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Results: We used DSaa$ on a real antibiotic stewardship dataset to make predictions
about antibiotic resistance in the Clinical Pathology Operative Unit of the Principe di
Piemonte Hospital in Senigallia, Marche, Italy. Data related to a total of 1486
hospitalized patients with nosocomial urinary tract infection (UTI). Sex, age, age class,
ward and time period, were used to predict the onset of a MDR UTI. Machine
Learning methods such as Catboost, Support Vector Machine and Neural Networks
were utilized to build predictive models. Among the performance evaluators, already
implemented in DSaas, we used accuracy (ACC), area under receiver operating
characteristic curve (AUC-ROQ), area under Precision-Recall curve (AUC-PRC), F1 score,
sensitivity (SEN), specificity and Matthews correlation coefficient (MCC). Catboost
exhibited the best predictive results (MCC 0.909; SEN 0.904; F1 score 0.809; AUC-PRC
0.853, AUC-ROC 0.739; ACC 0.717) with the highest value in every metric.
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Conclusions: the predictive model built with DSaaS may serve as a useful support
tool for physicians treating hospitalized patients with a high risk to acquire MDR UTIs.
We obtained these results using only five easy and fast predictors accessible for each
patient hospitalization. In future, DSaasS will be enriched with more features like
unsupervised Machine Learning techniques, streaming data analysis, distributed
calculation and big data storage and management to allow researchers to perform a
complete data analysis pipeline. The DSaa$ prototype is available as a demo at the
following address: https://dsaas-demo.shinyapps.io/Server/

Keywords: Machine learning, Classification, Regression, Data science pipeline,
Antibiotic stewardship, Multi drug resistance, Nosocomial infection

Background
Nowadays, healthcare operators must process and interpret large amounts of complex
data [1]. Machine Learning methods have broadly begun to infiltrate the clinical litera-
ture in such a way that the correct use of algorithms and tools can facilitate both diag-
nosis and therapies. The availability of large quantities of high-quality data could lead
to an improved understanding of risk factors in community and healthcare-acquired in-
fections. For instance, in the antibiotic stewardship field, researchers utilized Massachu-
setts statewide antibiogram data to predict three future years of antibiotic
susceptibilities using Machine Learning regression-based strategies [2]. To date, inter-
national guidelines recommend to use institutional antibiograms in the development of
empiric antibiotic therapies [3] and Machine Learning methods could help physicians
in the empirical treatment of the urinary tract infections (UTIs). These are usually
known as the most common bacterial infections with a significant financial burden on
society [4]. In hospitals at least 40% of all infections are UTIs and bacteriuria develops
in up to 25% of patients who require a urinary catheter for 1 week or more [5]. The se-
lection of adequate treatment for the management of UTIs is increasingly challenging
due to their etiology, bacterial resistance profile, and evolving of adaptive strategies.
Moreover, the bacteria resistance to antibiotics has risen dramatically with increasingly
fewer therapeutic options. One of the causes is the recurrent infection that leads to de-
velopment of multidrug resistance (MDR). Several risk factors are associated with UTIs,
including sex and age [6]. Male patients have a lower risk of contracting uncomplicated
UTIs but more prominent to contract complicated or MDR infections than women.
Older adults are more prone than younger individuals in developing urinary tract infec-
tions because of incomplete bladder emptying (often related to prostatic enlargement
in men), higher rate of catheter usage and increased susceptibility to infection associ-
ated with frailty [7]. Moreover, infections caused by MDR organisms are more common
in elderly people, especially those with catheters or residing in long-term care. The re-
sistance rates to antimicrobials in UTIs can differ from region to region, patient to pa-
tient and even from ward to ward where the patient is hospitalized. Hence, in a
nosocomial infection it is important to know the microorganism population in the
hospitalization place [8].

Unfortunately, antibiotics are not always prescribed responsibly contributing to the
development of new resistances [9]. To effectively treat patients and prevent the in-
creases in resistance, every institution must have an up-to-date susceptibility
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knowledge. Moreover, predictions can be used to guide prescription practices and pre-
pare for future resistance threats [2].

The objective of this work is to design, develop and evaluate with a real antibiotic
stewardship dataset, a predictive model useful to predict MDR UTIs onset after patient
hospitalization. For this purpose, we implemented an online, completely dynamic plat-
form called DSaaS and specifically designed for healthcare operators to train predictive
models (supervised learning algorithms) to be applied in this field.

Methods

In this section we describe both the methods used for the engineering and implementa-
tion of the platform (DSaaS) and for the analysis of the real database about antibiotic
stewardship.

DSaaS platform

DSaasS is an online, user-friendly, platform that allows us to validate simple predictive
models based on regression algorithms as well as to utilize supervised classification
techniques. DSaaS allows to manage in an easy way the whole pipeline required for
extracting some knowledge from data: data preparation/ data pre-processing, data ana-
lysis, applying predictive models and data visualization. The DSaaS’s tools used to build
the pipeline are reported below in a chronological order:

e Data injection: DSaaS uses Apache Nifi for data extraction, routing and
transformation;

e Data engineering: DSaaS allowed us to carry on data type transformation, data
filtering, data selection, under and oversampling [10] and gave us the possibility to
transform categorical variables into a series of dichotomous variables, namely
variables that can have a value of zero or one only, by using a dummy variables
approach;

e Three different supervised Machine Learning classification algorithms: Support
Vector Machines, one of the most widely used classification method, specifically
designed for binary classification problems looking for a hyperplane with maximum
margin of separation between the two classes [11]; Catboost, a recently
implemented algorithm especially suitable for categorical datasets [12] and Neural
Networks, a very well-known technique aiming to reproduce the behavior of human
brain where neural cells (i.e., neurons) receive, process and transmit external data
with each other [13, 14].

e Auto ML: DSaa$ provides an auto Machine Learning approach that allows the user
to identify the best parameter input values for the chosen Machine Learning
methods [15];

e Validation and Cross-Validation: in the context of predictive modeling, when com-
paring supervised classification models, DSaa$ provides different indexes. In our ex-
periment we used accuracy (ACC), area under receiver operating characteristic
curve (AUC-ROC), area under Precision-Recall curve (AUC-PRC), F1 score, sensi-
tivity (SEN), specificity and Matthews correlation coefficient (MCC). At the mo-
ment DSaaS allows the user to apply k-fold Cross-validation and to use a number
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of folds that is automatically determined by DSaaS taking into account the size of
the data frame. Details of all evaluators available in DSaaS can be found in the sup-
plementary material;

e Data Visualization: for every Machine Learning algorithm DSaaS provides

visualization tools that allow the user to understands the resulting model.

We provide a complete list of DSaaS functionalities in the Supplementary Materials.

DSaaS in future will allow to create and execute more complex data analysis pro-
cesses: an easy dataflow editor will permit to publish the results obtained as a REST
service [16]. Moreover, DSaaS will allow to use scripting for exploiting the power of R
language. Lastly, we are also planning to provide DSaaS with a “Stewardship UI” that
will help users to maintaining data quality within DSaaS$ platform [17].

Dataset

The dataset was built out based on the bacterial isolates reports of the Clinical Path-
ology Operative Unit of the Principe di Piemonte Hospital in Senigallia, Marche, Italy.
The hospital has 288 beds and a mean of 31,000 inpatient days per semester. We in-
cluded in the study all patients admitted from March 2012 to March 2019 (7 years).
Only isolates, collected from infections that occurred 48 h after admission, were used
and identified as nosocomial infections, as defined by the Centers for Disease Control
and Prevention (CDC) [18].

We considered as MDR UTTI a patient with a microorganism resistant to one or more
antibiotic classes as defined from the CDC [19] and we assigned the value R (R=1) to
all MDR UTI and the value S (S = 0) to the rest.

We collected results from 11 wards, spatial units provided with rooms where a
unique staff of health-care and co-workers are active. In our model we considered the
variable “ward” as a space subjected to few interactions with the others. Therefore, the
microbial population within a ward with their related hospital infections and antibiotic
resistance profiles were preserved for each ward and time period.

To test the DSaaS platform we decided to restrict the database and to use only the
urine samples, corresponding to the most commonly requested clinical test among
wards. The selection of five predictors (time-period, sex, age, age class and ward) was
primarily based on urinary tract infection related literature [20]. Table 1 shows the de-
tailed operational definition of variables used in our study. A total of 1486 clinical

Table 1 Operational definition of variables

Variables Measurements Definition
Dependent  MDR Discrete Does the patient acquire a MDR infection during hospitalization?
Resistance Yes or No
Independent  Sex Discrete Sex of the patients, Male or Female.
Age Continous Age (in years) during hospitalization
Age Class Discrete 10 years class to witch the patient belong, from 1 to 10
Ward Discrete Ward where the patient was hospitalized, from 1 to 11
Time Period  Discrete Time period in which the patient was hospitalized in a ward,

from 1to 14
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samples were considered for this study. Specimens were processed according to good
laboratory practice and standard methods for identification.

Data pre-processing and data preparation

Duplicate data were discarded using the Bio-Mérieux VIGIguard™ software if all
the following conditions were true: isolate collected from the same patient, same
specimen, same ward, same species and similar antibiotic pattern (S/R=1; I/R-S/
I =2) within 20 days.

DSaaS adopted the Caret v6.0-82 [13] and the GA (Genetic Algorithm optimization)
v3.2 package [21] to automatically tune the optimal combinations of model parameters
for the three Machine Learning algorithms we choose, aiming to achieve a better pre-
diction performance. Evidence demonstrated that the class imbalance (unequal size of
the classes), which is just the situation in our sample, can substantially impact the per-
formance of the method used. Therefore, we adopted synthetic minority over-sampling
technique by under-sampling the adequate class and over-sampling the inadequate
class to improve the model performance [10]. DSaaS did also automatically a 10-fold
cross validation method with three repeats, which has been viewed as the de facto
standard for estimating model performance [22].

We randomly divided the database in a training set (70%), and a test set (30%) to
evaluate the predictive models. The training set were used to build the classification al-
gorithms using gradient boosting Catboost [12], Neural Networks (13-14) and SVM
[10]. We refer to the Supplementary Material file for a detailed description of the
algorithms.

Performance measures

DSaa$ allowed us to measure the model’s performance using accuracy, area under re-
ceiver operating characteristic curve, area under Precision-Recall curve, F1 score, sensi-
tivity, specificity and Matthews correlation coefficient. To describe such performance
measures for classification problem, it is essential to define a specific matrix, called
confusion matrix, containing the number of false positives (FP), false negatives (FN),
true positives (TP), and true negatives (TN). Specifically, a two-class (positive-negative)
confusion matrix is a table where each row represents a predicted value and each col-
umn defines an actual value (or vice-versa): all correct prediction (TP and TN) are lo-
cated along the matrix diagonal, while the errors are given by all the elements outside
the diagonal.

Accuracy (ACC) [23] is a value that can be directly calculated from the confusion
matrix and defines how often the classifier is correct and is calculated as the ratio be-
tween the number of correct predictions and the total number of predictions.

To define AUC [23] it is necessary to introduce the ROC curve (Receiver Operating
Characteristic curve), namely a graph showing the performance of the classifier over all
possible thresholds with respect to two parameters: the sensitivity (also known as recall
or true positive rate, TPR) and the false positive rate (FPR). FPR is calculated as the ra-
tio between the number of negative inputs wrongly classified as positive (false positive)
and the total number of negative data and measures the proportion of all the negative
inputs who will be identified as positive. AUC-ROC (Area Under the ROC Curve)
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measures the area underneath the ROC curve: it has a range of values from 0 to 1. The
area measures discrimination, that is, the ability to correctly classify random positive
and negative data.

Sensitivity [23] is calculated as the ratio between the number of positive inputs
correctly classified as positive (true positives) and the total number of positive data,
measuring how well the classifier made positive predictions based on all classes. It can
be seen as the classifier ability to correctly detect positive inputs).

Specificity [23] also known as true negative rate (TNR), is defined as the ratio be-
tween the number of negative inputs correctly classified as negative (true negatives)
and the total number of negative data. It measures how well the classifier made nega-
tive predictions based on all classes (it can be seen as the classifier ability to correctly
detect negative inputs).

Matthews Correlation Coefficient (MCC) is a classification measure computed dir-
ectly using the values of the confusion matrix: it takes values from -1 to + 1, the first
case describing a totally wrong classifier, the latter defining a faultless predictor.

F1 score is a weighted average of precision (ratio between true positives over the total
number of positive elements) and sensitivity (namely, recall) values, therefore it is com-
puted by adding the two values by a coefficient that defines its weight (importance)
with respect to the other. F1 score has the best value at 1 and reaches the worst at 0.

Similarly to ROC curve, Precision Recall curve (PRC) plots precision and recall values
for different thresholds: the value defining whether or not a data point is considered
positive is continually changed and such results are graphically displayed. It is trivial to
notice that, a high PRC value is linked to high recall and precision values.

Finally, overall model performance was calculated by averaging model performances
over the time [23].

Results

To build the model, we used a dataset based on antibiotic resistance information ob-
tained from a tertiary hospital in central Italy. After using different tools already
present in literature, we decided to aggregate all we needed in a cloud platform called
DSaa$ that allows both testing of data analysis models and the creation of rough but
useful Machine Learning processes easily usable by non-expert users. A demo version
of DSaaS$ can be found at https://dsaas-demo.shinyapps.io/Server/ while its actual and
future architecture is shown in Fig. 1.

Several supervised Machine Learning algorithms, readily available in the platform,
have been used to predict the patient risk to acquire a MDR UTTI and results were sub-
sequently compared to obtain the best model possible to predict further resistance
outcome.

Table 2 shows predictors and descriptive statistics for infected patients with and
without an MDR urinary tract infection. Respectively 767 and 718 in-patients with and
without hospital-acquired infections was present.

Table 3 shows the results of the three Machine Learning algorithms we tested with
DSaaS. Accuracy, AUC-ROC, sensitivity, specificity, MCC, F1 score and AUC-PRC
were used to assess the performance of those methods. Since we adopted ten-fold cross
validation for estimating model performance, the means and standard deviations of the
above four metrics can be calculated for the training sample. Among the three methods
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employed, Catboost has the highest accuracy rate (0.711), followed by Neural Networks
(0.646) and Support Vector Machine (SVM) (0.643) almost with the same perfor-
mances. In terms of the AUC-ROC, Catboost (0.735) has a value higher than 0.7, indi-
cating a more than acceptable classifier performance. The AUC-ROC values for Neural
Networks and SVM are lower than 0.7, demonstrating poor performance. MCC, in the
case of Catboost, is 0.909, resulting the best compared to NN and SVM. In these, the
value of the MCC, however good, is 0.878 and 0.810 respectively. Both F1 score and
AUC-PRC perform well in the case of Catboost and NNs, having results above 0.8.;

Table 2 Descriptive statistics for infected patients with/without an MDR urinary tract infection

Variable Infected Patients with MDR UTls Infected Patients without MDR UTls
Summary statistics
Sex Male: 267, Female: 500 Male: 149, Female: 569
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Table 3 Performance evaluation of models using the test set. The standard deviation is reported
in round brackets

Method AUC-ROC  Accuracy AUC-PRC F1 score MCC Sensitivity  Specificity
Catboost 0.739 0717 0.853 0.809 0.909 0.904 0.343
(0.021) (0.032) (0.028) (0.027) (0.026) (0.061) (0.052)
SVM 0.628 0630 0.752 0.702 0.810 0.823 0.254
(0.025) (0.057) (0.031) (0.033) (0.032) (0.042) (0.085)
NeuralNetworks 0.652 0.686 0.801 0.804 0.878 0.880 0.288
(0.023) (0.019) (0.024) (0.016) (0.024) (0.077) (0.075)

SVM performs not very having values of 0.702 and 0.752 for the F1 score and AUC-
PRC respectively.

Summing up, Catboost has a quite good performance while the remaining classifiers
perform worse. Finally, the sensitivity (recall) value demonstrates us that all the three
classifiers have a high performance in discriminating true positives (MDR infection)
with values of 0.895, 0.807 and 0.752 respectively for Catboost, SVM and Neural
Networks.

Discussion

The field of bioinformatics is advancing from being a tool of pure statistical analysis
and integration of data to a process able to support the definition of predicting models
that evolve along with the biological experiments [24—27].

To date Machine Learning promises to assist clinicians in integrating ever-increasing
loads of medical knowledge and patient data into routine care. Data-driven Machine
Learning aims to identify patterns among multiple variables from huge data sets (big
data) undiscoverable using traditional biostatistics [28] and Evidence Based Medicine
(EBM) [29]. Traditional EBM shares these goals, but Machine Learning aims to achieve
them more quickly and, since it uses data sets that are already available, Machine
Learning has fewer constraints related to logistics, ethics, study design, and sample size
than EBM [30]. Nowadays we are on the verge of a major shift in hospital epidemi-
ology. Through the appropriate application of Machine Learning, healthcare epidemiol-
ogists will be able to better understand the underlying risk for acquisition of infectious
diseases and transmission pathways, develop targeted interventions, and reduce
hospital-acquired infections [30]. Machine Learning outperforms EBM and conven-
tional statistic in many ways: algorithms can operate at the point of care using
software embedded in investigational devices, electronic health records, or mobile
device applications; during continuous monitoring predictive models can learn from
new data; predictive models are flexible and an epidemiologist can incorporate
more variables (antibiotics, bacteria, more medical facilities etc.) to refine his strat-
egies in real time [28].

The design of a data analysis experiment may be deemed challenging because of the
goal of the project not being known ex-ante. However, data analysis pipeline needs to
be fast, efficient and correct, as well as easy and reproducible. Often, the goal is
achieved by transforming original data and using different algorithms to identify the
best prediction model. For this purpose, there are several tools that help data scientists
to carry out their experiments. However, these tools are often difficult to use by a non-
expert in programming language, for example a clinician. Some of these tools are
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development environments such as Bio7; others, such as Apache Zeppelin and Jupyter
are collaborative platforms to manage and execute machine learning-oriented language
scripts (for example python and R). Moreover, there are platforms allowing the specifi-
cation of data analysis pipelines with workflow-oriented tools, such as Windows Azure.
The one thing all these tools have in common is to be oriented data analysis experts
with knowledge of programming languages. The aim here is to create a set of services
that allows a domain expert user to perform and validate different Machine Learning
methods over their data. Unlike the tools mentioned above, despite being characterized
by less features, the DSaaS (Data Science as a Services) platform may be very useful for
a domain expert aiming to use a Machine Learning algorithm on his data.

In our case-study, since we were dealing with data defined by binary targets describing
whether an individual turned out to be affected by an MDR UTI or not, we decided to use
a variety of well-known Machine Learning classification approaches previously imple-
mented in DSaaS. In this way, we both studied the quality of the platform and were able
to get a comparison of the classification performance using several classification models
on the same dataset. Specifically, as a first step we decided to use Support Vector Machine
(SVM), Neural Networks (NNs) and a quite new boosting method, known as Catboost. In
particular, we decided to use SVM because of its manful advantages: SVM is a robust al-
gorithm, very effective on slightly different datasets; it is safe, that is, it ensures the reduc-
tion of risks and uncertainties; it allows users to operate using kernels, transforming data
from the original input set to a higher dimensional Hilbert space and, therefore, allowing
non-linear classification. Neural Networks are now a classical tool, used for almost every
Machine Learning experiment. Moreover, DSaaS allows the user to choose how many
hidden layers and neurons to use, satisfying many different demands. Finally, we have
chosen to use Catboost since it is particularly suitable for dataset with an important pres-
ence of categorical features, namely different from numerical ones that can only assume a
limited, and usually fixed number of possible values corresponding to different types or
categories. Moreover, Catboost uses a random forest structure, making the algorithm ro-
bust with a good ability to deal with training and test errors.

As target value we decided to assign 1 to individuals with the characteristic to have
an MDR UTI (that means, R) to two or more antibiotic classes. Therefore, in our data-
set the negatives coincided with non-MDR UTIs and are described by all the points
with target value equal to O (that means, S). From Table 3 it can be noticed that, among
the three algorithms the one having best results was Catboost: it achieved the best
value in terms of sensitivity, AUC-ROC, accuracy rate and a very low value for specifi-
city. Note that, specificity measure has low results in all three methods, while we have
obtained generally fair results (that means, above 0,75) for sensitivity value. Having high
value of sensitivity is very good for the model because it means that the type-II error is
small; on the contrary having a low value of specificity means that the type-I error is
high. Given that the best situation is when there are no errors, in this context is better
to treat a person with a specific antibiotics even if he/she does not need it (type-I error)
rather than not to treat at all even if he/she is going to develop a MDR infection (type-
II error). By definition of sensitivity, we can conclude that our predictors have better re-
sults when a resistant data point (that means MDR), with target equal to 1, is consid-
ered. Hence, the used predictors have good performance indicating if a new
hospitalized patient is at risk of taking a multi-drug resistant (MDR) infection.
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Furthermore, as regards SVM and Neural Networks, they have similar accuracy and
AUC-ROC results around the value 0,6. Finally, the use of the MCC, Fl-score and
AUC-PRC gives us a better and complete overview of our model, even if those metrics
are more informative and powerful if applied to unbalanced classes [31]. In particular,
high values of the MCC indicates if that all the entries of the confusion matrix (true
positive, true negatives, false positives and the false negatives) are very good in predict-
ing the output of the model without overestimating the performance as, sometimes,
happens using only accuracy and AUC-ROC [32]. In our case, Catboost outperforms
NN and SVM in all the three metrics, resulting the best algorithm for the problem of
MDR infection relating on our dataset.

Despite numerous studies have investigated risk factors in UTIs [18], literature re-
vealed that little of those studies adopted Machine Learning techniques for prediction.
At the best of our knowledge, our study is the first adopting a Machine Learning
approach in predicting the patient-related risk after the hospitalization to acquire an
MDR UTIL Then, by utilizing five different features easy to obtain from a new hospital-
ized patient, physicians may quickly adopt early prevention and intervention procedures
and decision plans may be formulated in combination with related clinical experiences.

Furthermore, following the enhancement of the predictive model, the integration into
the hospital computerized physician order entry could be done, where physicians may
acquire a timely alert regarding the possibility of the onset of MDR UTIs in an early
hospitalized patient.

Several limitations should be noted in our study. First, potential risk factors which
were unavailable from the review of medical records are not considered here. In the
next future we will point to enhance the model with other well-known UTIs risk fac-
tors like diabetes, the presence of a catheter, sexual-related factors, antibiotic use and
renal transplantation [28]. Moreover, using Machine Learning techniques, risk factors
commonly neglected by traditional statistical models can be discovered. Secondly, the
analyzed cases were extracted from a small-scale hospital and therefore the
generalizability of our findings may be limited. In the future we wish to gather more
cases from a wider variety of hospitals.

Conclusions

DSaaS can help physicians to construct easy and fast predictions models that could be
helpful to treat hospitalized patients. Additionally, epidemiologists can use predictions
to guide policies, research, and drug development for upcoming years. In the first ver-
sion of DSaaS, we provided a useful prediction model for hospitalized patients on the
onset of an MDR UTI with discrete performance. Moreover, our objective is to expand
the DSaa$S platform to allow not only physicians but also researchers from different
fields to use the tool on a variety of databases.

Future work will enrich the platform with a dataflow editor and unsupervised Machine
Learning methods based on topological data analysis. The combination of topological and
Machine Learning methods will support the analysis of large datasets [33]. Thus, the
DSaas$ platform will allow users to carry out a complete data analysis pipeline for discov-
ering new patterns, define new models and understanding the trends of data under con-
sideration [34].
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