ¼ 1.

The rule of iteration for H∗ is given

Ma et al. BMC Bioinformatics 2020, 21(Suppl 6):234 Page 7 of 18



H�
ij ¼ H�

ij

Pnv
v¼1γ

vHvQv þ βB−H�� �
ijPnv

i¼1γ
vH� þ βBþH�� �

ij

: ð16Þ

where B = B+ − B−. It shouldn’t be difficult to see that H∗ remains nonnegative after

each iteration.

(3) Fixing Hv and H∗, learning αv

This sub-problem can be formulated as

mintr H�ð ÞT
Xnv
v¼1

αvBv

 !
H�

 !
:

s:t:αv≥0;
X
v

αv ¼ 1
ð17Þ

When tr((H∗)TBiH∗) the minimum one among distinct views, the solution w.r.t α is

αi = 1 and αj = 0 corresponding to other views. It means that only one view takes effect

and the complement information carried by multiple views cannot be utilized

effectively.

In this study, we employ a trick [18, 19] to avoid this problem. We substitute (αv)r for

αv, r > 1. In this case, each graph has a particular contribution to the consensus matrix.

The Eq. 17 can be rewritten as

mintr H�ð ÞT
Xnv
v¼1

αvð ÞrBv

 !
H�

 !
:

s:t:αv≥0;
X
v

αv ¼ 1
ð18Þ

To solve Eq. 18, we introduce Lagrange multiplier λ and consider the constraint
X
v

αv ¼ 1 and then obtain the Lagrange function

L α; λð Þ ¼ tr H�ð ÞT
Xnv
v¼1

αvð ÞrBv

 !
H�

 !
−λ

Xnv
v¼1

αv−1

 !
: ð19Þ

Taking the partial derivative of L(α, λ) with respect to αv and λ set them to zero

∂L
∂αv

¼ r αvð Þr−1tr H�ð ÞTBvH�
� �

−λ ¼ 0; v ¼ 1; 2;⋯; nv

∂L
∂λ

¼
Xnv
v¼1

αv−1 ¼ 0

8>><>>: ð20Þ

Finally, a closed solution of αv can be given

αv ¼
1=tr H�ð ÞTBvH�

� �� �1=r−1
Xnv
v¼1

1=tr H�ð ÞTBvH�
� �� �1=r−1 : ð21Þ

From Eq. 21 we can see that αv is always nonnegative because Hessian matrix Bv is

SDP.

Table 1 gives the pseudocode of the proposed MHSNMF.
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Datasets and evaluation metrics

Datasets

In this paper, two public multi-view datasets are used to verify the performance of the

proposed MHSNMF algorithm.

(1) Three-source text story dataset. The dataset was collected from three online news

sources: BBC, Reuters and the Guardian. One hundred sixty-nine stories were re-

ported in all three sources. Each of them was manually classified into one of the six

topical labels: business, entertainment, politics, sport, health and technology. These

roughly correspond to the principal section headings used across these three

sources. To facilitate comparisons using the AC and NMI metrics, only the main

topic for each story was considered. More details can be found in [20]. Table 2 de-

scribes the detailed statistical information.

(2) Human microbiome dataset (HMP). This dataset includes three compositional

profiles: phylogenetic, metabolic and transporter profiles from HMP site. It consists

of 637 samples drawn from seven body sites including one vagina (posterior

fornix), one gut (stool), one nasal (anterior nares), one skin (retroauricular crease),

and three oral sties (supragingvial plaque, tongue dorsum and buccal mucosa). The

phylogenetic profile which contains the microorganism relative abundances was

estimated by software MetaPhlAn at species level (710 × 637). For functional

profile, the transporter profile (4941 × 637) and the metabolic profile (295 × 637)

are investigated by filtering out those with low variances (see Table 3 for the

detailed statistical summary) [4]. All the data can be available from HMP site:

http://hmpdacc.org/ [21].

Evaluation metrics

In the following experiments, two frequently used metrics are applied to evaluate the

clustering performance of MHSNMF, i.e. accuracy (AC) and normalized mutual infor-

mation (NMI). Generally speaking, higher AC or NMI indicates the better clustering

performance. More details were described in [22].

Table 1 The pseudocode of MHSNMF

MHSNMF algorithm

Input: fV1; V2;⋯; Vnvg, γv, αv, k
Output: fH1;H2;⋯;Hnvg, H∗, αv

1. Transforming each Vi to Ai according to Eqs.3, 4 and 5

2. Solving the Hessian matrix Bi for each view Vi

3. Initializing Hi
, H

∗
, αv = 1/nv

4. Iteration beginning

For i = 1 : nv,

Fixing H∗
, αv, updating Hv according to Eq. 14

Fixing Hv
, αv, updating H∗ according to Eq. 16

Learning αv according to Eq. 21

Until all views have been updated

5. Repeating
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Results and discussion
Experimental results

In this section, we conduct extensive experiments to elucidate the effectiveness of the

proposed MHSNMF approach. Some baseline algorithms below are compared:

� Single view (BSSV and WSSV). Running standard SNMF on each view, BSSV is the

most informative view that has the best clustering quality; WSSV refers to the

worst view.

� Multi-NMF. Iteratively fusing the coefficient matrices learnt from different

views to form a consensus clustering solution. In the fusion process, coefficient

matrix from each view is normalized to guarantee that they are comparable

and meaning [6].

� Co-training spectral clustering (Co-training SC). Performing multi-view spectral

clustering with co-training paradigm [23] to update iteratively the graph structure

of one view by using the discriminative eigenvectors obtained from the other view.

� Similarity network fusion (SNF). Constructing similarity network for each view

and then iteratively fusing these networks so that global and local information

from different views can be shared and interchanged. More details can be

obtained from [24].

� LJ-NMF. Fixing a common coefficient matrix across different views and then

performing joint nonnegative matrix factorization as shown in [4].

� CSMF. Extracting common and specific patterns from multiple data generated

under interrelated biological scenarios via nonnegative matrix factorization [7].

� NetNMF. Utilizing Tri-factor NMF to construct two layer modular networks. For

each biological network, the samples were reordered according to the obtained fea-

tures modules. At last, the optimal clustering performance is recorded [9].

Table 2 Statistics of the Three-source dataset

Topics # Samples

Business 56

Entertainment 21

Health 11

Politics 18

Sport 51

Technology 12

Table 3 Statistics of the HMP dataset

Body sites # Samples

Stool 134

Posterior_fornix 49

Anterior_nares 86

Buccal_mucosa 106

Plaque 122

Retroauricular_crease 17

Tongue_dorsum 123
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� MHSNMF. This is the proposed algorithm. In the experiments, we used NNDSVD

method to enhance the initiation stage of MHSNMF [25]. The parameter selection

will be discussed later.

Table 4 shows the clustering results of different algorithms on these two datasets.

From this table, we can see that MHSNMF outperforms the baseline and the state-of-

art algorithms in terms of AC and NMI.

As we can see, on these two realistic dataset MHSNMF achieves much improve-

ment in terms of AC and NMI compared with other algorithms. One of the pos-

sible reasons is that MHSNMF takes advantage of the local geometry information

reserved in the data to satisfy the manifold consistency assumption well. The pro-

posed MHSNMF algorithm can effectively find the latent consensus clustering solu-

tion across different views.

Parameter tuning

There are two types of parameters in the proposed MSNMF algorithm: γv and β. γv is

the regularization parameter for the v ‐ th view. On one hand, γv reflects each view’s

relative importance among all views, on the other hand, it also indicates the strength

which we want to impose on the regularization constraint. Considering the conveni-

ence of computation, we set γv s to be equal for each view. β is the graph regularization

parameter. In our experiment the values of β are tuned from the candidate set {10−4,

5 × 10−4, 10−3, 5 × 10−3, 10−2, 0.05, 0.1, 0.5, 1} and γv is set to vary in the set {10−3, 5 ×

10−3, 10−2, 0.05, 0.1, 0.5, 1} for all the datasets. Besides, in computing Hessian the size of

neighborhood is set to be 30.

Figure 2 shows how the performance of MHSNMF varies with changes of parameters

γv and β on these two datasets. As Fig. 2 shown, MHSNMF obtains the best perform-

ance when γ equals to 0.1 and β equals to 0.5 on three-source data. Moreover, for other

values of β MHSNMF still owns stable and reliable performance. On HMP dataset,

MHSNMF performs relatively stable when γ equals to 0.05 and β varies during the set

{10−4, 5 × 10−4, 10−3, 5 × 10−3, 10−2, 0.05, 0.1}.

Table 4 The best clustering performance on two datasets

Accuracy (%) NMI (%)

Three-source HMP Three-source HMP

BSSV 79.88 88.54 69.66 84.64

WSSV 65.68 81.16 58.26 80.71

Multi-NMF 66.86 77.55 55.04 72.87

Co-training SC 61.54 63.58 58.03 63.68

SNF 65.68 91.21 56.34 89.20

LJ-NMF 69.82 73.16 60.08 67.77

CSMF 65.18 74.01 63.23 65.43

NetNMF 70.18 82.50 61.24 81.76

MHSNMF 82.84 95.28 71.43 91.76

In Multi-NMF, these clustering results on three-source and HMP data are obtained when γv = 0.01 and 0.05, respectively.
For three-source dataset, the cosine function was used to construct the similarity matrix. For BSSV, WSSV and LJ-NMF, the
number of neighborhoods on HMP data was set to be 12. For other values, MHSNMF still outperforms other algorithms
in most cases.
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Convergence curve and the performance

According to the iterative rules (Eqs. 14, 16 and 21), the objective function value pro-

gressively grows smaller and it is convergent. Figure 3 shows the convergence curves

along with the accuracy value on these two datasets, respectively. The results below are

obtained when γ is set to be 0.05 and β is set to 0.01. As we can see that MHSNMF will

converge after a few iterations. Interestingly, on three-source data the performance

curve shows some shocks in the iterative process. One of the possible reasons is that

the clustering solutions obtained from multiple views may not be misaligned for each

cluster. This is beyond the scope of this paper.

As Fig. 3 shown, on HMP dataset the performance of MHSNMF achieves the optimal

value 95.28%/91.76% in terms of AC/NMI after around 250 iterations. It is worth

Fig. 2 The performance of MHSNMF w.r.t parameters γ and β on three-source and HMP
datasets, respectively
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noting that MHSNMF converges very fast regardless of Three-source or HMP data.

This suggests the effectiveness and efficiency of MHSNMF for clustering multi-view

omics data.

Parameter study

In this subsection, extensive experiments are conducted on HMP data to further valid-

ate the performance of MHSNMF w.r.t the number of neighbors p and knn in comput-

ing Hessian and constructing affinity graphs, respectively. Figure 4 demonstrates how

the accuracy varies with changes in the number of neighbors.

Fig. 3 Convergence and corresponding AC curve of MHSNMF on three-source and HMP datasets
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As Fig. 4 shown, the accuracy of MHSNMF achieves the best value when p is set to

be 12. Meanwhile, the performance of MHSNMF is stable for the various values of knn.

For other values of p, in most cases AC doesn’t vary significantly with the changes of

knn, which demonstrates the number of neighbors in computing Hessian cannot have a

remarkable impact on the performance of MHSNMF on HMP dataset. This is import-

ant to study the microbiome data. We can set a fixed knn value in computing Hessian

for the convenience of computation. This study also offers a new reference for multiple

heterogeneous omics data fusion.

Analysis on HMP data

To further explore the structures and functions of human microbiome, we apply the

proposed MHSNMF algorithm to HMP data and find that it is very useful. Classical

multidimensional scaling (MDS) is used on the consensus matrix H∗ to describe the re-

lationships among microbiome samples in three dimensional space. Figure 5 reveals

clear clustering patterns derived from the consensus matrix. This supports Jeffery

et al.‘s argument that the change at the species level of human microbiome is irrelevant

to the discrete clusters (enterotype), but it is continuous [26].

As Fig. 5 shown, MHSNMF clearly identifies different clusters corresponding to

microbiome samples from seven different body sites. Theses samples from anterior

nares (red), gut (cyan) and posterior fornix (yellow) are well separated, particularly

for gut microbiome samples. One possible reason is that gut microbiome has more

complicated composition and spatial distance relative to other sites. We can also

find that samples from three oral sites (buccal mucosa, plaque, tongue dorsum)

may have overlapped with each other. This might be because these three sites are

all from oral cavity. Therefore, theses samples may have similar microbiome com-

position and diversity.

Fig. 4 Performance of MHSNMF versus p and knn on HMP data
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Other application

Besides clustering, MHSNMF has also other potential application, for instance, predict-

ing the classification of new samples via consensus matrix H∗ obtained from multiple

views. When applied it to HMP data with multiple views, the Eq. (10) can also be

understood as finding a consensus basis H∗ (similar to basis matrix in NMF), such that

in the space spanned by H∗ the presentation of new microbiome samples can also re-

flect their structure information. Therefore, we can express a new microbiome sample

xnew as h by solving the following optimization problem:

min
h≥ 0

S−H�hk k2F þ α hk k22: ð22Þ

Where, S ¼ V i
tr�xnew , V i

tr is training set from the view, the second term is L2
regularization term.

We can use closeness of h to the rows of H∗ to decide how likely the new microbiome

sample should belong to which body site. For example, one can predict the class of a

new microbiome sample according to knn method.

To evaluate our approach, we recollect and extend human microbiome samples to

653 cases, and then separate HMP data (phylogenetic profile and metabolic profile) into

training set and test set by randomly selecting 70% samples from each body site as

training set and the remaining samples as test set. We firstly learn a consensus matrix

H∗ from phylogenetic profile and metabolic profile samples in training set, and then

predict the classification of phylogenetic (or metabolic) samples in the test set.

To verify that the consensus H∗ computed by the proposed MHSNMF algorithm in-

deed well represents the geometric structure, we also compare several baseline ap-

proaches. One is to learn the matrix Hi only by single view SNMF, the remaining steps

for making predictions are the same as MHSNMF. The other two methods based on

subspace learning are Canonical Correlation Analysis (CCA) and Partial Least Squares

Fig. 5 Scatter plot of HMP data in three-dimension space. The result is obtained when γ equals to 0.05 and
is set to be 1e-4. Seven colors indicate the true labels of microbiome samples from different body sites
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Regression (PLSR) [27]. We use the consensus matrix H∗ to predict the classification of

new samples from each view. The experimental results are shown in Table 5.

As Table 5 shown, MHSNMF obtains much improvement in accuracy compared with

three baselines methods on HMP data. It should be noted that CCA fails to utilize the

complementary information from multiple views and cannot find the underlying sub-

space shared by multiple biological compositional profiles. One possible reason is that

the objective of CCA is to find the maximum linear correlation between two feature

profiles data. Therefore, CCA-based methods may be not suitable for data with nonlin-

ear structure, such as microbiome data. In contrast, by adopting graph and Hessian

regularization framework to learn the consensus matrix H∗ across all views, MHSNMF

succeeds in capturing such knowledge.

Conclusions
In this paper, we introduced a novel multi-view Hessian regularization based symmetric

nonnegative matrix factorization algorithm (MHSNMF) for multiple omics data inte-

gration task. On human microbiome data, the proposed MHSNMF algorithm can ef-

fectively combine the phylogenetic, transporter, and metabolic profiles into a unified

paradigm to analyze the relationships among different microbiome samples. Experi-

mental results demonstrate MHSNMF has the latent application in multiple biological

profiles data analysis. Furthermore, the prediction method based on MHSNMF has

shown to be effective in judging the types of new microbiome samples.

To our best knowledge, the interactions among microorganisms are complicated

owning to the influences from host environment, diet and other species, particularly for

the intestinal flora. Dissecting and exploring the structure and functions of intestinal

microbiota is an essential step toward understanding the occurrence and development

of microbiota-related disease. In the future, combining the phylogenetic information of

species into the microbial interaction network to analyze functional modules is our

next consideration.
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