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Abstract

Background: Biological networks are representative of the diverse molecular
interactions that occur within cells. Some of the commonly studied biological networks
are modeled through protein-protein interactions, gene regulatory, and metabolic
pathways. Among these, metabolic networks are probably the most studied, as they
directly influence all physiological processes. Exploration of biochemical pathways
using multigraph representation is important in understanding complex regulatory
mechanisms. Feature extraction and clustering of these networks enable grouping of
samples obtained from different biological specimens. Clustering techniques separate
networks depending on their mutual similarity.

Results: We present a clustering analysis on tissue-specific metabolic networks for
single samples from three primary tumor sites: breast, lung, and kidney cancer. The
metabolic networks were obtained by integrating genome scale metabolic models
with gene expression data. We performed network simplification to reduce the
computational time needed for the computation of network distances. We empirically
proved that networks clustering can characterize groups of patients in multiple
conditions.

Conclusions: We provide a computational methodology to explore and characterize
the metabolic landscape of tumors, thus providing a general methodology to integrate
analytic metabolic models with gene expression data. This method represents a first
attempt in clustering large scale metabolic networks. Moreover, this approach gives
the possibility to get valuable information on what are the effects of different
conditions on the overall metabolism.
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Background
Biological data produced by high throughput experiments, and in particular by Next Gen-
eration Sequencing technologies are being accumulated in publicly available databases.
Multi-year research projects, such as The Cancer Genome Atlas (TCGA) [1], are produc-
ing petabytes of data. Besides this type of initiatives, there are many research projects
focused on extracting knowledge from experiments, and they are storing resulting meta-
data in knowledge-based repositories. One of these projects is the Human Metabolic Atlas
(HMA) [2], which has been accumulating genome-scale metabolic models for different
healthy and cancer tissues. Such models describe in analytic format the knowledge about
specific tissues metabolism. From the integration of such different sources, it is possible
to obtain a knowledge-based characterization of patients with different cancer sub-types.

In the case of Genome Scale Metabolic (GSM) models, this integrative approach has
been used in several studies [3–5]. It usually involves gene expression data and metabolic
models, to compare two conditions (e.g., healthy vs diseased), highlighting an average
behaviour of a group of patients with respect to another. In order to overcome this
limit, we decided to model patients separately, obtaining a network model for each of
them. Starting from this representation of the cohort, we proposed a supervised learn-
ing technique to produce predictive mathematical models to classify diseases and their
sub-types [6].

Following these ideas, we decided to devise a clustering technique for network data.
Again, each patient is represented in form of a network integrating gene expression data
and a GSM model. We obtain a representation of the networks based on a probability
distribution of their shortest paths, and an ad-hoc distance based on Shannon-Jensen
divergence is used to compute their pairwise distances. Since the number of nodes in such
networks is in the order of thousands, we explored a simplification technique [7, 8] that
helps in reducing the computational time needed for the distance computation. Using the
mutual distances among networks, it is natural to represent them in a similarity matrix, on
which spectral clustering [9] can be used to characterize the classes of patients. There are
two main advantages of this solution. First, modeling each sample in the dataset using data
from both a metabolic model and a gene expression experiment, provides more informa-
tion. Then, representing the data in the form of networks permits to obtain a quantitative
model that retains information about the cross-talk existing among the different pathways
and modules of the human metabolism.

The overall work-flow used in the present study is schematically shown in Fig. 1. Its
main four main steps are detailed in the “Materials and methods” section.

Materials and methods
Data

Gene expression data of breast cancer from microarray experiments are publicly avail-
able in the NCBI Gene Expression Omnibus database [10] (GSE78958). Raw CEL files
were imported, corrected, transformed, and normalized using GEOquery [11] and Affy
[12] R packages. Probe ids were mapped to relative gene symbols using the annotation
file “hgu133a2.db”. RNA sequencing data of breast cancer (Project TCGA-BRCA), lung
cancer (Projects TCGA-LUSC and TCGA-LUAD), and kidney cancer (Projects TCGA-
KIRC and TCGA-KIRP) collected into the Genomic Data Commons Data Portal (https://
portal.gdc.cancer.gov) were downloaded in the form of FPKM normalized read counts. As

https://portal.gdc.cancer.gov
https://portal.gdc.cancer.gov
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Fig. 1 Workflow Schematic representation of the workflow used in the present study. 1) The input data are
the tissue/cell metabolic models and the gene expression values. 2) The network is constructed connecting
reagent and product metabolites involved in the same reaction, catalyzed by one or more enzyme, whose
expression represents the weight of the edges. Multiple edges connecting two nodes are then merged into
single edges. 3) The whole network is summarized through clustering and supernodes collapse. 4) The
distance among summarized networks is calculated using the M2 metric, and used to cluster the samples

summarized in Table 1, the Breast Microarray dataset contains 418 samples of four
intrinsic molecular subtypes based on BreastPRS [13, 14]: Basal-like (99 samples), HER2-
enriched (50 samples), Luminal A (226 samples), and Luminal B (43 samples). The Breast
RNAseq dataset contains 401 samples of two intrinsic molecular subtypes based on
PAM50 [15]: Luminal A (200 samples), and Luminal B (201 samples). The Lung dataset
contains 337 samples divided into three groups: Adenocarcinoma (159 samples), Squa-
mous carcinoma (150 samples), and Solid tissue normal (28 samples). The Kidney dataset
contains 299 samples divided in three groups: 159 samples of clear cell Renal Cell Carci-
noma (ccRCC or KIRC), 90 samples of Papillary Renal Cell Carcinoma (PRCC or KIRP),
and 50 samples of Solid tissue normal.

For each type of cancer under study, the corresponding metabolic network was down-
loaded from the HMA database [2] in the compressed Systems Biology Markup Language
(SBML) format [16]: breast cancer INIT model [17], lung tissue, and kidney tissue models

Table 1 Number of samples per class (#) for the four datasets

Breast Microarray Breast RNAseq Lung Kidney

Class # Class # Class # Class #

Basal-like 99 Luminal A 200 Adenocarcinoma 159 ccRCC 159

HER2-enriched 50 Luminal B 201 Squamous carcinoma 150 PRCC 90

Luminal A 226 Solid tissue normal 28 Solid tissue normal 50

Luminal B 43

TOTAL 418 401 337 299
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[18]. The metabolic models were imported, and the relative stoichiometric matrices were
extracted in the R environment using the sybilSBML package.

Raw expression data are considered as basic data for comparison. They are a subset of
the whole gene expression data obtained by selecting the metabolic genes. We refer to
these data with the term “Expression” in the experimental results.

Network construction

The graphs (throughout the paper, we will use the terms graph and network inter-
changeably) were generated considering the metabolites as nodes, with edges connecting
metabolites involved in the same reaction, one as a reagent and the other one as the prod-
uct, as illustrated in Fig. 2. Given the metabolic model (Fig. 2a), for each reaction and
each gene/enzyme catalyzing it, we consider all the (source, target) couples of involved
metabolites. (Figure 2b). The network for the metabolic model is obtained by linking each
node representing a source metabolite with the node representing the corresponding tar-
get metabolite, with as many links as there are enzymes catalyzing the reaction (Fig. 2c.
Data for each patient is given by the relative gene expression values of the sample Fig. 2d),
that are used for weighting the corresponding edges (Fig. 2e). The obtained multigraphs
(i.e., graphs where two nodes may be linked by more than one edge) are finally reduced
to simple graphs (referred to as “Whole graph” in the results), where weights are com-
puted by averaging the gene expression values in the same reaction and adding these
means in the case of different reactions (Fig. 2f ). In general, the mapping of enzymes to
the reactions represents a difficult task since it is not a one-to-one association, as multi-
ple enzymes can catalyze the same reaction as well as one enzyme can catalyze multiple
reactions. We assumed that the weights of multiple enzymes catalyzing the same reaction
can be simplified by averaging the expression values of their corresponding genes. Some
of them work in complexes and some others are alternative catalysts, but we considered
all their expressions equally important for the regulation of the connection between a
substrate and a product. Instead, the relationship between genes catalyzing different reac-
tions and linking the same metabolites can be considered as a Boolean OR, as the path
from one metabolite to the other is alternatively defined by one reaction OR the other,
and thus simplified by summing their values, as suggested in [19].

The same metabolite can have more than one cellular compartment localization
fulfilling different functions; thus, we considered it as a different metabolite in each com-
partment Reactions not catalyzed by any enzyme were not considered and disconnected
nodes were excluded as well. Indeed, networks representing different patients differ only
for the weights of their links, and this information would be absent in both the above
cases.

The recurrent metabolites (such as H2O and CO2; see Additional file 1 for a complete
list) were excluded from the network. Indeed, they are functional groups, cofactors, and
carriers for electrons transferring, and cannot be intrinsically considered compounds;
therefore, their connections would give rise to an unrealistic definition of the paths
and their lengths, as suggested in [20]. The metabolite-based networks were generated
through an in-house R script, giving rise to 3254, 3380, 3959, and 4022 nodes for the
Breast Microarray, Breast RNAseq, Lung, and Kidney networks, respectively. The net-
works are then partially processed using igraph R package [21]. Further details concerning
the data networks are reported in Table 2.
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Fig. 2 Network construction The graphs are generated considering the metabolites as nodes, with edges
connecting metabolites involved in the same reaction, one as a reagent and the other one as the product. a
Representation of a metabolic model as a set of reactions. b For each reaction and each gene/enzyme
catalyzing it, we consider all the (source, target) couples of involved metabolites. c The network for the
metabolic model is obtained by linking each node representing a source metabolite with the node
representing the corresponding target metabolite, with as many links as there are enzymes catalyzing the
reaction. d Data for each patient (e.g., patient P1) is given by the relative gene expression values of the
sample, e that are used for weighting the corresponding edges. f The obtained multigraphs are reduced to
simple graphs, where weights are computed by averaging the gene expression values in the same reaction
and adding these means in the case of different reactions. For example, the edges between the source
metabolite M1 and the target metabolite M4 are reduced to a single edge whose weight (0.3) is computed
by adding the average (0.2) of the weights for the two yellow links with the weight (0.1) of the orange link

Network summarization

Given a network G = (V , E, W ), where V and E are the set of all nodes and edges
in G, respectively, and W is the weight matrix, its summarization into supernodes was
obtained as described in [7]. Briefly, given a partition of the l nodes of the network G into
k clusters, a matrix Q = [

q1, q2, ..., qk
] ∈ Rl×k is considered, consisting of a set of indi-

cator vectors qj that represent the membership relationship for cluster j, j = 1, . . . , k (i.e.,
qj = (

q1,j, . . . , ql,j
)T , where, for all i, qi,j=1 if node i is in cluster j and qi,j=0 otherwise).

The summarized network Gs = (Vs, Es, Ws) is formed by merging the nodes in each of the
k clusters into a supernode; the weight matrix Ws is obtained by Ws = QT WQ. Further
details are given by the authors in [7].

Table 2 Network details for the four datasets

Breast Microarray Breast RNAseq Lung Kidney

#Genes 1931 2622 2612 2801

#Nodes 3254 3380 3959 4022

#Nodes in largest connected component 2848 3041 3537 3623

#Edges 21902 29536 41038 43622
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In our approach, network summarization is applied to the largest connected component
of each network (see Table 2), having experienced that the other disconnected compo-
nents contained too few nodes, less than 1% of the largest connected component (see
Additional file 2). For computing the initial partition of each network into k clusters, we
adopted spectral clustering; a well know algorithm used for cluster analysis [9]. It uses
a representation of the dataset in terms of mutual distances among the samples, and
therefore is well suited for networks.

Spectral clustering uses as a main tool the Laplacian matrix L = D − A of a graph
G, where A is the adjacency matrix of G and D is a diagonal matrix, where Di,i is the
degree of node i, i = 1, . . . , l. The eigenvectors x and eigenvalues λ of L are obtained by
solving Lx = λx. Finally, the eigenvectors of the graph Laplacian L that correspond to the
k smallest eigenvalues are used as features for a clustering algorithm, where each row of
that matrix is a representation of the corresponding sample in the dataset.

In our implementation, we used the spectral.clustering function of the fcd
(Fused community detection) package in R [22]. For each dataset, clustering was per-
formed on the unweighted adjacency matrix of its graphs, that is common to all of them
(all the networks within a dataset have the same nodes and edges; only the edge weights
change, based on gene expression values that are different for each sample).

Distance and clustering

The final step of our approach involves the calculation of distances between the summa-
rized networks, in order to cluster the patient samples. In [23], we represented networks
using a set of metrics obtained by computing distances between probability distributions
of network topological properties, which were an extension of the definitions introduced
in [24–26]. In this study, we use the distances calculated between transition matrices T r

of different networks Gr , whose element T r
i (j) is the probability of node i to be reached in

one step by a random walker located in node j. Therefore, T r is the adjacency matrix of Gr
rescaled by the degree of each node and contains local information about the connectivity
of Gr .

Given two networks Gp and Gq, let their transition matrices be T p and T q, respectively.
Averaging over all k supernodes of the summarized networks, we defined the network
distance M2:

M2 (
Gp,Gq

) = 1
k

k∑

i=1
dJS

(
T p

i , T q
i

) = 1
k

k∑

i=1

√
J

(
T p

i , T q
i

)
, (1)

where dJS is a metric known as Jensen-Shannon distance [27], defined as the square root
of the Jensen-Shannon divergence J of the two distributions [28]. Using the distance
in Eq. (1), each network in the dataset can be represented by the vector containing the
distances from all other elements.

The square matrix containing in each row the vector representing a sample from the
dataset is usually called the Gram matrix or distance matrix.

For obtaining the final clustering results of the proposed approach, we applied spectral
clustering from the sklearn package in Python [29] to the distance matrices computed for
the summarized networks.



Manipur et al. BMC Bioinformatics 2020, 21(Suppl 10):349 Page 7 of 14

Results and discussion
Analysis of summarized networks

The summarization of the whole network through spectral clustering and supernodes
collapse gave rise to different sized networks, depending on the number k of clusters that
were set (Fig. 1 step 3). Inspired by [8], we chose six values of k, ranging between 50 and
300, which is approximately less than 10% of the nodes of the whole graphs, and evaluated
the clustering performance on the distance matrices (see Additional file 3). A range tighter
than the one in [8] was set to better analyze small differences. The best performance was
obtained using 300 supernodes for all the datasets except the kidney, which shows the
best results with 250 supernodes.

As an example of possible evaluation of the clusters from a biological point of view,
in Fig. 3, we show the KEGG pathways enriched by the enzymes from the edges of all
pairs of interacting nodes (metabolites) present in each of the 50 clusters of the kidney
metabolic network (see Additional File 4 for details). The figure shows that the cluster-
ing of the whole network gives rise to communities of nodes and relative edges which
have a defined biological function. The enriched terms containing the highest number
of enzymes enriching a pathway are shown for the top 28 clusters, according to nodes
number. Most of the terms are enriched by a single cluster or few of them, suggesting
that almost each of the obtained clusters has a specific biological meaning. Some of the
bigger clusters enriched terms as “Metabolism of xenobiotics by cytochrome P450” and
“Chemical carcinogenesis”, which are well known to be involved in tumor metabolism
and particularly in renal injuries. The kidney is the organ responsible for the elimina-
tion of drugs from the body, but it is also involved in drug metabolism through activity
of cytochrome P450 (CYP) enzyme group and cross-talk with the liver [30]. Further-
more, due to its functions of filtering and reabsorption, the exposure to carcinogenic
substances is much higher than other organs [31]. The most abundant cluster (692 nodes)
enriches “Purine metabolism” pathway. Purines are involved in many biological processes,
including immune responses and host–tumor interaction, and their metabolism changes
continuously in response to cell demands; thus, it is a consequence that the alteration
of the enzymes involved in this pathway, organized in dynamic multienzyme complexes
called “purinosome”, occurs in severe diseases. In particular, purine metabolism involve-
ment and nucleotide imbalance in tumorigenic processes has been largely demonstrated
[32–34].

Performance results

Several metrics exist for clustering. In the experiments, we consider an extended set of
metrics often adopted for clustering evaluation [29, 35–38], to allow easier comparison
with existing and newly proposed methods. They are described in detail in the Addi-
tional file 5 and summarized in Table 3, where we report their name (column Name),
abbreviation (column Acronym), definition (column Computed as), possible values (col-
umn Codomain), and whether they should be minimized (↓) or maximized (↑) to have
more accurate results (column Better if ). Matlab scripts used for clustering evaluation are
provided as Additional file 6.

Performance results for the four datasets are reported in Table 4. Here, “Expression”
refers to results achieved by spectral clustering applied to the gene expression data
obtained in the first step of the proposed approach, “Whole graph” refers to results
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Fig. 3 The kidney metabolic network (center), represented in Cytoscape v3.7.1 shows 50 clusters detected by
spectral clustering. The KEGG terms for the enzymes belonging to the clustered nodes were enriched using
the clusterProfiler package [41] in R. Insets in the periphery show details of 28 clusters derived from the
network, where n is the number of nodes and cl is the cluster number. The first KEGG term significantly
enriched by individual clusters is shown above each inset

obtained by spectral clustering on the distance matrices of the networks constructed in
the second step, and “Summarized graph” refers to the results achieved by the proposed
simplified approach.

For the Breast Microarray dataset, we observe that clustering gene expression data leads
to poor overall performance. Indeed, RI values below 50% reveal very low accuracy and
negative ARI values reveal that accuracy is even lower than the one that could be obtained
by a random partitioning. At the same time, more than 50% of the times the wrong deci-
sion is taken (MR=52.72%). Similarly, all the other metrics confirm poor performance.
This can be ascribed to the microarray technology used to quantify the gene expression,
which is known to be less sensible for slight differences in expression measurements com-
pared to the RNA-seq method used for the other datasets. Moreover, Bartlet et al. [39]

Table 3 Metrics adopted for clustering evaluation

Name Acronym Computed as Codomain Better if

Rand’s Index RI TP+TN
TP+FP+FN+TN [0,1] ↑

Adjusted Rand’s Index ARI RI−E[RI]
max(RI)−E[RI] [-1,1] ↑

Misclassification Rate MR FP+FN
TP+FP+FN+TN [0,1] ↓

F-Measure F1
2Precision·Recall
Precision+Recall [0,1] ↑

Fowlkes-Mallows Index FMI TP√
(TP+FP)·(TP+FN)

[0,1] ↑
Cluster Accuracy CA 1

n

∑c
i=1 max(CPi|GTi) (0,1] ↑

Normalized Mutual Information NMI MI√
H(CP)H(GT)

[0,1] ↑
Adjusted Mutual Information AMI MI−E[MI]√

H(CP)H(GT)−E[MI]
[-1,1] ↑

(For details on the adopted metrics, see Additional file 5)
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Table 4 Performance of spectral clustering algorithm on the four datasets

Clustering data RI ARI MR F1 FMI CA NMI AMI

Breast microarray

Expression 47.28 -2.06 52.72 43.70 44.66 44.02 13.84 10.84

Whole graph 67.30 26.25 32.70 49.77 50.28 55.98 30.10 27.56

summarized graph 66.05 26.09 33.95 52.40 52.45 53.11 19.96 19.00

Breast RNAseq

Expression 53.05 6.21 46.95 60.99 61.90 62.59 10.08 8.14

Whole graph 52.81 5.62 47.19 52.85 52.85 62.09 4.30 4.11

Summarized graph 54.90 9.81 45.10 54.82 54.82 65.84 7.37 7.20

Lung

Expression 89.79 79.17 10.21 88.11 88.12 94.07 78.31 77.83

Whole graph 89.56 78.73 10.44 87.91 87.92 93.77 75.94 75.02

Summarized graph 87.56 74.64 12.44 85.56 85.57 92.58 72.72 72.00

Kidney

Expression 88.67 76.42 11.33 85.88 85.88 91.97 70.89 70.66

Whole graph 87.91 74.94 12.09 85.11 85.12 91.64 69.50 68.80

Summarized graph 88.09 75.42 11.91 85.52 85.56 91.64 70.00 68.80

(All values have been multiplied by 100)

investigated the classification of breast cancer into intrinsic molecular subtypes, show-
ing that the classifications obtained using different tests were discordant in 40.7% of the
studied cases. This could also justify the poor results obtained for clustering the raw
expression data from the Breast RNAseq dataset. On the other side, we observe fairly
improved performance for the Breast Microarray dataset when using both whole and
summarized graph data. This may mean that considering metabolic interactions, rather
than raw data, can help in capturing the differences between breast cancer subtypes.

This also holds true for the case of the Breast RNAseq dataset, even though with a small
improvement as compared to the case of gene expression data.

For the Lung and Kidney datasets, clustering of raw data leads to quite high perfor-
mance, as witnessed by low values of MR and high values for all the other performance
metrics. Comparable performance is achieved using whole graphs, slightly better than
using summarized graphs.

For all the datasets, the execution times for computing the distance matrices for sum-
marized graphs strongly decrease (≈ 35 times less of the execution times for whole
graphs).

Therefore, we can conclude that the proposed simplification proves to be benefi-
cial for clustering “difficult” high-throughput data (e.g., those coming from imprecise
technologies or having rather uncertain ground truth classification) and only minimally
detrimental in the other cases. In all cases, it allows a strong reduction in execution times,
making it feasible for big data analyses.

Visual exploratory analyses

T-distributed Stochastic Neighbor Embedding (t-SNE) is a nonlinear dimensionality
reduction technique that allows embedding of high-dimensional data for visualization
in a low-dimensional space [40]. It models each high-dimensional sample by a two- or
three-dimensional point in such a way that similar samples are modeled by nearby points
and dissimilar samples are modeled by distant points with high probability. It is capable
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of retaining the local structure of the high-dimensional data, while also revealing some
important global structure, such as the presence of clusters at several scales.

Figure 4 provides visual representations of the Kidney data mapped into the 2D
Euclidean space by t-SNE. Data are colored to reflect the ground truth classification (left
column) and the clustering results (right column).

The top row of Fig. 4 reports the visual representation for the gene expression data.
Here, three clusters are obtained, basically consistent with the ground truth classification
(left column). Only a few embedded points corresponding to ccRCC appear close to the

Fig. 4 Kidney dataset t-SNE representation of gene expression data a and distance matrices obtained from
whole b and summarized c graphs. The panel on the left shows the ground truth labels of the different
classes and the right panel shows the labels assigned by spectral clustering
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PRCC cluster and vice versa. Moreover, a small of group of embedded points from the
two carcinoma classes appears close to the solid tissue normal class. These few visual
anomalies also reflect in the clustering results (right column), where the three clusters
appear more uniform that the ground truth (i.e., no red point in the center of the blue
cluster and no blue points in the center of the red cluster), consistently with the visual
judgement.

The middle row provides the visual representation for the whole graph data. Here, the
two carcinoma clusters are spatially contiguous, without marked separation (left column).
The same can be said for the clustering results (right column), where most of the misclas-
sified points appear spatially close to the cluster they are deemed to belong to (i.e., no blue
point in the rightmost border of the red cluster and no blue points in the lower border
of the green cluster). This shows that spectral clustering on these data fails like we would
fail in judging based on the t-SNE visual representation.

The bottom row reports the visual representation for the summarized graphs. Similarly
to the case of gene expression data, three spatially separated clusters can be identified,
corresponding to the three different classes (left column). Only few carcinoma samples lye
in an ambiguous region of the plane, at the intersection of the three clusters. Clustering
assigns almost all of these few samples to the ccRCC class (right column), predicting the
ambiguous plane region as belonging to this class.

The above analysis of visual representations obtained using t-SNE suggests that the pro-
posed simplification leads to clusters that are better separated than in the whole graph
case, and similarly to the gene expression case, thus confirming the comparable per-
formance achieved. Analogous analyses carried out for all the considered datasets (see
Additional file 7) confirm the achieved performance results.

The heatmap in Fig. 5 is a color-based representation of the distance matrix obtained
by the calculation of the M2 metric between the summarized graphs created for the Kid-
ney project patients. The patients are ordered according to distance values. The labels
from ground truth classification and from spectral clustering are shown. In both cases,
three clusters are clearly visible, representing the three classes: PRCC (blue), ccRCC
(red), and solid tissue normal (green). In particular, the two disease classes form two
well-defined clusters for most of the patients, but some of them appear to be mixed.
Some of these mixed samples are differently assigned by spectral clustering compared to
ground truth labels. Looking at the heatmap, these samples seem to not belong to any
of the present classes and show a big heterogeneity among themselves as well. A cer-
tain grade of heterogeneity is also shown by the normal samples, but not enough to not
assign them to the same cluster. Heatmaps for the remaining datasets are provided in
Additional file 8.

Conclusions
In this paper, we describe a methodological approach for clustering of biological networks
obtained by the integration of genome-scale metabolic models with gene expression data.
Each sample in a dataset is described by a network, whose nodes are metabolites con-
nected by an edge when involved in the same reaction. The edge weights are derived by
the abundance of the enzymes catalyzing the associated reaction. The networks are then
simplified, summarizing them into supernodes, to reduce the computational complex-
ity of the clustering algorithm, which uses an adjacency matrix containing the distances
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Fig. 5 Heatmap representation of the clustering performed on the distance matrix of the Kidney
summarized network. The patients are ordered according to the distance values. The labels from ground
truth classification and from spectral clustering are shown. In both cases, three clusters are clearly visible,
representing the three classes: PRCC (blue), ccRCC (red), solid tissue normal (green)

between all pairs of networks. We show that the performance of this approach on
literature data is competitive with the clustering of raw data, with the advantage of high-
lighting the cross-talk between different metabolic modules and pathways. Future work
will be performed to extract biological information linked to the connection between
the supernodes which define the differences among the classes. Furthermore, given the
heterogeneity of tumors, clinical information and further subclasses annotations will be
exploited in networks analysis.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s12859-020-03564-9.

Additional file 1: List of recurrent metabolites removed from the network. The file AdditionalFile1.xlsx contains a list
of all the recurrent metabolites which were removed during network construction.

Additional file 2: Connected components size. The file AdditionalFile2.xlsx provides tables showing number of
connected components and relative nodes from the four datasets networks.

Additional file 3: Clustering Results. The file AdditionalFile3.pdf provides spectral clustering results with different
numbers k of supernodes for network summarization.

Additional file 4: KEGG term enrichment from the 50 clusters of the Kidney metabolic network. The file
AdditionalFile4.xlsx provides the list of KEGG terms enriched from the enzymes belonging to the different clusters in
the kidney metabolic network.

Additional file 5: Clustering metrics. The file AdditionalFile5.pdf provides an in depth description of all the metrics
adopted for clustering evaluation.

Additional file 6: Matlab scripts for clustering evaluation. The file AdditionalFile6.zip provides a (zipped) set of
Matlab scripts, used for clustering evaluation.
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Additional file 7: t-SNE-based visual representations. The file AdditionalFile7.pdf provides the t-SNE visual
representations for expression, whole graph, and summarized graph data in Breast Microarray, Breast RNAseq, and
Lung datasets.

Additional file 8: Heatmap representations. The file AdditionalFile8.pdf provides the heatmap representations for
summarized graphs in Breast Microarray, Breast RNAseq, and Lung datasets.
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