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Abstract

Background: Biological data has grown explosively with the advance of next-
generation sequencing. However, annotating protein function with wet lab
experiments is time-consuming. Fortunately, computational function prediction can
help wet labs formulate biological hypotheses and prioritize experiments. Gene
Ontology (GO) is a framework for unifying the representation of protein function in a
hierarchical tree composed of GO terms.

Results: We propose GODoc, a general protein GO prediction framework based on
sequence information which combines feature engineering, feature reduction, and a
novel k-nearest-neighbor algorithm to resolve the multiple GO prediction problem.
Comprehensive evaluation on CAFA2 shows that GODoc performs better than two
baseline models. In the CAFA3 competition (68 teams), GODoc ranks 10th in Cellular
Component Ontology. Regarding the species-specific task, the proposed method
ranks 10th and 8th in the eukaryotic Cellular Component Ontology and the
prokaryotic Molecular Function Ontology, respectively. In the term-centric task,
GODoc performs third and is tied for first for the biofilm formation of Pseudomonas
aeruginosa and the long-term memory of Drosophila melanogaster, respectively.

Conclusions: We have developed a novel and effective strategy to incorporate a
training procedure into the k-nearest neighbor algorithm (instance-based learning)
which is capable of solving the Gene Ontology multiple-label prediction problem,
which is especially notable given the thousands of Gene Ontology terms.

Keywords: Protein function prediction, Machine learning, Gene ontology, Homology
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Background
Proteins are important macromolecules in living organisms because they carry essential

functions to ensure the survival of creatures. If we know what function a protein car-

ries, we can understand life at the molecular level and the molecular mechanisms of

disease. Gene Ontology (GO) is the main framework for unifying the representation of

protein function, initiated by the GO Consortium in 1998. GO classifies functions into

three domains: Biological Process Ontology (BPO), Cellular Component Ontology

(CCO), and Molecular Function Ontology (MFO). BPO describes the biological process

in which the gene product participates, CCO specifies the location of the gene product,

and MFO indicates what the gene product can do or its ability. GO terms are linked to

each other with a hierarchical directed tree structure. The relationship and terms can

be graphed as directed edges and nodes, respectively (an example can be found on page

26, [1]). GO is annotated to a protein by either biological experiments or computational

prediction. Therefore, each GO annotation is associated with an evidence code to indi-

cate the method employed to generate the annotation [2].

Compared with the growth of protein sequence data, the speed of protein function

annotation from wet lab experiments is slow. Fortunately, computational function pre-

diction can help wet labs formulate biological hypotheses and prioritize experiments. In

this research, we seek to use information about a protein sequence to predict its GOs,

a multiple-label classification problem. This task is different from traditional multiple-

label classification, as GO labels are hierarchical. There exist both computational and

biological challenges. Computational speaking, the number of annotated proteins is

relatively small compared with the number of GO terms. There are about 40,000

unique GO terms, but only 66,841 experimentally annotated sequences in Swiss-Prot,

as of September 2016. Biologically, annotations might not be perfectly reproduced due

to budgetary or ethical reasons. In addition, some experiments are performed in vitro

and may not reflect a protein’s activity in vivo.

Predicting the function of a target protein from its homologs is the most common

approach. Homologs between two proteins may indicate a common ancestry; thus they

may have the same function. As a result, the available GOs of the homologs are predic-

tion candidates for a target protein. The Basic Local Alignment Search Tool (BLAST)

and Position-Specific Iterated BLAST (PSI-BLAST) [3] are two standard tools for

searching homologous sequences. PSLDoc uses the information from PSI-BLAST, the

position-specific scoring matrix (PSSM), to build a TFPSSM (Term Frequency based

on PSSM) feature to find homologous proteins [4], and PSLDoc is used to predict pro-

tein subcellular localization, which can be considered as a subset of CCO. In addition

to sequence-similarity-based approach, there exist some databases or computational

methods to characterize proteins to individual domains or motifs, which are useful for

function prediction. For example, CATH-Gene3D clusters proteins into functional fam-

ilies (FunFam), which implies similar sequences, structures, and GOs [5]. The CATH

FunFHMMer web server identifies FunFams for an unknown target such that FunFam

associated GOs are good prediction candidates [6].

The Critical Assessment of Functional Annotation (CAFA) aims to evaluate predic-

tion methods in an unbiased way. It was established by the Function Special Interest

Group (Function-SIG). CAFA1, CAFA2, CAFA3 and CAFA π (3.14), the first four chal-

lenges, were organized and carried out during 2010–2011 [7], 2013–2014 [8], 2016–
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2017 [9], and 2017–2018 [9], respectively. The competitions are conducted in a time-

delayed format with a prediction phase, an annotation growth phase, and an evaluation

phase (Fig. 12, [9]). At the beginning, the organization provides a large number of pro-

tein sequences with unknown function for the participants to predict (t− 1 in Fig. 12,

[9]). During the prediction phase, the predictor submits their predicted annotations of

these target proteins. When the prediction phase ends (t0 in Fig. 12, [9]), the challenge

moves on to the annotation growth phase (t1 in Fig. 12, [9]), in which some protein

function of target proteins might be annotated through experiment. Entering the evalu-

ation phase, those proteins with annotations are selected as a benchmark to evaluate

each method’s prediction performance.

We propose GODoc, an effective GO prediction framework [10] extended from

PSLDoc [4] and PSLDoc2 [11], which has demonstrated excellent performance in pre-

dicting protein subcellular localization. We design three novel voting strategies based

on the k-nearest-neighbor algorithm by incorporating a training procedure to solve the

multiple-label prediction problem, as the number of GO terms is much larger than the

number of localization sites (Section: Data sets). GODoc is evaluated on the CAFA2

and CAFA3 data sets and yields significantly better results than the two baseline

models. In the CAFA3 competition, GODoc ranks 3rd and 5th among 67 and 59

methods in full and partial modes, respectively. According to the minimum normalized

semantic distance metric in BPO, and for CCO, it achieves a score of 0.592, which

ranks among the top 10% in 67 methods based on Fmax.

Results
Experiment 1: PCA

The Fmax of two baseline models and TFPSSM 1NN with different PCA parameters

are summarized in Fig. 1. TFPSSM 1NN demonstrates better performance than the

two baseline models on both the CAFA2-Swiss (Fig. 1a) and CAFA3-Swiss (Fig. 1b)

datasets. TFPSSM extracts homology information from BLAST search, which has been

shown to be efficient against a non-redundant database without losing prediction per-

formance [11]. This has also been confirmed by our experiment because the dashed

(original) and solid (non-redundant) lines of the same color are almost identical (com-

patible Fmax), which shows that the TFPSSM 1NN algorithm effectively picks out

neighbors by keeping one representative of redundant sequences (non-redundant data-

set). During feature reduction, whitening pre-processing (green versus yellow/orange)

yields the best explained ratios of around 96%. These parameter settings are used in

further experiments.

Experiment 2: k-nearest-neighbor algorithm and weighted voting

In the Fixed-KNN experiment, we set k from 1 to 10 and voted with Sum and Max

propagation functions using three different weight assignment rules (Fig. 2). We ob-

serve that better performance can be obtained by setting k larger than 1 in BPO and

CCO. However, the benefit decreases for k larger than 3 in MFO. Among the three

weight schemes, Inverse is more reliable than the other two methods. As a result, we

employ the Inverse approach in further experiments. The results also reveal that Sum

propagation is better than Max.
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Figure 3 presents Fmax of Dynamic-KNN under different distance thresholds and

propagation functions. Using the 2nd quartile (Q2) as the threshold not only yields the

best performance on the three ontologies, but also contains half of the test data (Q2, In-

verse in Table 1). In this experiment, we also find the Sum-propagated function to be an

effective way to address our problem. Given the previous two experiments (Figs. 2 and 3),

we conclude that Sum propagation is better than Max; hence in the following experi-

ments, to reduce training complexity, we consider only Sum propagation. The comparison

between the Inverse and FunOverlap voting weight schemes is shown in Fig. 4. Although

FunOverlap outperforms Inverse, it predicts fewer proteins (# of preds and % in Table 1).

In the Hybrid-KNN experiment, we seek to study the effects of combining Fixed-KNN

and Dynamic-KNN. We examine the combination of fixed k from 1 to 10 and the 2nd quar-

tile as a dynamic threshold with Inverse voting weight and Sum propagation (Fig. 5). We ob-

serve no clear benefit in Fmax from the combination of Fixed-KNN and Dynamic-KNN.

Summary of experimental results

As determined in the previous experiments, the optimal parameter combination used for

CAFA2-Swiss is listed in Table 2. All TFPSSM features are extracted using PCA with whit-

ening preprocessing, SVD from the non-redundant training dataset, and Sum propagation.

Figure 6 shows the Fmax (a) and precision-recall curve (b) of 1NN, Fixed-KNN, and

Hybrid-KNN under full evaluation mode and Dynamic-KNN under partial evaluation

mode. Although Dynamic-KNN with Inverse weighting performs best among the three On-

tologies, it only predicts less than half of the proteins (0.38–0.43). For the full mode, Fixed-

KNN and Hybird-KNN show compatible performance, which is better than 1NN. Most of

the proposed k-nearest-neighbor voting algorithms (green bars) perform better than the

two baseline methods, especially in BPO and MFO. The exceptional performance of the

Fig. 1 Fmax of TFPSSM 1NN on CAFA2-Swiss (a) and CAFA3-Swiss (b) with different PCA parameters, where
the explained ratio ranges from 90 to 98.5% with a step size of 0.5%
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Naive method in CCO is biased because the benchmark proteins were annotated with more

general terms than the (training) proteins previously deposited in the UniProt database [8].

Discussion
We participated in the CAFA3 competition as the NCCUCS team. The manuscript sum-

marizing our CAFA3 results was published in Genome Biology and bioRxiv [9, 12]. We

submitted three models: 1NN, Fynamic-KNN with Inverse, and Dynamic-KNN with

FunOverlap. According to the official evaluation, our methods performed quite well

among the 68 teams (Fig. 12 in [12]). In the protein-centric evaluation, it ranks 3rd and

5th in full and partial modes, respectively, according to the minimum normalized seman-

tic distance metric in the BPO ontology (Supplemental Table S1). For the CCO ontology,

GODoc (NCCUCS) ranks 10th based on the Fmax metric (Fig. 3c in [9]) and the

precision-recall curve (Fig. 3F in [9]). Since different methods sometimes perform differ-

ently on different species [9], the benchmarks are further divided into eukaryotic- and

prokaryotic-species categories. GODoc ranks 10th and 8th in eukaryotic CCO and pro-

karyotic MFO Fmax, respectively (Fig. 5c, d in [9]). In addition to the protein-centric task,

predicting which proteins are associated with a given function (term-centric, binary classi-

fication) is also evaluated in CAFA3. For biofilm formation (GO:0042710) of the bacter-

ium Pseudomonas aeruginosa, the proposed method ranks third in AUC (Fig. 9b in [9]).

For long-term memory (GO:0007616) of Drosophila melanogaster, our method ranks first

(tied with other two methods) in AUC (Fig. 10 in [9]).

Conclusions
We propose a framework for protein function prediction that utilizes TFPSSM features.

We propose three different methods, namely, TFPSSM 1NN, TFPSSM Vote (Fixed-

Fig. 2 Fmax of Fixed-KNN on CAFA2-Swiss (a) and CAFA3-Swiss (b) with different k, voting schemes, and
propagations, in which Sum-* and Max-* denote the Sum and Max propagation function, respectively
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KNN, Dynamic-KNN, and Hybrid-KNN), and TFPSSM CATH (Dynamic-KNN with

FunOverlap) to enhance prediction accuracy. The advantage of traditional KNN lies in its

interpretability. Its performance, however, is inferior to other machine learning methods

since no actual training takes place. Here we demonstrate that variants of KNN with extra

training procedures (dynamic + voting scheme) can outperform baseline methods.

As a newly developed framework, there are still a wide range of ideas worth investi-

gating in the future (i.e., combining hydrophobe with TFPSSM). In addition, as we have

demonstrated the ability of the proposed framework to predict protein subcellular

localization and protein function, we expect it to perform effectively on other protein

prediction problems as well.

Methods
Firstly, each protein is represented by TFPSSM, a feature vector based on the frequency

of the gapped-dipeptides [4] in the position-specific scoring matrix (PSSM). Then, prin-

cipal component analysis (PCA) is employed to reduce the TFPSSM features to a lower

number of dimensions. Finally, we combine variance k-nearest-neighbor algorithms

with CATH FunFam information to predict GOs. The details of feature extraction, di-

mensionality reduction, CATH information, and the voting scheme are described in the

following sections.

Feature representation by TFPSSM

When considering proteins as documents, n-peptide is a general term representation

[13]: a peptide of length n without gaps (bi-gram for n = 2). However, as using n-pep-

tides to capture long-distance amino acid information results in a high-dimensional

vector, the new protein representation gapped amino acid pair was proposed [14], later

Fig. 3 Fmax of Dynamic-KNN on CAFA2-Swiss (a) and CAFA3-Swiss (b) with different dynamic threshold
and propagation functions under partial evaluation mode
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followed by amino acid-coupling patterns [15]. In PSLDoc, Chang et al. modify

amino acid-coupling patterns to gapped-dipeptide [4], in which XdY denotes the

amino acid coupling pattern of amino acid types X and Y separated by d amino

acids (Fig. 7). The vector size is controlled by l, where XdY for 0 ≤ d ≤ l. The di-

mension of gapped-dipeptide is 20 × (l + 1) × 20. Taking l = 13 as an example, a pro-

tein is represented by a gapped-dipeptide feature vector of 5600 (=20 × 14 × 20)

dimensions [4].

The PSSM is evolutionary information generated by PSI-BLAST. For a protein se-

quence S of length n, the PSSM of S is represented by an n × 20 matrix, in which the n

rows correspond to the amino acid sequence of S and the columns correspond to the

20 distinct amino acids. In predicting protein localization, Chang et al. propose

TFPSSM to combine gapped-dipeptide representation with the PSSM [4]. That is, the

frequency of the gapped di-peptides is calculated based on the PSSM. The fast (insensi-

tive) PSI-BLAST parameter setting is used to reduce running times (−matrix BLO-

SUM80 –evalue 1e-5 –gapopen 9 –gapextend 2 –threshold 999 –seq yes –soft_

masking true –numter_iteration 2) [11].

Dimensionality reduction by principal component analysis

PCA is a useful statistical procedure to decompose high dimension datasets into low di-

mension ones with a set of successive orthogonal components that explain the maximum

variance of the data. Therefore, we use PCA to reduce TFPSSM’s feature dimension.

Table 1 Dynamic-KNN coverage in partial model with respect to different distance thresholds and
voting weight schemes in the cross-validation validation data set. # of seqs: total number of
proteins in the set. Distance: distance threshold used in Dynamic-KNN. # of preds: number of
predicted proteins and its corresponding proportion in %

Type Dataset # of
seqs

Distance Inverse FunOverlap

# of preds % # of preds %

BPO CAFA2-Swiss 8146 Q1 2046 25.12 1882 23.10

Q2 4095 50.27 3654 44.86

Q3 6112 75.03 5167 64.43

CAFA3-Swiss 10,163 Q1 2562 25.21 2309 22.72

Q2 5095 50.13 4470 43.98

Q3 7601 74.79 6333 62.32

CCO CAFA2-Swiss 8114 Q1 2039 25.13 1855 22.86

Q2 4034 49.72 3540 43.63

Q3 6042 74.46 4898 60.36

CAFA3-Swiss 9866 Q1 2548 24.91 2204 22.34

Q2 4922 49.89 4261 43.19

Q3 7357 74.57 5912 59.92

MFO CAFA2-Swiss 5211 Q1 1291 24.77 1204 23.11

Q2 2593 49.76 2366 45.40

Q3 3902 74.88 3405 65.35

CAFA3-Swiss 7017 Q1 1756 25.02 1630 23.23

Q2 3518 50.14 3185 45.39

Q3 5278 75.22 4573 65.17
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In our study, the orthogonal components are computed from the training data and

applied on both training data and test data using the Scikit-learn v0.19.0 module. The

size of the reduced dimensions can be chosen to reflect different explained variance ra-

tios. Accordingly, we conducted a series of experiments to determine the appropriate

variance ratios based on five-fold cross-validation of CAFA2-Swiss and CAFA3-Swiss

(detailed in the Evaluation section, Experimental design, Experiment1). Finally, the dis-

tance between two proteins is defined as the Euclidean distance of the two correspond-

ing vectors in PCA projected space.

Novel k-nearest-neighbor algorithms

We propose three strategies to apply the k-nearest-neighbor (KNN) algorithm to select

candidate proteins. The predicted GOs of the target are determined by voting for results

from GOs of the candidate proteins. We use a weighted voting strategy, that is, the greater

the similarity to the target, the higher the voting weight. The voting result represents the

likelihood of the predicted GOs, which are summarized as confidence scores.

1. TFPSSM 1NN: The GOs of the query protein are predicted as the same GOs of its

nearest neighbors with a confidence score of 1.00 (Fig. 8a).

2. TFPSSM vote: We propose three ways to choose k instead of 1NN.

a. Fixed-KNN: k is fixed and chosen based on training data. Figure 8b depicts an

example in which k is set to 3. k is determined based on five-fold cross-

validation of CAFA2-Swiss and CAFA3-Swiss (detailed in the Evaluation sec-

tion, Experimental design, Experiment2).

b. Dynamic-KNN: We calculate the distance distribution of each protein’s nearest

neighbors such that we are able to use the 1st, 2nd, or 3rd quartile (Q1, Q2 or

Fig. 4 Fmax of Dynamic-KNN on CAFA2-Swiss (a) and CAFA3-Swiss (b) with different dynamic threshold
and voting weight schemes under partial evaluation mode
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Q3) as a distance threshold to select neighbors instead of a fixed k, that is,

training proteins are selected as neighbors when their distances to the query

protein are smaller than the threshold. Figure 8.c shows an example for the

threshold as d. Dynamic-KNN is not applicable to those query proteins when no

neighbor is closer than the given distance threshold. The evaluation of Dynamic-

KNN is done following the process of the partial model in CAFA3, involving only

benchmarking predicted queries.

c. Hybrid-KNN: if a protein cannot be predicted by Dynamic-KNN, we apply

fixed-KNN to select the k-nearest neighbors ignoring the distance threshold.

This is considered the combined prediction of Fixed-KNN and Dynamic-KNN.

Fig. 5 Fmax of Hybrid-KNN and Fixed-kNN on CAFA2-Swiss (a) and CAFA3-Swiss (b)

Table 2 The best parameter combination trained from CAFA2-Swiss is utilized in the CAFA2-
Benchmark

Type PCA dims Exp. ratio (%) Method Voting weight k or dynamic

BPO 107 96.0 1NN – 1

Fixed-KNN inverse 7

Dynamic-KNN inverse Q2

Hybrid-KNN inverse 4 + Q2

CCO 51 95.0 1NN – 1

Fixed-KNN inverse 9

Dynamic-KNN inverse Q2

Hybrid-KNN inverse 7 + Q2

MFO 121 96.5 1NN – 1

Fixed-KNN inverse 3

Dynamic-KNN inverse Q2

Hybrid-KNN inverse 3 + Q2

Liu et al. BMC Bioinformatics 2020, 21(Suppl 6):276 Page 9 of 16



Voting weight schemes

When neighbor proteins are selected, their voting weights are determined as follows:

(1) Equal: all weights are equal to 1; (2) Inverse: inverse of the Euclidean distance, d, be-

tween the query protein and the neighbor protein, 1/d; (3) Sqrt-Inverse: square root of

the above inverse weight,
ffiffiffiffiffiffiffiffi
1=d

p
, which aims to constrain the range of voting weights

Fig. 6 Fmax (a) and precision-recall curve (b) of each method on CAFA2-benchmark trained on CAFA2-
Swiss, where Fixed, Dyn.Inverse, Dyn.FunOverlap, and Hybrid represent Fixed-KNN, Dynamic-KNN with
Inverse voting weight, Dynamic-KNN with FunOverlap voting weight, and Hybrid-KNN, respectively. The
number inside the bar shows the predicted proportion, in particular for Dynamic-KNN in partial mode
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to prevent extremely large weights; (4) FunOverlap: In addition to the above voting

schemes concerning sequence feature space, FunOverlap is incorporated to integrate

information from protein domains. The domain-based approach has been shown to be

useful in predicting protein function [16], where proteins are classified into FunFam.

We adopt the HMMer model of FunFams released on the CATH-Gene3D server to

predict the FunFams of the query and neighbor proteins with an E-value threshold of

10−5 [17]. Then, the voting weight of the neighboring protein is set to the overlap pro-

portion between its predicted FunFams and those of the query. The FunOverlap item is

applicable if there is no FunFam below the E-value threshold (10− 5) or when the over-

lap proportion is zero Therefore, FunOverlap is only used in Dynamic-KNN.

GO propagate step

Because GO is a hierarchical structure, GO prediction of the node is propagated to its

parent node. There are two approaches to merge propagated voting weights from child

nodes: Max and Sum (Fig. 9). The former uses the maximum weight of the child nodes

Fig. 7 An example of amino acid-coupling pattern representation. Given the protein sequence
“MPLDLYNTLT”, it contains amino acid-coupling patterns M0P, M1L, M2D, M3L, and so on. Its corresponding
amino acid-coupling pattern is shown in the bottom part

Fig. 8 An illustration showing 1NN, Fixed-KNN, and Dynamic-KNN. A query protein is colored in gray. There
are two GOs for training data (colored in green and orange) where the neighbor proteins picked are
indicated with a solid circle. a 1NN: the nearest training protein is selected. b Fixed-KNN: three training
proteins are picked for K = 3. c Dynamic-KNN: five proteins are selected, as their distances to the query are
smaller than the threshold d
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as a weight (Fig. 9a), and the latter uses the sum of the children weights as a weight

(Fig. 9b). After the propagation step is finished, the score of each candidate GO is nor-

malized between 0 and 1 by dividing it by the maximum score.

The overall system architecture of the GODoc is shown in Fig. 10. It extends

PSLDoc2 (blue and green parts) with the afore-mentioned novel voting designs and

weighting schemes (red part).

Evaluation

To compare with other methods and validate the reproducibility of our experiments,

we followed the evaluation measures and the dataset used in CAFA2. In this section we

discuss the dataset, the cross-validation procedure for training the model, the evalu-

ation measures, the baseline models, and the experimental design.

Data sets

We used data from CAFA2 and CAFA3. The training data of CAFA2 includes

three databases: GO Consortium, UniProt-GOA, and Swiss-Prot. As the annotation

evidence codes of Swiss-Prot were more reliable than the other two, only the data

from Swiss-Prot was included in our training dataset, referred to as CAFA2-Swiss.

Additionally, we used the training data from CAFA3 (provides only Swiss-Prot, is

referred to as CAFA3-Swiss). Regarding the test data, the benchmark dataset from

CAFA2 originally was used to evaluate submitted methods, referred to as CAFA2-

Benchmark. Table 3 gives a short summary of each dataset, including the number

of protein sequences, the number of GO, and the median GO numbers of each

protein in BPO, CCO, and MFO.

Fig. 9 An illustration showing two functions for merging propagated voting weights from child nodes.
Given three proteins selected as neighbors by 3-NN, their corresponding GOs and voting weights are
shown in the top. a Max: The voting weight of the parent is the maximum weight of the child nodes. For
example, the weight of GO:2 is 2.3, the maximum of 2.3 and 1.2. b Sum: The voting weight of the parent is
the sum weight of the child nodes. For example, the weight of GO:2 is 3.5, the sum of 2.3 and 1.2
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Five-fold cross-validation

We used five-fold cross-validation to examine the stability of the proposed method on

the training dataset, which was split into five partitions. For each round, one fold was

considered validation data and the other four folds were used to train the model. We

repeated this for five rounds, each of which used different folds as the training and val-

idation data. By using cross-validation to fit model parameters, we reduced the prob-

ability of model overfitting.

To avoid bias from duplicates in cross-validation, non-redundant data was generated

by applying ultra-fast sequence analysis (USERACH) [18] to cluster 50% identical se-

quences. The size of data was reduced to around 30% (Table 4).

Fig. 10 System architecture of GODoc for protein GO prediction, which contains three parts: PSSM
homologous extension (blue), TFPSSM feature representation (green), and the proposed voting algorithms
(red). The former two parts are based on PSLDoc2 with updated databases. The last part combines a novel
k-nearest-neighbor algorithm and weighting schemes

Table 3 Training and test dataset statistics

Dataset Ontology # of seqs # of GOs Median # of GOs

CAFA2-Swiss BPO 40,728 15,838 25

CCO 40,571 1892 9

MFO 26,056 5480 8

CAFA3-Swiss BPO 50,813 19,682 29

CCO 49,328 2426 10

MFO 35,086 6366 8

CAFA2-Benchmark BPO 860 6540 29

CCO 1259 833 11

MFO 421 1501 8
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Evaluation metrics

The prediction result for each term included a confidence score between 0 and 1. Thus,

a decision threshold τ was applied to determine the set of predicted GO terms, P (τ).

Similarly, a set of experimentally determined GO terms was denoted as T. We focused

on protein-centric evaluation, that is, an object function is calculated between P (τ) and

T for each protein i and threshold τ. We define its precision and recall as

pri τð Þ ¼

X
v∈O

I v∈Pi τð Þ∙v∈Tið Þ
X
v∈O

I v∈Pi τð Þð Þ ð1Þ

rci τð Þ ¼

X
v∈O

I v∈Pi τð Þ∙v∈Tið Þ
X
v∈O

I v∈Tið Þ ð2Þ

where I(·) is an indicator function. Overall precision and recall are defined as

pr τð Þ ¼ 1
m τð Þ ∙

Xm τð Þ

i¼1

pri τð Þ ð3Þ

rc τð Þ ¼ 1
ne

∙
Xne
i¼1

rci τð Þ ð4Þ

where m(τ) denotes a set of proteins with prediction confidence above threshold τ. As

a method might predict only part of targets, an evaluation can be done under full mode

(ne = all dataset) or partial mode (ne =m(0)). To provide a single evaluation metric, the

maximum F-measure was used:

Fmax ¼ max
τ

2∙pr τð Þ∙rc τð Þ
pr τð Þ þ rc τð Þ

� �
ð5Þ

Baseline models

In order to investigate the bottom line performance, we used two baseline models:

Naive and BLAST. Their implementations were adopted from the Matlab code in the

CAFA2 experiment [8].

Table 4 Average protein amount of training data in cross-validation (80% of the total amount) for
redundant and non-redundant datasets in different ontologies

Type Dataset # of redundant # of non-redundant Reduction ratio (%)

BPO CAFA2-Swiss 32,582 22,231 31.77

CAFA3-Swiss 40,650 27,158 33.19

CCO CAFA2-Swiss 32,457 22,521 30.61

CAFA3-Swiss 39,462 26,631 32.51

MFO CAFA2-Swiss 20,845 14,711 29.43

CAFA3-Swiss 28,267 19,254 31.89
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� The Naive method always predicts each GO scored by its normalized frequency

among the training data. As a result, query proteins are predicted with the same

result.

� The BLAST method predicts GOs based on BLAST searching against the training

data. We extract proteins showing local alignment identity with the query protein.

The GOs of the query are predicted by assembling the GOs of similar proteins;

their confidence scores are converted from the BLAST E-values.

Experimental design

We conducted the following experiments to evaluate the performance of each step in

the proposed framework on the CAFA2-Swiss and CAFA3-Swiss training data. The

training procedure was conducted based on five-fold cross-validation (detailed in the

section on Five-fold cross-validation).

� Experiment 1: Three factors of PCA reduction were evaluated, simplifying the

process by using only TFPSSM 1NN: 1) the size of reduced dimensions with

different explained variance ratios, 2) carried out on redundant or non-redundant

training data, 3) the benefit of whitening, a preprocessing step that scales each com-

ponent to the unit variance.

� Experiment 2: We sought to identify the interaction between the voting algorithm

(k and Q), the weighting scheme, and propagate step for the TFPSSM vote

architecture. First, k of Fixed-KNN (1 to 10) and the weighting scheme (Equal, In-

verse, Sqrt) were investigated under Max or Sum propagation. After selecting the

best weighting scheme, Q of Dynamic KNN (Q1, Q2, Q3) was investigated in the

same way. The benefit of incorporating protein domain information was judged by

a comparison between FunOverlap and the selected weighting scheme. Last, the

performance of Hybird-KNN was evaluated.

Finally, a model was trained according to the best setting learned from the previous

experiments. Then, it was evaluated on the CAFA2-benchmark so it could be compared

with other methods reported in CAFA2 on the same basis.
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Additional file 1: Table S1. The performance of the submitted Model 1 based on minimum normalized
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